
Human-Competitive Evolution of Quantum
Computing Artefacts by Genetic Programming

Paul Massey psm111@cs.york.ac.uk
John A. Clark jac@cs.york.ac.uk
Susan Stepney susan@cs.york.ac.uk
Department of Computer Science, University of York, York, YO10 5DD, UK

Abstract
We show how Genetic Programming (GP) can be used to evolve useful quantum
computing artefacts of increasing sophistication and usefulness: firstly specific quan-
tum circuits, then quantum programs, and finally system-independent quantum algo-
rithms. We conclude the paper by presenting a human-competitive Quantum Fourier
Transform (QFT) algorithm evolved by GP.

Keywords
quantum computing, genetic programming

1 Introduction

Quantum computing is a radical new computing paradigm that has the potential to
bring a new class of previously intractable problems within the reach of computer sci-
ence (Deutsch, 1985; Rieffel and Polak, 1998; Nielsen and Chuang, 2000). Harness-
ing the quantum mechanical phenomena of superposition and entanglement, a quantum
computer can perform certain operations exponentially faster than classical (i.e. non-
quantum) computers. However, devising algorithms to harness the power of a quan-
tum computer has proved extraordinarily difficult, and it is generally agreed that there
are still very few distinct quantum algorithms. This motivates our investigation of Ge-
netic Programming (GP) as a means of discovering new quantum circuits, programs,
and ultimately algorithms. GP has discovered new artefacts in other domains. Indeed,
its use has produced various patentable outputs. Can it exhibit human-competitive
performance for quantum algorithm design?

In this paper we show how GP can evolve quantum circuits to perform specific
arithmetic operations. We then show how, by increasing the level of abstraction, it
is possible to evolve quantum algorithms capable of solving more generic problems,
parameterised by the system size. We present a Quantum Fourier Transform (QFT)
algorithm which, when parameterised with a specific system size, generates a circuit
that implements the QFT on that size of quantum system. We believe this is the most
significant quantum artefact yet evolved using evolutionary computing, and a result
which competes with the efforts of human quantum algorithm researchers.

This paper assumes a knowledge of basic GP concepts and techniques. Readers
unfamiliar with GP should consult (Koza, 1992; Koza, 1994). A brief overview of the
quantum concepts used in this paper is given in Appendix A.

After this introduction, and a brief explanation of our terminology, we review
current applications of heuristic search techniques to the design and exploration of

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

P. Massey, J. A. Clark, S. Stepney

H(3)H(3) Loop(2) Loop(π/4
√

2n)
{ Create H(3) } { Compute Predicate

Invert If Predicate Is True
Invert All About Average }

(a) (b) (c)

Figure 1: (a) a quantum circuit containing two H(3) gates (i.e. Hadamard gates acting
on the third qubit of a particular quantum system: see Appendix B for formal defini-
tions of all quantum gates used in this paper). (b) one possible quantum program (in
pseudo-code) which would generate the circuit shown in (a). (c) a true quantum algo-
rithm (actually a key part of Grover’s search algorithm (Grover, 1996)), also in pseudo-
code. As the parameter n varies, this generates a number of distinct quantum circuits,
each of which is able to solve the problem for that particular value of n.

quantum artefacts. We then present the software framework which we have used to
evolve quantum artefacts, indicating how solutions are represented and manipulated,
as well as presenting the basic approach to evaluating the fitness of individuals. We
then present our results at the quantum circuit, quantum program and quantum algo-
rithm levels, before concluding and suggesting some avenues for further work.

2 Terminology

We use the following terminology in this paper:

• Quantum circuit: a sequence of quantum instructions (logic gates) that can be ap-
plied to a specified quantum system. (See Appendix A for an example.)

• Quantum program: a set of (classical) instructions that, when executed, generates
(the description of) one or more quantum circuits. The program may include con-
structs such as iteration and branching functions as well as functions to generate
particular quantum gates. In the language of GP, an evolved quantum program is
the genotype that can be decoded to produce a quantum circuit phenotype.

• Quantum algorithm: a parameterisable quantum program that, as the value of the
parameter(s) are altered, generates quantum circuits to solve a large number of
different problem instances on different sizes of quantum system.

Figure 1 illustrates the differences between these three concepts. Our terminology
differs from normal non-quantum usage where, for example, a (compiled) ‘program’
is software executed in real circuitry, and where an ‘algorithm’ is generally a machine-
independent recipe that would be implemented by a program.

3 Evolving Quantum Artefacts – A Brief Review

The use of GP to evolve quantum artefacts has been pioneered by Spector et al.,
who demonstrate evolved circuits to solve instances of OR, AND-OR, Deutsch Josza
promise and database search problems (Spector et al., 1998; Spector et al., 1999a; Spec-
tor et al., 1999b; Barnum et al., 1999; Barnum et al., 2000). The reader is referred to
(Spector, 2004) for a summary and up-to-date discussion of this work.

(Leier and Banzhaf, 2003) use a linear tree GP variant to evolve solutions to the 1-
sat problem (Hogg’s algorithm). (Williams and Gray, 1999) and (Yabuki and Iba, 2000)

2 Evolutionary Computation Volume x, Number x

Evolution of Quantum Computing Artefacts

use GP to evolve circuits to implement quantum teleportation. (Spector and Bernstein,
2003) use GP to discover the communications capabilities of quantum circuitry, simul-
taneously disproving certain conjectures on the communications capacities of quantum
channels. It would appear that uncovering genuine insights in this field is computa-
tionally tractable using evolutionary computation and the area seems highly promis-
ing. Of further interest is that protocols and circuits uncovered by evolutionary com-
puting were generalised by intelligent reflection.

