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Abstract

Artificial biochemical networks (ABNs) are computational
architectures motivated by the organisation of cells and tis-
sues at a biochemical level. In previous work, we have
shown how artificial biochemical networks can be used to
control trajectories in discrete and continuous dynamical sys-
tems. In this work, we extend the approach to the control
of a hybrid dynamical system: a legged robot. Taking in-
spiration from biological cells, in which complex behaviours
come about through the interaction of different classes of bio-
chemical network, we develop the notion of a coupled artifi-
cial biochemical network, in which an artificial genetic net-
work controls the configuration of an artificial metabolic net-
work. Using a higher-level robotic control task, we show how
the coupled network finds solutions which can not be read-
ily expressed using the artificial genetic network or artificial
metabolic network alone. Our results also show the impor-
tant role that non-linear maps can play as a natural source of
complex dynamics.

Introduction
The structure and function of biological organisms emerges
from the action and interaction of biochemical networks op-
erating within cells. There are three main types of biochemi-
cal network: the metabolic network, comprising the protein-
mediated chemical reactions that take place within the cell;
the signalling network, composed of the protein-mediated
responses to chemical messengers received by the cell; and
the genetic network, which emerges from the regulatory in-
teractions between genes.

From a computational perspective, biochemical networks
are interesting for a number of reasons. This includes their
ability to express complex behaviours, their compactness,
their ability to adapt to changing environments, their robust-
ness to environmental perturbation and—from the perspec-
tive of evolutionary computation—their evolvability. Such
reasoning has motivated a host of computational models
whose architectures are based upon the structure and func-
tion of biochemical networks. We refer to these collectively
as artificial biochemical networks, or ABNs (Lones et al.,
2010).

Perhaps best known of these are Boolean networks
(Kauffman, 1969) and other kinds of artificial genetic net-
works (e.g. Reil, 1999; Banzhaf, 2003). By modelling
the regulatory interactions which occur between genes,
these models attempt to capture the dynamics of genetic
networks, using these to generate complex, robust, be-
haviour. Another class of models, which includes P Systems
(Pǎun, 2000) and artificial chemistries (e.g. Fontana, 1992;
Banzhaf, 2004), can be categorised as artificial metabolic
networks. These mimic the self-organising behaviour of bi-
ological metabolisms, and attempt to capture the manner in
which complex behaviour can emerge from interactions be-
tween simple computational components. There has also
been some work on artificial signalling networks, including
early work on perceptron-like feed-forward networks (Bray,
1995) and more recent work on signalling-based classifier
systems (Decraene et al., 2007).

ABNs have been used to implement a range of com-
putational behaviours, including those required for robotic
navigation (Ziegler and Banzhaf, 2001; Taylor, 2004), clas-
sification (Banzhaf and Lasarczyk, 2005), pole balancing
(Nicolau et al., 2010) and image compression (Trefzer et al.,
2010). In our research, we are interested in the ability of
ABNs to control the kind of dynamics found in complex real
world systems. In (Lones et al., 2010), we applied ABNs to
the control of two numerical dynamical systems: the Lorenz
equations, a continuous-time dissipative dynamical system;
and Chirikov’s standard map, a discrete-time conservative
dynamical system. These both model complex dynamics
found within real world systems, and also lie at opposite
ends of the dynamical systems spectrum. In both cases, we
were able to evolve ABNs capable of controlling trajectories
in a prescribed manner.

However, many real world systems do not have purely
continuous or discrete dynamics, but rather a hybrid of the
two (Branicky, 2005). These often occur on different time
scales, such that continuous state flow is occasionally inter-
rupted by jump discontinuities caused by the occurrence of
discrete events. Two common examples of this are physical
systems with impact, such as a bouncing ball, and switched



systems, where a signal change causes a discrete change
in behaviour. In this paper, we consider a problem which
combines both of these: controlling the gait and direction of
movement of a simulated legged robot.

Coupling between different classes of biochemical net-
work plays an important part in the functioning of biolog-
ical cells. The coupling between a genetic network and a
metabolic network, in particular, is central to a cell’s ability
to both specialise and adapt to a changing environment. Tak-
ing inspiration from this biological behaviour, we investigate
a hybrid ABN architecture, in which an artificial genetic net-
work controls the expression of an artificial metabolic net-
work. Results on the robot locomotion tasks suggest that
such an architecture is particularly suited to problems that
require reconfigurable dynamical behaviour.

