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Abstract. We describe how nuclear magnetic resonance (NMR) spec-
troscopy can serve as a substrate for the implementation of classical
logic gates. The approach exploits the inherently continuous nature of
the NMR parameter space. We show how simple continuous NAND gates
with sin/sin and sin/sinc characteristics arise from the NMR parameter
space. We use these simple continuous NAND gates as starting points
to obtain optimised target NAND circuits with robust, error-tolerant
properties. We use Cartesian Genetic Programming (CGP) as our opti-
misation tool. The various evolved circuits display patterns relating to
the symmetry properties of the initial simple continuous gates. Other
circuits, such as a robust XOR circuit built from simple NAND gates,
are obtained using similar strategies. We briefly mention the possibility
to include other target objective functions, for example other continuous
functions. Simple continuous NAND gates with sin/sin characteristics are
a good starting point for the creation of error-tolerant circuits whereas
the more complicated sin/sinc gate characteristics offer potential for the
implementation of complicated functions by choosing some straightfor-
ward, experimentally controllable parameters appropriately.

1 NMR and Binary Gates

Nuclear magnetic resonance (NMR) spectroscopy in conjunction with nonstan-
dard computation usually comes to mind as a platform for the implementation
of algorithms using quantum computation. Previously we have taken a different
approach by exploring (some of) the options to use NMR spectroscopy for the im-
plementation of classical computation [5]. We have demonstrated how logic gates
can be implemented in various different ways by exploiting the spin dynamics of
non-coupled nuclear spins in a range of solution-state NMR experiments. When
dealing with spin systems composed of isolated nuclear spins, the underlying
spin dynamics can be described conveniently by the properties of magnetisation
vectors and their response to the action of radio-frequency (r.f.) pulses of differ-
ent durations, phases, amplitudes and frequencies. Together with the integrated
intensities and/or phases of the resulting NMR signals, this scenario provides a
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Fig. 1. NOR gate implemented using NMR. a) NMR pulse sequence. b) Spectra cor-
responding to the four possible gate outputs where the integrated spectral intensity is
mapped to logic outputs 0 and 1. c) Logic truth table mapping NMR parameters to
gate inputs 0 and 1. (adapted from [5])

Fig. 2. Magnetisation vector manipulation by r.f. pulses, e.g. rotation of magnetisation
vector S from the z-direction to the −y-direction by a suitable r.f. pulse (a)). Structure
of a r.f. pulse displaying characterisation parameters for amplitude, frequency, duration
and phase as possible gate input controls (b)).

rich parameter space and a correspondingly large degree of flexibility regarding
choices of input and output parameters for the construction of logic gates. Fig.
1 shows an NMR implementation of a NOR gate, for illustration.

The effects of r.f. pulses on a given nuclear spin system are fully under exper-
imental control, and the response of the spin system is fully predictable with no
approximations involved. An NMR experiment usually starts from the magneti-
sation vector in its equilibrium position: aligned with the direction of the external
magnetic field (the z-direction in the laboratory frame). An r.f. pulse tips the
magnetisation vector away from the z-direction. By choosing the duration, am-
plitude and frequency of the pulses appropriately, the tip of the magnetisation
vector can be used to sample the entire sphere around its origin (Fig. 2).

Our previous NMR implementations of logic gates [5] exploited special posi-
tions on this sphere, such as NMR spectra corresponding to the effects of 90°, or
180°, or 45° pulses to create binary input/output values. We have demonstrated
that there are many different ways for such implementations of conventional
logic gates by slightly less conventional NMR implementations, including many
different ways to define input and output parameters. There are many more pos-
sibilities for NMR implementations of conventional logic gates and circuits. Note
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Fig. 3. 2D function graphs displaying influence of NMR parameters on the output of
continuous NAND gates. a) Using the duration τp of the r.f. pulse and the duration
of a preacquisition delay τd, resulting in sin dependence of both inputs. b) Using the
resonance frequency offset ωp and the r.f. pulse duration τp, a sinc dependence for ωp

and a sin dependence for τp is obtained. c) Comparison of experimental and theoretical
result for a slice of sinc/sin NAND gate (in b) without mapping to the [0, 1] interval.
This corresponds to the region in b) marked by the vertical bar in upper right corner.
The deviation between experiment and simulation is always less than 0.5 percent.

that for these discrete logic gates a one-to-one mapping of the NMR parameter(s)
to the binary state of the gate is possible in a straightforward manner.