Other researchers have evolved efficient implementations for common quantum
gates, on a variety of possible quantum computing architectures. For example, (Ger-
shenfeld and Chuang, 1997) show how the controlled-NOT gate can be implemented
on a Nuclear Magnetic Resonance (NMR) based quantum computer by a series of five
yet more primitive operations. (Van Meter and Binkley, 2004) outline work in progress
seeking to design quantum circuits which optimise the use of quantum resources (for
example, operating only on qubits which are physically close together).

A fuller account can be found in (Stepney and Clark, 2006).

4 Q-PACE: Software for Evolving Quantum Artefacts

Our research has been conducted using successive versions of the software suite Q-
PACE (Quantum Programs And Circuits through Evolution). The original Q-PACE
suite is now obsolete. Q-PACE II is a GP suite designed to evolve quantum circuits,
Q-PACE III is a development of Q-PACE II designed to evolve quantum programs, and
Q-PACE IV is an enhanced version of QPACE III designed to evolve true quantum algo-
rithms. The key properties of these three software suites are described in Appendix D.
For convenience, we will use the term “the Q-PACE software” to refer to all three soft-
ware suites.

An n qubit system forms a 2n dimensional space, spanned by 2n orthonormal basis
vectors |k〉 (see Appendix A for more details). Any state vector |Ψ〉 may be written in

terms of its components with respect to this basis, |Ψ〉 =
2n−1∑
k=0

αk |k〉, where the αk are

complex probability amplitudes.
In order to determine the fitness of an evolved individual circuit U , Q-PACE com-

pares the state vectors generated by applying that individual to a set of known initial
states, with those produced by applying a known model solution Us to the same set of
known initial states. More specifically, the technique for assessing fitness is as follows:

1. Initialisation:

(a) Create a set {|Ii〉} of N input state vectors that at least span the space of all
possible inputs. Hence N ≥ 2n. We take the {|Ii〉} to be the 2n basis vectors
|k〉 along with a further 2n randomly generated vectors. Each member of the
set, |Ii〉, acts as a fitness case for the problem under test.

(b) Create a set {|Ti〉} of target vectors, the desired results for each fitness case.

Let |Ti〉 =
2n−1∑
k=0

τ
(i)
k |k〉 = Us |Ii〉.

2. Evaluation:

(a) Apply the candidate circuit U to each fitness case, to produce a set of result

vectors {|Ri〉}. Let |Ri〉 =
2n−1∑
k=0

ρ
(i)
k |k〉 = U |Ii〉.

Evolutionary Computation Volume x, Number x 3

P. Massey, J. A. Clark, S. Stepney

N

N

N

N

| c >

| a >

| b >

| 0 >

| c >

| a >

| (a+b)0 >

| (a+b)1 >

Figure 2: evolved deterministic adder circuit

(b) Compare the result vector set {|Ri〉} with the corresponding target vector set
{|Ti〉}. The chosen means of comparison defines the specific fitness function for
the particular problem under test.

5 Evolving Quantum Circuits: Adders

Q-PACE II has used a number of different fitness functions suitable for the evolution of
various different kinds of quantum circuits and algorithms.

5.1 Deterministic Quantum Adders

A typical fitness function might sum the magnitudes of the differences of the probabil-
ity amplitudes of each state vector:

fg =
N∑

i=1

2n−1∑
k=0

g
(
|τ (i)

k − ρ
(i)
k |

)
(1)

Q-PACE II is able to evolve a range of deterministic arithmetic circuits, including
2-bit half- and full-adders. For example, using the fitness function fg with g(x) = x, a
population size of 200, a crossover probability of 0.5, and a mutation probability of 0.01,
Q-PACE II evolved (in 943 generations) an exact quantum full adder circuit (Massey
et al., 2004), see figure 2. As far as we are aware, this is the most efficient quantum full-
adder that can be generated with the quantum gates available to Q-PACE II. However,
it is not a new discovery, since it was first published in (Gossett, 1998).

5.2 Probabilistic Quantum Adders

A probabilistic quantum circuit is defined as one which need not always give the correct
answer, as long as the probability of it doing so is at least 50% for every fitness case
tested. To evolve probabilistic quantum circuits, we use a fitness function based on
earlier work by (Spector et al., 1998; Spector et al., 1999a; Spector et al., 1999b):

fS = hits + correctness + efficiency (2)

The hits component focusses on getting every fitness case ‘good enough’. It is the
total number of fitness cases, N , minus the number of fitness cases where the circuit
produces the correct answer with a probability of more than 0.5 + ε (a non-zero ε is
chosen to counteract rounding errors, usually ε = 0.02). For each correct (target) am-
plitude vector |Ti〉 the probability of observing basis state |k〉 is |τ (i)

k |2. The probability

4 Evolutionary Computation Volume x, Number x

Evolution of Quantum Computing Artefacts

of obtaining |k〉 in the corresponding result vector |Ri〉 is |ρ(i)
k |2. We say a circuit gives

the correct answer a proportion p of the time if, for all k, |ρ(i)
k |2 ≥ p|τ (i)

k |2.
We define the boolean delta function to be

δ(b) = if b then 1 else 0 (3)

Then

hits = N −
N∑

i=1

δ
(
∀k ∈ {0..2n − 1} : |ρ(i)

k |2 ≥ p|τ (i)
k |2

)
(4)

The correctness component focusses on getting close to the correct answer. Here we
are interested in cases where several states may have nonzero probability amplitudes,
so there are several potentially correct answers. So the error for each fitness case is
defined as the difference between the correct (target) probability of observing basis
state |k〉 minus the result vector probability of observing the basis state |k〉, summed
over all k for which the target vector has a non-zero amplitude.

errori =
2n−1∑
k=0

δ
(
τ

(i)
k 6= 0

) ∣∣∣|τ (i)
k |2 − |ρ(i)

k |2
∣∣∣ (5)