The paper is structured as follows: We first introduce the
ABN models used in this work. We then describe how these
models are evolved. Finally, we introduce the robotic loco-
motion tasks to which they were applied, and present results
and conclusions.

Artificial Biochemical Network Models
In this section, we describe the three ABN models used in
this work: an artificial genetic network (AGN), an artificial
metabolic network (AMN), and a hybrid ABN formed from
the coupling of an AGN and an AMN. In addition to ex-
pressiveness and evolvability, our choice of models is also
influenced by a desire for efficiency and simplicity. For this
reason, the models use discrete-time rather than continuous-
time updates (unlike, for instance, Banzhaf, 2003). Since
continuous-time dynamical systems can often be reduced to
discrete-time equivalents by taking Poincaré sections (Kantz
and Schreiber, 2004), this arguably makes little difference in
terms of expressiveness, but does considerably reduce exe-
cution time.

Artificial Genetic Network (AGN)
In general, the complex behaviour of biological genetic net-
works stems not from the complexity of their component
parts, but from the complexity of their dynamics. Hence, a
simple abstraction such as the Boolean network can display
complex behaviour without the need to model biological de-
tails such as continuous-valued expression, asynchronous
updates, continuous-time, and the presence of transcription
factors. Nevertheless, there are advantages to using more
complicated models, and in this work we use a continuous-
valued generalisation of the Boolean network.

Continuous values have two main advantages. First, they
make it easier to interface with external systems, since inputs
and outputs do not need to be encoded in binary. Second,
the size of the state space is not limited by the number of
genes in the network. In a Boolean network, the number
of possible states is 2N , where N is the number of genes,
meaning that small networks are always attracted to a limit

cycle. When continuous values are used, the state space is
infinite (within the limits of representation), meaning that
small networks have the potential to exhibit more complex
behaviours.

Formally, an AGN consists of an indexed set of genes,
G. Each gi ∈ G has an expression level λi, an indexed set
of regulatory inputs Ri, and a regulatory function fi, which
maps the expression levels of its regulatory inputs to its own
expression level. The first time the AGN is executed, its ex-
pression levels are initialised from an indexed set of initial
values, LG. External inputs can be delivered to the network
either by explicitly setting the expression levels of certain
genes, or by introducing new regulatory inputs with fixed
values. After iterating the network a specified number of
times, tG, outputs are captured from the final expression lev-
els of designated genes.

Artificial Metabolic Network (AMN)
The artificial metabolic network complements the AGN de-
scribed in the previous section. It is a simple artificial chem-
istry with continuous-valued chemicals and continuous-
valued reactions. Formally, it consists of an indexed set of
enzyme-analogous elements E which transform the concen-
trations of an indexed set of real-valued chemicals C. Each
enzyme has a set of substrates Si ⊆ C, a set of products
Pi ⊆ C, and a reaction mi which calculates the concen-
trations of its products based upon the concentrations of its
substrates.

The first time the AMN is executed, its chemical concen-
trations are initialised from an indexed set of initial values,
LC . External inputs are delivered to the network by ex-
plicitly setting the concentrations of certain chemicals. At
each time step, each enzyme ei applies its reaction mi to
the current concentrations of its substrates Si in order to de-
termine the new concentrations of its products Pi. Where
the same chemical is produced by multiple enzymes, i.e.
when ∃j, k : j 6= k ∧ ci ∈ Pj ∩ Pk, the new concentra-
tion is the mean output value of all contributing enzymes:
ci =

∑
ej∈Eci

ci
ej/|Eci

| where Eci
are enzymes for which

ci ∈ Pi and ciej is the output value of ej for ci. After it-
erating the network tM times, outputs are captured from the
final concentrations of designated chemicals.

Coupled Artificial Biochemical Network (CABN)
Biological biochemical networks interact with one another
in a number of ways. Perhaps most significantly, the genetic
network controls when and where proteins are expressed.
This determines which enzymes are present in the metabolic
network, and hence which reactions can take place within a
cell. In effect, the genetic network is able to reconfigure the
cell’s processing machinery over the course of time. This
behaviour occurs extensively in both single-celled and mul-
ticellular organisms. In the former, it allows the metabolism
to be changed in order to react to the presence of different



Figure 1: Coupled artificial biochemical network.

kinds of nutrients in the organism’s environment. In the lat-
ter, it underlies the processes of cell specialisation and devel-
opment which are fundamental to multi-cellular organisms.