It is desirable for the fitness function to focus on attaining probabilistically correct
answers to all fitness cases, rather than reducing the error in those, possibly few, fit-
ness cases where it is already good enough (e.g. reducing the error from 0.45 to 0.40).
So only the part of the error greater than 0.5 − ε is used in the fitness measure. It is
also desirable that reasonably fit programs are compared primarily with respect to the
number of fitness cases they produce a (probabilistically) correct answer for, and only
secondarily with respect to the magnitudes of the errors of the incorrect cases. So the
‘pure’ correctness term is divided by hits (unless hits < 1) before being used in the fitness
function. So the correctness component is:

correctness =

N∑
i=1

max (0, errori − (0.5− ε))

max(hits, 1)
(6)

Each solution comprises a number of individual allele gates. We want small cir-
cuits, so we impose an efficiency component on the fitness. For a system size of n
qubits, let the number of allele gates be Sn, and the target number of gates (for exam-
ple, the known minimum circuit size) be Tn. We sum the size difference over all the
system sizes tested. The efficiency component is:

efficiency = We

∑
n

Sn − Tn (7)

where We is the efficiency weighting: it is usually taken to be 0.01.
Using this fitness function fS , Q-PACE II can find probabilistic solutions to prob-

lems for which it was unable to find a deterministic solution. As a typical example,
Q-PACE II evolved a probabilistic half-adder on 3 qubits using only the H gate and
the zeroing gate Z, together with their controlled equivalents (Massey et al., 2004), see
figure 3.

Evolutionary Computation Volume x, Number x 5

P. Massey, J. A. Clark, S. Stepney

H

H

H

H

| x >

| y >

| 0 >

| x >

| x XOR y >

| x AND y >

H

H

H

Z

Figure 3: evolved probabilistic half-adder circuit, which delivers the correct result with
a probability > 0.5

6 Evolving Quantum Algorithms: The Quantum Fourier Transform

6.1 Definition of the QFT

Consider a quantum state vector |X〉 =
∑2n−1

k=0 xk |k〉. Applying the QFT to this state
vector gives us a result state vector |Y 〉 =

∑2n−1
k=0 yk |k〉 where

yk =
1

2n/2

2n−1∑
j=0

xj exp
2πi jk

2n
(8)

6.2 Implementing the QFT

(Shor, 1994; Shor, 1997) describe an algorithm for implementing the QFT. The following
pseudo-code algorithm, QFT (n), captures Shor’s algorithm, implementing the QFT on
any size of quantum system using only alleles and quantum gates available to Q-PACE
IV:

For (j = 1; j < system_size; j++) {
Create_H(j);
For (k = 1; k <= (system_size - j); k++) {

Create_CP(j+k, j, k+1); } }
Create_H(system_size);
For (m = 1; m <= (system_size / 2); m++) {

Create_SWAP(m, system_size - m + 1); }

The functions Create H(x), Create CP(x,y,z) and Create SWAP(x,y) are
as defined in Appendix C. Each circuit produced by this algorithm implements an exact
QFT for that system size. The circuits produced for quantum systems of between 1 and
5 qubits are

1. H(1)

2. H(1), CP (2, 1, π/4),
H(2),
SWAP (1, 2)

3. H(1), CP (2, 1, π/4), CP (3, 1, π/8),
H(2), CP (3, 2, π/4),
H(3),
SWAP (1, 3)

6 Evolutionary Computation Volume x, Number x

Evolution of Quantum Computing Artefacts

4. H(1), CP (2, 1, π/4), CP (3, 1, π/8), CP (4, 1, π/16),
H(2), CP (3, 2, π/4), CP (4, 2, π/8),
H(3), CP (4, 3, π/4),
H(4),
SWAP (1, 4), SWAP (2, 3)

5. H(1), CP (2, 1, π/4), CP (3, 1, π/8), CP (4, 1, π/16), CP (5, 1, π/32),
H(2), CP (3, 2, π/4), CP (4, 2, π/8), CP (5, 2, π/16),
H(3), CP (4, 3, π/4), CP (5, 3, π/8),
H(4), CP (5, 4, π/4),
H(5),
SWAP (1, 5), SWAP (2, 4)

7 An Evolved Program to Implement the QFT on a 3-qubit system

7.1 Fitness Function

The fitness function used to evolve QFT algorithms of a specific system size is:

f3 = fg + efficiency (9)

The fitness term fg is defined in equation (1); here we use g(x) = δ(x 6= 0), which
gives credit only for exact matches in the various state vector components. The efficiency
term is that defined in equation (7). The target size parameter Tn is here defined as
T1 = 2, T2 = 6, T3 = 10, and T4 = 16. These values are a little greater than the most
efficient known QFT circuits for these system sizes.

7.2 The Evolved Program

Q-PACE III is able to evolve programs which, when decoded and executed, implement
an exact QFT on a 3 qubit quantum system (Massey et al., 2005). Using the fitness
function f3 of equation (9), a population size of 100, a crossover probability of 0.5, and
a mutation probability of 0.01, Q-PACE III evolved (in 1122 generations) the following
individual:

ROOT(
2,
Create_CP(3, Create_CH(1,1), Create_CP(1,2,2)),
2,
Create_H(2),
Create_CP(2,3,2),
Create_CCN(

Create_CP(
Create_CCN(Create_CP(3,1,3), Create_N(1), 1),
3, 2),

Create_H(3),
1),

Create_CN(1,3),
2, 3)

This individual, when decoded/executed, produces the quantum circuit illus-
trated in figure 4.

After hand-optimisation to remove the two consecutive NOT gates, the circuit can
be simplified to that illustrated in figure 5. This latter circuit has 10 gates. Although
the best known circuit to generate QFT(3) can be implemented in 7 gates, that circuit
requires the use of a SWAP gate, which was not available as an allele to Q-PACE III in

Evolutionary Computation Volume x, Number x 7

P. Massey, J. A. Clark, S. Stepney

H P /4 P /8 N N N

P /4 H

P /4 P /4 H N

Figure 4: evolved QFT on a 3 qubit quantum system.

H P /4 P /8 N

P /4 H

P /4 P /4 H N

Figure 5: evolved QFT after hand-optimisation.

this particular GP run. The most efficient known circuit to implement QFT(3) using the
alleles given to Q-PACE III in this GP run has 9 gates, just one less than the solution
evolved here.

8 An Evolved Algorithm to Implement the QFT on system sizes of 1 to 3
qubits

8.1 Fitness Function

We now introduce a new fitness function used to evolve QFT algorithms for general
system sizes. Here, we define the target and result vector component amplitudes in
polar coordinate form: τ

(i)
k = (r(i)

τk , θ
(i)
τk) and ρ

(i)
k = (r(i)

ρk , θ
(i)
ρk).

The fitness function sums the polar coordinate differences between corresponding
state vector components.

f1...3 = α
N∑

i=1

2n−1∑
k=0

|r(i)
τk
− r(i)

ρk
|+

N∑
i=1

2n−1∑
k=0

|θ(i)
τk
− θ(i)

ρk
|+ efficiency (10)

This fitness function makes use of a scaling factor α (which we typically set to an
integer between 2 and 5), the purpose of which is to ensure that individuals where the
magnitude of the complex numbers match (but the phases do not) have a considerably
better fitness than individuals where the phases match but the magnitudes do not. The
fitness function is designed this way to promote a particular evolutionary strategy: to
allow the GP software to first evolve solutions which are basically correct but with
incorrect angles in any phase gates (e.g. CP (2, 1, π/8) instead of CP (2, 1, π/4)), before
subsequently evolving the correct angles. We have found this strategy, by and large,
works well for solving problems where quantum phase operations are an integral part

8 Evolutionary Computation Volume x, Number x

Evolution of Quantum Computing Artefacts

ROOT(
ITERATE(

MINUS(n,1,n),
BODY(

Create_H(v1,n,n),
ITERATE(

MINUS(n,v1,n),
BODY(

Create_CP(PLUS(v1,v2,n), v1, PLUS(1,v2,v2)),
v1, 2),

v1),
n),

n)
Create_H(n,n,n),
ITERATE(

DIVIDE(n,n,n),
BODY(Create_SWAP(v1,n,2), DIVIDE(n,n,n), n),
n)

)

Figure 6: The evolved QFT algorithm, for quantum system size n = 1− 3

of the solution.
The efficiency term and corresponding target size parameter Tn are as for the previ-

ous case (equation 9).

8.2 The Evolved Algorithm

Q-PACE IV is able to evolve algorithms which, when decoded and executed, imple-
ment an exact QFT on system sizes of 1, 2 and 3 qubits (Massey et al., 2005). One
is presented here. To evolve this algorithm, the GP used the fitness function f1...3 of
equation (10), a population size of 2000 for the first two generations and 50 thereafter
(to ensure a “deep gene pool” at the beginning of the evolutionary process), a crossover
probability of 0.75, and a mutation probability of 0.075. With these parameters, and test-
ing candidate solutions against system sizes of 1, 2 and 3 qubits, Q-PACE IV evolved
(in 2177 generations) the individual shown in figure 6.

This individual, when decoded/executed, produces the following quantum cir-
cuits for system size n:

1. H(1), SWAP (1, 1)

2. H(1), CP (2, 1, π/4),
H(2),
SWAP (1, 2)

3. H(1), CP (2, 1, π/4), CP (3, 1, π/8),
H(2), CP (3, 2, π/4),
H(3),
SWAP (1, 3)

4. H(1), CP (2, 1, π/4), CP (3, 1, π/8), CP (4, 1, π/16),
H(2), CP (3, 2, π/4), CP (4, 2, π/8),
H(3), CP (4, 3, π/4),
H(4),
SWAP (1, 4)

Evolutionary Computation Volume x, Number x 9

P. Massey, J. A. Clark, S. Stepney

These circuits are human-competitive for n = 1 − 3: there is one redundant gate
in the circuit for a 1 qubit system, but the other two circuits equal the most efficient
known using these quantum gates.

However, this algorithm does not implement the QFT perfectly for systems with
more than three qubits. The last ITERATE loop always runs for precisely one iteration,
and therefore there is always precisely one SWAP gate generated, regardless of the
system size. For system sizes above 3, multiple SWAP gates are required to implement
the QFT exactly (more precisely, bn/2c gates are needed, where n is the system size).
The n = 4 circuit shown is a reliable QFT (4) circuit apart from a missing SWAP (2, 3)
gate at the end. This algorithm becomes increasingly poor at implementing the QFT as
the system size increases.

9 An Evolved Algorithm to Implement the QFT on any size of quantum
system

With fitness function of equation (10), and allowed to test candidate solutions against
system sizes of 1, 2, 3 and 4 qubits, Q-PACE IV is unable to evolve an algorithm that
implements the QFT operation exactly on an arbitrary size of quantum system.

We introduce an additional term swap to penalise the absence of an appropriate
number of SWAP gates for the system size under consideration.

fn = f1...3 + swap (11)

swap = Wn

∑
n

δ
(
#SWAPn 6=

⌊n

2

⌋)
(12)

In our work the weighting factor Wn = 50
⌊

n
2

⌋
.

In this respect we have given the technique a piece of system specific help. It
would alternatively be legitimate to evolve a related QFT circuit without these final
SWAP gates; this is how the circuit is presented in text books such as (Nielsen and
Chuang, 2000), for example.

When set up with this new fitness function, and the same parameters as in section
8, but allowed to test candidate solutions against system sizes of 1, 2, 3 and 4 qubits,
Q-PACE IV evolved (in 2436 generations) an algorithm that implements the QFT oper-
ation exactly on any size of quantum system (Massey et al., 2005), see figure 7.