In the coupled artificial biochemical network (CABN)
model, we capture this idea of a genetic network controlling
the expression of a metabolic network (See Fig. 1). For-
mally, a CABN comprises an AGN, an AMN, and an injec-
tive coupling function χ : GC → E where GC ⊆ G is the
set of enzyme coding genes, i.e. each enzyme is coupled to
a single gene, and some genes may not be enzyme coding
(yet are still involved in regulating other genes). Coupling
is carried out by giving each enzyme an expression level, ξi,
and setting this to the expression level of the gene to which
it is coupled, i.e. ∀(gi, ej) ∈ χ : ξj := λi. This expression
level then determines the relative influence of each enzyme
when calculating the new concentration of a chemical:

ci =
∑

ej∈Eci

ξici
ej∑

ej∈Eci
ξi

(1)

i.e. the new concentration is the mean of each enzyme’s
output value weighted by its relative expression level. This
captures the idea that changes in the genetic network lead
to changes in the balance between competing pathways in a
metabolism.

Regulatory functions and enzyme reactions
Table 1 lists the mathematical functions from which regula-
tory functions (f ) and enzyme reactions (m) are chosen.

Sigmoids model the switching behaviour of many non-
linear biological systems, making them a good choice for
approximating the behaviours of genetic and metabolic path-
ways. We use the logistic function, where s determines the
slope and b the slope offset (or bias). For multiple inputs,
x =

∑n
j=0 ijwj , where i0...in are inputs and w0...wn ∈

[−1, 1] are corresponding input weights, with negative val-
ues indicating repression.

The remaining functions, all of which are discrete non-
linear maps, are motivated by our earlier work (Lones et al.,

Table 1: Mathematical functions used within ABNs.

Logistic (Sigmoidal) function:

f(x) = (1 + e−sx−b)−1, where s ∈ [0, 20], b ∈ [−1, 1]

Logistic map:
xn+1 = rx(1− x), where r ∈ [0, 4]

Arnold’s cat map:
(xn+1, yn+1) = ([2xn + yn] mod 1, [xn + yn] mod 1)

Baker’s map:

(xn+1, yn+1) =


(2xn, yn/2) 0 ≤ xn ≤ 1

2

(2− 2xn, 1− yn/2) 1
2
≤ xn < 1

Chirikov’s standard map:
pn+1 = (pn +K sin θn) mod 2π, K ∈ [0, 10]
θn+1 = (θn + pn+1) mod 2π

2010) in which we found that the use of logistic maps within
ABNs could lead to the evolution of more effective con-
trollers. We hypothesised that this was due to evolution
taking advantage of the complex dynamical behaviours dis-
played by non-linear discrete maps.

In this work, we extend the approach by using four
well-known discrete maps that capture the natural dynam-
ics present in a range of biological and physical systems.
The logistic map is a model of biological population growth.
Depending on the value of parameter r, the system is at-
tracted to either a fixed-point, cyclic or chaotic orbit (May,
1976). Arnold’s cat map (Arnold and Avez, 1968) is a ge-
ometric transformation of the unit square with interesting
periodic behaviour. The baker’s map is an archetypal model
of deterministic chaos, capturing the exponential sensitivity
to initial conditions that results when kneading bread (Silva,
2008). Chirikov’s standard map (Chirikov, 1969) captures
the behaviour of dynamical systems with co-existing or-
dered and chaotic regimes. Its dynamics are ordered for low
values of parameter K and become increasingly chaotic for
higher values. The parameterised maps (the logistic map and
Chirikov’s map) can be used either with an evolved parame-
ter value or with an extra input, whose current value is used
to set the parameter. The latter is referred to as a tunable
map, since its dynamics can be modified by the ABN during
execution.

Evolving Artificial Biochemical Networks
Our ABNs are evolved using a standard generational evo-
lutionary algorithm with tournament selection (size 4),
uniform crossover (p=0.15), and point mutation (p=0.06).
Crossover points always fall between gene or enzyme
boundaries. Inputs and outputs (Ri, Si and Pi) are repre-
sented by absolute references to indices. Function parame-
ters (e.g. slopes, input weights) and initial values are rep-



Figure 2: Genetic encoding of an artificial biochemical network.

Figure 3: Quadruped robot simulated in Open Dynamics Environ-
ment. Arrows indicate the direction of movement along the x-axis
plane.

resented as floating-point values and are mutated using a
Gaussian distribution centred around the current value.