This individual, when decoded/executed, produces the following quantum cir-
cuits for system sizes n = 1− 5:

1. H(1)

2. H(1), CP (2, 1, π/4),
H(2),
SWAP (1, 2)

3. H(1), CP (2, 1, π/4), CP (3, 1, π/8),
H(2), CP (3, 2, π/4),
H(3),
SWAP (1, 3)

10 Evolutionary Computation Volume x, Number x

Evolution of Quantum Computing Artefacts

ROOT(
ITERATE(

MINUS(n,1,4),
BODY(

Create_H(v1,n,n),
ITERATE(

MINUS(n,v1,v1),
BODY(

Create_CP(PLUS(v1,v2,v1), v1, PLUS(v2,1,4)),
1, 1),

v1),
1),

n),
Create_H(n,1,n),
ITERATE(

DIVIDE(n,2,n),
BODY(

Create_SWAP(v1, PLUS(MINUS(n,v1,1), 1, 3), 1),
n, n),

3)
)

Figure 7: The evolved QFT algorithm, for any quantum system size

4. H(1), CP (2, 1, π/4), CP (3, 1, π/8), CP (4, 1, π/16),
H(2), CP (3, 2, π/4), CP (4, 2, π/8),
H(3), CP (4, 3, π/4),
H(4),
SWAP (1, 4), SWAP (2, 3)

5. H(1), CP (2, 1, π/4), CP (3, 1, π/8), CP (4, 1, π/16), CP (5, 1, π/32),
H(2), CP (3, 2, π/4), CP (4, 2, π/8), CP (5, 2, π/16),
H(3), CP (4, 3, π/4), CP (5, 3, π/8),
H(4), CP (5, 4, π/4),
H(5),
SWAP (1, 5), SWAP (2, 4)

As can be seen from carefully comparing the algorithmic form of figure 7 with the
pseudocode in section 6.2, it correctly generates a QFT circuit for any system size n.
These circuits are human-competitive: each one equals the most efficient known circuit
for that system size.

10 Discussion

Q-PACE II has evolved deterministic and probabilistic 2-bit adder circuits.
Q-PACE III has evolved a program that generates a 3 qubit QFT circuit (figure 5).

Although nearly as efficient as the best known circuit, it is rather irregular in structure.
It shows no clear pattern that could be used as the basis of a general circuit.

Q-PACE IV has evolved an algorithm that generates a QFT circuit for system sizes
1, 2, and 3 (section 8), by testing against systems sizes of 1, 2 and 3 qubits. It does not
generalise to larger system sizes, however, having too few SWAP gates in those cases.
There is insufficient information in the supplied test cases to allow such generalisation.
The evolved program generates a single swap gate, SWAP(1, n), which is the minimum

Evolutionary Computation Volume x, Number x 11

P. Massey, J. A. Clark, S. Stepney

adequate for the supplied test cases, but is not adequate for larger systems. The ‘core’
part of the evolved QFT (the part before the swap gates) does generalise, however.

Q-PACE IV has also evolved an algorithm that generates a QFT circuit for arbitrary
system sizes (section 9), by testing against system sizes of 1, 2, 3 and 4 qubits. Despite
being evolved against only small test systems, it successfully generalises to larger sys-
tems sizes. There is enough information present in this larger set of test cases for the
evolutionary process to determine the general solution.

The circuits so generated exactly reproduce the previously known QFT circuits,
and so, in particular, exhibit regular structures. It seems that the most efficient way to
discover solutions for a range of system sizes is to evolve a general algorithm capturing
the underlying structure. This suggests that it might be more fruitful to try to evolve
algorithms for a range of system sizes, rather than the apparently “easier” problem of
evolving for a specific system size.

11 Conclusions

In this paper, we show that GP can evolve system size-independent quantum algo-
rithms capable of generating a correct (and efficient) circuit for any supplied system
size.

However, the results presented here do not extend the portfolio of known quantum
algorithms. Given the difficulty of devising new quantum algorithms analytically, an
important open research problem remains: can GP evolve new quantum algorithms to
solve open problems in computer science?

12 Acknowledgements

Our thanks to Riccardo Poli for detailed comments on an earlier version of this paper,
and especially for the suggestion to use a boolean delta function in order to simplify
the presentation of many of the fitness functions.

References

Barnum, H., Bernstein, H. J., and Spector, L. (1999). A quantum circuit for OR. LANL
pre-print quant-ph/990756.

Barnum, H., Bernstein, H. J., and Spector, L. (2000). Quantum circuits for OR and AND
of ORs. J. Physics A: Mathematical and General, 33(45):8047–8057.

Deutsch, D. (1985). Quantum theory, the Church-Turing thesis, and the Universal
Quantum Computer. Proc. Roy. Soc. London, series A, 400:97.

Gershenfeld, N. A. and Chuang, I. L. (1997). Bulk spin-resonance quantum computing.
Science, 275:350–356.

Gossett, P. (1998). Quantum carry-save arithmetic. LANL pre-print quant-ph/9808061.

Grover, L. (1996). A fast quantum mechanical algorithm for database search. In Proc.
28th ACM STOC, page 212.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press.

12 Evolutionary Computation Volume x, Number x

Evolution of Quantum Computing Artefacts

Leier, A. and Banzhaf, W. (2003). Evolving Hogg’s quantum algorithm using linear-tree
GP. In Proc. GECCO 2003, volume 2723 of LNCS, pages 390–400. Springer.

Massey, P., Clark, J. A., and Stepney, S. (2004). Evolving quantum programs and circuits
through genetic programming. In Proc. GECCO 2004, volume 3103 of LNCS, pages
569–580. Springer.

Massey, P., Clark, J. A., and Stepney, S. (2005). Evolution of a human-competitive quan-
tum fourier transform algorithm using genetic programming. In Proc. GECCO
2005, pages 1657–1664. ACM Press.

Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information.
Cambridge University Press.

Rieffel, E. and Polak, W. (1998). An introduction to quantum computing for non-
physicists. LANL pre-print quant-ph/9809016.

Shor, P. W. (1994). Algorithms for quantum computation : Discrete logarithms and
factoring. In Proc. 35th IEEE Symp. on the Foundations of Computer Science, page 124.

Shor, P. W. (1997). Polynomial time algorithms for prime-factorisation and discrete
logarithms on a quantum computer. SIAM Journal of Computing, 26:1484.

Spector, L. (2004). Automatic Quantum Computer Programming: a genetic programming
approach. Kluwer.

Spector, L., Barnum, H., and Bernstein, H. (1998). Genetic Programming for quantum
computers. In Genetic Programming 1998 – Proceedings of the Third Annual Conference.
Morgan Kaufmann.

Spector, L., Barnum, H., Bernstein, H., and Swamy, N. (1999a). Finding a better-than-
classical quantum AND/OR algorithm using Genetic Programming. In Proc. 1999
Congress on Evolutionary Computation.

Spector, L., Barnum, H., Bernstein, H., and Swamy, N. (1999b). Quantum computing
applications of Genetic Programming. In Advances in Genetic Programming 3. MIT
Press.

Spector, L. and Bernstein, H. J. (2003). Communication capacities of some quantum
gates, discovered in part through Genetic Programming. In Proc. 6th Int. Conf.
Quantum Communication, Measurement, and Computing (QCMC), pages 500–503.
Rinton Press.

Stepney, S. and Clark, J. A. (2006). Evolving quantum programs and protocols. In
Rieth, M. and Schommers, W., editors, Handbook of Theoretical and Computational
Nanotechnology, chapter 90. American Scientific Publishers.

Van Meter, R. and Binkley, K. (2004). Compiling quantum programs using genetic al-
gorithms, discovered in part through Genetic Programming. In The Wild and Crazy
Idea Session IV, abstracts, part of 11th Intl. Conf. Architectural Support for Programming
Languages and Operating Systems, October 2004.

Wall, M. (2005). GALib, a C++ library for Genetic Algorithms. Available from
http://lancet.mit.edu/ga/.

Evolutionary Computation Volume x, Number x 13

P. Massey, J. A. Clark, S. Stepney

Williams, C. P. and Gray, A. G. (1999). Automated design of quantum circuits. In
Quantum Computing and Communications: First NASA Conference, QCQC’98, volume
1509 of LNCS, pages 113–125. Springer.

Yabuki, T. and Iba, H. (2000). Genetic algorithms for quantum circuit design – evolving
a simpler teleportation circuit. In Late Breaking Papers at GECCO 2000, pages 425–
430.

References of the form “LANL pre-print quant-ph/xxxxxxx” are available on
the Internet from the Los Alamos National Laboratory pre-print server at
http://www.arXiv.org

A Brief review of Quantum Circuits

This appendix gives a brief overview of the quantum concepts necessary for the paper:
qubits, Dirac notation, unitary operations, and the pictorial representation of quantum
gates and circuits. A good introduction to these concepts can be found in (Rieffel and
Polak, 1998). This appendix assumes an understanding of complex numbers and ma-
trix operations.

A classical computational bit can be in one of two states: 0 or 1. A corresponding
two-state quantum bit, or qubit, may similarly be in one of two computational ‘basis
states’, denoted by |0〉 and |1〉, but can also exist in a complex superposition of these
states. A superposition |Ψ〉 is denoted by |Ψ〉 = α |0〉 + β |1〉 where the coefficients α
and β are complex numbers normalised so that |α|2 + |β|2 = 1.

The state is not directly observable as a superposition. When observed, the state is
found to be |0〉 with probability |α|2, or |1〉 with probability |β|2. α and β are complex
probability amplitudes.

The notation |Ψ〉 is the conventional Dirac notation shorthand for a column vector:

|0〉 ≡
(

1
0

)
; |1〉 ≡

(
0
1

)
(13)

|Ψ〉 = α |0〉+ β |1〉 ≡ α

(
1
0

)
+ β

(
0
1

)
=

(
α
β

)
(14)

So a one-qubit system forms a 2 dimensional space, spanned by the 2 orthonormal basis
vectors |0〉 and |1〉.

A quantum operation is a reversible operation, represented as a unitary matrix act-
ing on the relevant state vector. (A matrix U is unitary iff UU† = U†U = In, where U† is
the complex conjugate transpose of U , U† = U∗T , and In is the n × n identity matrix.)
For example, the unitary NOT operation N is

N ≡
(

0 1
1 0

)
; N |Ψ〉 ≡

(
0 1
1 0

) (
α
β

)
=

(
β
α

)
≡ β |0〉+ α |1〉 (15)

Some further quantum operations are given in Table 1. Multiple quantum operations
are combined by matrix multiplication (it is easy to see that the product of two unitary
matrices is also unitary).

An n qubit system forms a 2n dimensional space, spanned by 2n orthonormal basis
vectors |k〉 (a particular k is conventionally written in binary notation, where each of
the n individual digits correspond to one of the n qubits). Any state vector |Ψ〉 may be

14 Evolutionary Computation Volume x, Number x

Evolution of Quantum Computing Artefacts

written in terms of its components with respect to this basis, |Ψ〉 =
2n−1∑
k=0

αk |k〉, where

the αk are the normalised complex probability amplitudes,
2n−1∑
k=0

|αk|2 = 1. So, for ex-

ample, a two qubit state vector can be written

|Φ〉 = α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉 ≡


α0

α1

α2

α3

 (16)

A unitary operation on an n qubit system is represented by a 2n×2n unitary matrix.
For example, consider the 2-qubit controlled not, or CN , operator that flips the value
of the second qubit if the first has a value of 1, and leaves it unchanged if the first has a
value of 0.