We use a standardised genetic encoding for all ABN types
(see Fig. 2). This represents the ABN as a sequence of
genetic units, where each genetic unit has an optional reg-
ulatory region and an optional coding region. In a coupled
network, the regulatory region encodes the gene and the cod-
ing region encodes the enzyme which it expresses. Where a
gene does not express an enzyme (such as in an AGN), the
coding region is empty. For an AMN, where there are no
genes, the regulatory region is empty. The genetic encod-
ing also includes the initial gene expression and chemical
concentrations (where applicable) and timing information.

Controlling Legged Robot Locomotion
Legged robot locomotion is a challenging problem. In (Beer
and Gallagher, 1992), the authors summarised the challenge
by stating “A locomotion system must simultaneously solve
the two tightly coupled problems of support and progres-
sion.” In this paper, we address the locomotion of a simu-
lated quadrupedal robot. There have been a number of previ-
ous attempts to evolve quadrupedal locomotion (e.g. Hornby
et al., 2005; Kamio et al., 2003; Seo and Hyun, 2008; Clune
et al., 2009). Since functional gaits can be generated by
tapping sinusoidal functions at appropriate phase offsets,

a common approach is to use genetic algorithms (Hornby
et al., 2005) or genetic programming (Seo and Hyun, 2008)
to generate sinusoid-based controllers. Another, potentially
more robust, approach is to evolve neural networks (Beer
and Gallagher, 1992; Clune et al., 2009).

Since our focus is upon using legged robot locomotion
as a test bed for comparing the expressiveness of different
ABN models, the robot (see Fig. 3) is purposely very sim-
ple in design, comprising a square top section with four legs
connected by actuators at the corners. The actuators are lim-
ited to movement in the x-axis plane, with a maximum ele-
vation of 60◦ from vertical. The robot was simulated using
the Open Dynamics Engine (ODE) physics engine, with a
step size of ∆t = 0.05s, friction of 200N, CFM (an ODE
parameter) of 10−5, and standard gravity. Actuators have a
maximum angular velocity of 3m/s and a maximum torque
of 150Nm. These values are sufficient to enable dynamic
gaits, but not large enough to allow the body to be dragged
by the front legs without the involvement of the rear legs.
The ABN is executed every 10 simulation steps.

Generating Quadrupedal Gaits
The first task was to evolve ABNs capable of generat-
ing quadrupedal gaits, i.e. patterns of actuator movements
which would cause the robot to move away form its starting
position. The aim of this task was to determine whether the
different ABN types and configurations were able to gener-
ate appropriate patterns of movement.

Experimental Settings A controller’s fitness is the Eu-
clidean distance moved by the robot within an evaluation
period of 500 time steps. The population size is 200, with
a generation limit of 100. ABNs have four inputs, corre-
sponding to the actuator angles, and four outputs, which are
used to set the torques of the actuators during the next 10
simulation steps. Note that the requirement to map angles to
torques adds a degree of difficulty to this task. All inputs and
outputs are linearly scaled to the interval [0, 1]. For AMNs
and CABNs, inputs are delivered via initial chemical con-
centrations. For AGNs, inputs are delivered via initial gene
expression levels.

Results Figure 4 compares the fitness distributions of
evolved controllers. This shows that all three classes of ABN
are capable of generating gaits which solve the movement
task. It also indicates that there is no significant difference
in the median performance of the AGN, AMN and CABN
models. However, for all ABN models, the best controllers
use Sigmoidal functions rather than non-linear maps. So-
lution length (i.e. network size) has relatively little impact.
Examples of evolved behaviours are shown in Figure 5.

These results demonstrate that effective controllers can be
expressed using any of the ABN models, although good con-
trollers are more readily found when using Sigmoidal func-
tions. It is interesting to note that there is no observable



Figure 4: Controlling legged robots using coupled and uncoupled
ABNs with sigmoids (Sig) or discrete maps. Summary statistics
for 50 runs are shown as notched box plots. Overlapping notches
indicate when median values (thick horizontal bars) are not signif-
icantly different at the 95% confidence level. Kernel density esti-
mates of underlying distributions are also shown (in grey), show-
ing that some of the distributions are multimodal. The notation
Fn1 7→ Fn2 denotes a genetic network with Fn1 regulatory func-
tions coupled to a metabolic network with Fn2 enzyme functions.
Coupled networks comprise 10 genes (expressing up to 10 en-
zymes) and 10 chemicals. For uncoupled genetic and metabolic
networks, results are shown for solution lengths of both 10 and 20
(genes, or enzymes and chemicals, respectively), to allow fair com-
parison with the coupled networks.

penalty to using the structurally more complex coupled net-
works.