CN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (17)

Operations on only a single qubit may nonetheless affect every probability ampli-
tude in a state vector. For example, in a two-qubit system, applying a NOT operation
to the first qubit carries out the following transformation:

α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉 NOT−→ α2 |00〉+ α3 |01〉+ α0 |10〉+ α1 |11〉 (18)

The single qubit NOT operator already defined in equation (15) can be ‘lifted’ to an
n-qubit system, by using a tensor product. So the 2-qubit operator that acts as a NOT
on the first qubit, and the identity on the second, is

N ⊗ I2 =
(

0 1
1 0

)
⊗

(
1 0
0 1

)
=

 0×
(

1 0
0 1

)
1×

(
1 0
0 1

)
1×

(
1 0
0 1

)
0×

(
1 0
0 1

)


=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


(19)

Similarly, the 2-qubit operator that acts as a NOT on the second qubit, and the identity
on the first, is I2 ⊗ N . (A little fancy footwork is needed to lift n-qubit operations to
m > n qubit systems if they are not applied to n contiguous qubits in the m qubit space,
but the principle of tensor products is still used.)

A quantum circuit is a sequence of quantum operations (or quantum ‘gates’) that
act on an initial quantum state to produce the final quantum state. A common way
to represent this is using a quantum circuit diagram. Each qubit is represented as a
horizontal ‘wire’, and the unitary operations as ‘gates’ on the relevant wires, read from
left to right. If a qubit is not acted on by a gate, there is an implicit tensor product
with the identity transform on that qubit. So, consider a three-qubit example, where
the initial state of the system is |0yx〉, and is operated on by a circuit that applies a

Evolutionary Computation Volume x, Number x 15

P. Massey, J. A. Clark, S. Stepney

H

N

N

| x >

| y >

| 0 >

Figure 8: An example quantum circuit diagram

name symbol U

NOT N(x)
(

0 1
1 0

)
Hadamard H(x) 1√

2

(
1 1
1 −1

)
Rotation about x RX(x, 2θ)

(
cos θ −i sin θ
−i sin θ cos θ

)
Rotation about y RY (x, 2θ)

(
cos θ − sin θ
sin θ cos θ

)
Rotation about z RZ(x, 2θ)

(
exp−iθ 0

0 exp iθ

)
V gate V (x)

(
1 0
0 i

)
W gate W (x)

(
1 0
0 −i

)
Zeroing gate Z(x) (non-unitary)

Table 1: The quantum gates available to Q-PACE II

Hadamard operator to the first qubit, then a NOT to the third, then a controlled not to
the second controlled by the first. In matrix form, this is

(CN ⊗ I2)(I4 ⊗N)(H ⊗ I4) |0yx〉 (20)

The corresponding quantum circuit diagram form is shown in figure 8. The dia-
gram makes it easier to see what operations are being applied to what qubits. However,
care should be taken in reading such diagrams, in particular, in not assuming that the
wires hold the ‘values’ of individual qubits. In some cases it is possible to express the
final state as a tensor product of individual qubit states, and so meaningfully assign
states to individual qubits. For example, after the application of just the Hadamard
gate, the state of the system is a tensor product. However, in general the final super-
position is not expressible as a tensor product; we can talk only about the state of the
whole system, not the states of individual qubits.

B Quantum Gates available to Q-PACE

Table 1 shows the quantum gates available to Q-PACE II. The following points should
be noted:

16 Evolutionary Computation Volume x, Number x

Evolution of Quantum Computing Artefacts

name symbol U

Phase P (x, 2θ)
(

1 0
0 exp iθ

)
Pauli Y transform Y (x)

(
0 i
i 0

)

SWAP SWAP(x, y)


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Table 2: The additional quantum gates available to Q-PACE III and IV

1. Controlled versions of each of the above gates are also available. As a typical exam-
ple, the Controlled Hadamard gate H(c, x) has the same effect as the Hadamard
gate H(x) if the value of qubit c 6= 0, otherwise it has no effect.

2. The RX, RY and RZ gates may take four possible values for θ, namely 1, π, π/2 and
π/4 radians.

3. The zeroing gate Z(x) is non-unitary. It is provided as an allele to allow qubits to
be initialised to zero, but evolved circuits can make use of Z in mid-circuit (Massey
et al., 2004). One way to implement Z in mid circuit is to SWAP it with an ancilla
qubit initialised to zero.

Table 2 shows the additional quantum gates available to Q-PACE III and IV. The fol-
lowing point should be noted:

1. As well as controlled versions of all basic gate types, a double-controlled NOT gate,
CCN(c1, c2, x), is also available to Q-PACE III and IV (equivalent to the gate N(x)
if neither qubit c1 nor qubit c2 have a value of zero, otherwise has no effect).

C Q-PACE IV Allele Set

Table 3 shows the gate generating functions used in Q-PACE IV. The following points
should be noted:

1. All the functions in this set return the value x.

2. If any parameter q that represents a qubit position has a value that falls outside the
system size n, it is coerced: if q < 1, then q is coerced to 1; if q > n, then q is coerced
to n.

Table 4 shows the other alleles used in Q-PACE IV.