Higher Level Control of Locomotion
The second task introduced an extra level of difficulty, re-
quiring the ABNs to control the robot’s direction of move-
ment in addition to its gait. The aim of the task was to test
not only the ABNs’ abilities to express suitable patterns of
movement, but also their ability to switch between different
patterns as required.

Objective function The robot is required to change direc-
tion by 180◦ when signalled to do so, whilst still moving as
far as possible in the given direction. Controller fitness is
measured over a sequence of epochs< e0, ..., eN−1 >, each
with a random duration between 300 and 600 time steps,
with the required direction of movement reversing during
subsequent epochs. The fitness function f is defined:

f =
tmax − tmin

N
min{

∑
n∈Neven,n<N

p(n),
∑

n∈Nodd,n<N

p(n)}

(2)
where tmax and tmin are the maximum and minimum
bounds on epoch duration and p(n) is the progress made
during epoch n, defined:

(a) Sigmoid AGN

(b) Sigmoid AMN

(c) Discrete-map AMN

Figure 5: Time series plots of ABNs generating quadrupedal gaits.
Actuator angles are input via the first four gene expression levels
(G0–G3) or chemical concentrations (C0–C3), and new torque set-
tings are read from the last four (G6–G9, C6–C9). White represents
0, black represents 1, greyscales represent intermediate values.

p(n) =
dn

tn
(2
ηb(en, en+1)

π
− 1)(1− ηw(en)

π
)σn (3)

where dn is the distance travelled during epoch n, tn is the
duration of epoch n, ηb is the difference in mean heading
between two epochs, ηw is the difference in heading within
an epoch (as measured during the first and last 50 time-steps
of the epoch), and σn is a penalty for non-movement: equal
to 1 if the robot has not moved for 100 subsequent ABN
updates in epoch n, and 0 otherwise.

In effect, progress is the mean velocity in the required di-
rection, with penalties for turning during an epoch and for
non-movement. Assuming movement in a straight-line and
no stopping, fitness is equivalent to the expected distance
covered during an epoch in the forward or backward direc-
tion, whichever is shortest.

Experimental Settings A population of 500 is used for
this task, to reflect its greater difficulty. In addition to the
four actuator angles, the ABN also receives a direction in-
put. This has the value 0 during even-numbered epochs and
1 during odd-numbered epochs. In addition to delivering
this signal with the actuator angles, for AGNs and CABNs
we also look at the effect of delivering the signal separately
through the first regulatory input of one or more genes.



Figure 6: Controlling direction and movement of legged robots.
For each function set (or pair of function sets in the case of the
coupled network), results for the best-performing combination of
solution size and (for genetic and coupled networks) regulatory
signal destination are shown. For the latter, g0 indicates that the
control signal was delivered as a regulatory input to the first gene,
all indicates that the control signal was delivered as a regulatory
input to all genes.

Figure 7: Comparing the effect of delivering the direction signal to
different locations within the Sig 7→ Maps coupled network. grall
indicates a regulatory input to all genes, gr0 is a regulatory input to
the first gene, ge0 is the initial expression of the first gene, and c0

is the concentration of the first chemical.

Results Well-behaved controllers (i.e. those which cor-
rectly respond to the direction signal and produce effective
gaits) generally have a fitness greater than about 1.5: those
with lower fitnesses tend to have periodic or inconsistent be-
haviours.

Figure 6 compares the fitness distributions of evolved con-
trollers, suggesting that most combinations of ABN model
and function set choice do not lead to well-behaved con-
trollers. In fact, the majority of evolved Sigmoidal AGN
and AMN were only capable of movement in one direction,
giving them a median fitness of zero. Discrete-map AGNs
and AMNs achieved higher fitness, but generally did not re-
spond to the direction signal, displaying a range of periodic

Table 2: Occurrence of discrete maps within final solutions from
all Sig 7→ Maps CABN runs where fitness is greater than 1.5.

Maps In solutions Mean occurrences
per solution

Baker’s map 100% 2.3
Tunable standard map 78% 1.6
Standard map 78% 1.6
Tunable logistic map 72% 1.2
Arnold’s cat map 61% 1.5
Logistic map 50% 1.7

and aperiodic behaviours.
Notably, only coupled networks comprising a Sigmoidal

AGN and a discrete-map AMN (denoted Sig 7→ Maps) were
able to consistently generate competent controllers1, and
only when the direction signal was delivered as a regulatory
input to each gene. Figure 7 shows the effect of delivering
this signal to other locations within the Sig 7→ Maps coupled
networks; showing that delivering the direction signal via a
gene’s initial expression or a chemical’s initial concentration
was generally ineffective.