D Comparison of the Q-PACE II, III and IV software suites

• Language and GP Engine

– All: C++ software suites, with GP engines based on (Wall, 2005)’s GALib li-
brary

• Representation

Evolutionary Computation Volume x, Number x 17

P. Massey, J. A. Clark, S. Stepney

name side effect
Create N(x) create N(x)
Create CN(c, x) if c 6= x, create CN(c, x); else create N(x)
Create CCN(c1, c2, x) if c1 6= c2 6= x, create CCN(c1, c2, x)

if c1 = c2 6= x, create CN(c1, x)
if c1 = x 6= c2, create CN(c2, x)
if c1 6= x = c2, create CN(c1, x)
if c1 = c2 = x, create N(x)

Create H(x) create H(x)
Create CH(c, x) if c 6= x, create CH(c, x); else create H(x)
Create P (x, θ) create P (x, π/2θ)
Create CP (c, x, θ) if c 6= x, create CP (c, x, π/2θ); else create P (x, π/2θ)
Create Y (x) creates Y (x)
Create CY (c, x) if c 6= x, create CY (c, x); else create Y (x)
Create RX(x, θ) create RX(x, π/2θ)
Create CRX(c, x, θ) if c 6= x, create CRX(c, x, π/2θ); else create RX(x, π/2θ)
Create RY (x, θ) create RY (x, π/2θ)
Create CRY (c, x, θ) if c 6= x, create CRY (c, x, π/2θ); else create RY (x, π/2θ)
Create RZ(x, θ) create RZ(x, π/2θ)
Create CRZ(c, x, θ) if c 6= x, create CRZ(c, x, π/2θ); else create RX(x, π/2θ)
Create SWAP(x, y) if x 6= y, create SWAP(x, y); else no effect

Table 3: The gate generating functions used in Q-PACE IV

– Q-PACE II: 1st order: individuals are quantum circuits. Each individual is a
list of alleles.

– Q-PACE III: 2nd order: individuals are programs which, when decoded, gen-
erate a single quantum circuit appropriate to a single size of quantum system.
Each individual is a tree of alleles; a linked list holds the quantum circuit pro-
duced when the individual is decoded.

– Q-PACE IV: 2nd order: individuals are pseudo-code algorithms which, when
decoded/executed, produce a family of quantum circuits: one for each size
of quantum system under test. Each individual is a tree of alleles; a linked
list holds the quantum circuit produced when the individual is decoded for a
given system size.

• Allele set

– Q-PACE II: The set of quantum gates available to the GP suite.

– Q-PACE III: The allele set comprises both functions and terminals. Each func-
tion generates a quantum gate. Each terminal is a constant (denoting which
qubit should be operated on).

– Q-PACE IV: The allele set comprises both functions and terminals. Functions
may be gate-generating functions, arithmetic functions or control functions; termi-
nals may be constants or variables. Formal definitions of all the gate-generating
functions and of all other alleles used in Q-PACE IV are presented in Ap-
pendix C.

18 Evolutionary Computation Volume x, Number x

Evolution of Quantum Computing Artefacts

name return value comments
PLUS(x, y) x + y
MINUS(x, y) x− y
MULTIPLY(x, y) x ∗ y
DIVIDE(x, y) int(x/y) more precisely, returns int(x/y) if y 6= 0, other-

wise 1
ITERATE(n, BODY) n the second child of an ITERATE function is

always a BODY function (enforced during
crossover and mutation)

BODY(ch1, ch2, ch3) ch1
ROOT(ch1, ch2, . . .) ch1 all individuals are rooted in this function; it can

appear nowhere else in an individual
Plus Constants (1..n) and Variables (n, plus loop counters vi for any ITERATE
statements currently in scope).

Table 4: The other alleles used in Q-PACE IV

• Quantum gate set

– Q-PACE II: See Table 1

– Q-PACE III and IV: See Tables 1 and 2

• User restriction of allele and quantum gate sets

– Q-PACE II: A user of the software may restrict the GP to use a subset of the
gates in the allele set by selecting (through an on-screen prompt at the start of
a GP run) which specific gates should be used.

– Q-PACE III and IV: A user of the software may restrict the GP to use any
subset of the gates in the library by selecting (through an on-screen prompt at
the start of a GP run) which specific gates should be used. The allele set can
be similarly restricted.

• Parameterisation of function alleles

– Q-PACE II: N/A: all alleles are quantum gates.

– Q-PACE III: Functions take variable numbers of parameters.

– Q-PACE IV: All functions take the same number of parameters (3) to allow
more general mutation operators. When a function requires fewer than 3 pa-
rameters, the remaining parameters are ignored at execution time.

• Selection and crossover operators

– All: Tournament selection and subtree-swap crossover

• Mutation operators

– Q-PACE II: A range of operators available including gate replacement (a quan-
tum gate allele is replaced by another), gate insertion, gate deletion, and pa-
rameter mutation (the target or control qubit can be changed without the gate
being changed).

Evolutionary Computation Volume x, Number x 19

P. Massey, J. A. Clark, S. Stepney

– Q-PACE III: Terminals may mutate into other terminals, functions may mutate
into other functions of the same cardinality.

– Q-PACE IV: One of three operators (“mini”, “midi” or “maxi”) is chosen by
biased coin flip. In mini-replace, an allele is mutated for another allele of
the same type (e.g. a constant can only mutate into another constant); any
children of the original allele are unchanged. In midi-replace, a terminal can
mutate into any other terminal (e.g. a variable can become a constant, and
vice versa), and a function can mutate into any other function (e.g. a gate pro-
ducing function can become an arithmetic function, and vice versa); children
of the original allele are unchanged. In maxi-replace, an allele can mutate into
any other allele. If the original allele has children, they are destroyed and
rebuilt at random.

• Method of allele selection for initial population

– Q-PACE II: All individuals in the initial population are of the same length;
alleles are chosen at random.

– Q-PACE III and IV: While current tree depth < max tree depth, an allele will be
a randomly-selected function with some probability function probability, and a
randomly-selected terminal with probability (1 − function probability). When
current tree depth reaches max tree depth, all new alleles are randomly selected
terminals.

• Stopping criteria

– All: Evolution continues until either (a) an exact solution to the problem under
test is found (in which case it is displayed), or (b) a user-defined number of
generations elapse (in which case the best result so far is displayed).

20 Evolutionary Computation Volume x, Number x