Figure 8 shows some representative examples of how
these Sig 7→ Maps networks control gait and respond to
the direction signal. In most evolved networks, the AMN
is responsible for generating appropriate patterns of actua-
tor movements and the AGN is responsible for switching
between different patterns by regulating the influence of dif-
ferent enzymes. It is interesting to note that their behaviour
over time resemble the dynamics of biological biochemical
networks, in that a slow-changing genetic network controls a
fast changing metabolic network. This may also explain why
Sigmoidal functions, which are more amenable to produc-
ing slow-changing dynamics, play a productive role within
coupled controllers but not within the stand-alone AMN and
AGN controllers.

We can hypothesise that there are two reasons why dis-
crete maps are useful for this task. First, they can individ-
ually carry out behaviours which would require a number
of interconnected Sigmoids to implement—to use a biolog-
ical analogy, they are the equivalent of a whole biochemical
pathway. Arguably, this entails that certain pattern genera-
tors can be evolved more readily than in a Sigmoidal net-
work, and using fewer genes. Second, all the discrete maps
we use have chaotic phases. When in this phase, their dy-
namics are highly sensitive to small perturbations, meaning
that relatively small changes in gene expression can lead to
rapid switching between different attractor states—precisely
the behaviour we are looking for in many control tasks.

Table 2 lists the relative occurrence of the different dis-
118 of the 50 runs generated solutions with fitness greater than

1.5, compared to only a handful for all the other ABNs.



(a) In this example, the AMN generates a single cyclic pattern (C5) which is then scaled and propagated to the outputs (C6–C9).
The scaling for each output (and hence the direction of the resulting gait) is determined by the current gene expression pattern.

(b) In this second example, the AMN generates two different cyclic patterns (bunny hopping and a four-legged wading move-
ment), which the AGN switches between in response to changes in the direction signal.

Figure 8: Time series plots of Sig 7→ Maps coupled ABNs controlling the direction and gait of a legged robot. The Signal input specifies
the required direction of movement. GO–G9 are the expression levels of the genes in the AGN. C0–C9 are the concentration levels of the
chemicals in the AMN.

crete maps in the final solutions of successful runs. All of the
maps are used by evolution, with most of them appearing in
the majority of solutions. The baker’s map, in particular, ap-
pears in all of the successful controllers, and usually occurs
multiple times in these solutions. Since the baker’s map is
a model of deterministic chaos, this supports our hypothesis
that chaotic dynamics are useful. The standard map is also
well-represented in evolved solutions, perhaps reflecting its
relatively high degree of expressiveness and configurability.
It is also notable that the tunable versions of the logistic and
Chirikov’s maps are often used.

Conclusions
In this paper, we have shown that artificial biochemical net-
works can be evolved to control the locomotion of a simu-
lated legged robot. We used two artificial biochemical net-
work models—an artificial genetic network and an artificial
metabolic network—and looked at how these models can be

used both individually and when coupled together.
For a simple movement task, where the robot was required

to move as far as possible from its starting position, both in-
dividual and coupled networks could be evolved to generate
suitable gaits. However, for a harder task, where the robot
was required to reverse its direction of movement when
given a signal, only coupled networks could be evolved to
express suitable behaviours. Analysis of the resulting con-
trollers suggests there is a clear separation of effort, with the
artificial metabolic network generating patterns of actuator
movements and the artificial genetic network switching be-
tween different patterns as appropriate.

We found that non-linear discrete maps play an impor-
tant role in solving the harder of the two problems. When
used as functional elements within artificial biochemical net-
works, these maps provide a useful source of configurable
pre-packaged dynamics. Of the maps used in this study, the
chaotic baker’s map occurred most within evolved solutions.



This finding supports the idea that the inherent instability of
chaotic maps makes them useful for rapidly switching be-
tween different behaviours.

We also found that the destination of the direction signal
has a large effect upon the ability of the networks to solve
the harder task. This may reflect the important role that sig-
nal recruitment plays within the evolution of biological bio-
chemical networks. Rather than pre-specifying the destina-
tion of signals, as we have done in this work, in future work
we will look at whether an artificial signalling network can
be used to deliver signals to appropriate parts of the genetic
and metabolic networks.
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