In this paper we concentrate on another aspect of NMR implementations of
classic logic gates. Whereas previously our main focus was on the multitude of
different options for implementing discrete logic gates and circuits by NMR, here
we exploit another property of basic NMR experiments. Only a minute fraction
of, for example, the space accessible to the magnetisation vector has so far been
exploited for the construction of discrete logic gates. Now we lift this restriction
and take advantage of the inherent continuous properties of our system and the
natural computational power provided by the system itself [6]. The underlying
continuous spin dynamics hereby provide the basis to the implementation of
continuous logic operations. Compared to [5] this means we no longer restrict
the inputs and outputs to be the discrete values 0 and 1, but allow them to be
continuous values between 0 and 1.

2 Functions of NMR and Continuous Gates

Depending on the position of the magnetisation vector at the start of signal ac-
quisition, the time-domain NMR signal is composed of sin and cos functions, with
an exponentially decaying envelope (the so-called free induction decay, FID).
Accordingly, trigonometric and exponential functions are two of the continuous
functions inbuilt in any NMR experiment. Most commonly, NMR signals are
represented in the frequency domain. Hence, Fourier transformation gives access
to, for example, the sinc function ((sinx)/x) if applied to a truncated exponen-
tial decay. Fig. 3 illustrates this shift to continuous logic gates: we show the
NMR implementation of NAND gates where the inputs have functional depen-
dencies of sin/sin (Fig. 3a) and sin/sinc (Fig. 3b). Note how they have the same
digital NAND gate behaviours at the corners {0, 1} × {0, 1}, but very different
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behaviours in between. Fig. 3c shows experimental NMR data representing the
sinc function used in Fig. 3b.

Taking the step to continuous gates, the input/output mapping now applies
to the [0, 1] interval and is not as trivial as it is for the discrete logic gates. How-
ever, the NMR input parameters and output functions are known in analytical
form, giving access to boolean behaviour at the corners of the two-dimensional
parameter space, and continuous transitions in between.

The digital NAND gate is universal. Here we relax the constraints on the
inputs, to form our continuous NAND gates. These continuous gates can serve
as starting points for the optimisation of certain properties of the NAND gate
itself or, alternatively, for the optimisation of circuits based on NAND gates. We
show how to obtain robust NAND gates (ones that still function as digital NAND
gates, even if the inputs have considerable errors), by evolving circuits of the
continuous single NAND gates with sin/sin (Fig. 3a) and sin/sinc characteristics
(Fig. 3b). Then we evolve circuits for a robust XOR gate, constructed from
continuous simple NAND gates. Finally, we briefly address the topic of more
general continuous gates based on different functions [2] and how the naturally
occurring continuous NMR functions may be exploited in such circumstances.
Our optimisation tool is Cartesian Genetic Programming (CGP) [3].

3 Evolving Robust Continuous Gates and Circuits

3.1 Continuous NAND Gate with sin/sin Characteristics

This continuous gate is based on the NMR parameters τp (pulse duration) and
τd (preacquisition delay) (see Figs. 2b and 3a). It involves the following mapping
of the NMR input parameters In1 and In2:

In1, In2 ∈ [0, 1]

In1 =
τp

τp90
; In2 = 1− τd

τd90
(1)

where τp90 corresponds to a pulse duration causing a 90° flip of the magnetisation
vector and τd90 is the duration of a preacquisition delay causing a 90° phase shift
of the magnetisation vector in the xy-plane. The output of the simple sin/sin
NAND gate implemented by the NMR experiment is then

Out = 1− sin
(

π

2
In1

)

sin
(

π

2
In2

)

(2)

Our target robust NAND gate is shown in Fig. 4a. It is a continuous gate,
with discrete state areas which, accordingly, should represent an error-tolerant,
robust gate. The sampling points used to define the fitness function for evolving
this robust gate are shown in Fig. 4b. The fitness function f defined over these
N sampling points is

f =
N
∑

i=1

1
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Fig. 4. a) Target robust NAND gate with discrete state areas. This is robust to errors
in the inputs, yielding a correct digital NAND gate for inputs rounded to 0 or 1. b)
Sampling points used in the fitness function to evolve the robust NAND gate.

Fig. 5. a) Functional behaviour of the array of nine continuous sin/sin NAND gates.
b) Optimisation result being a linear array of nine continuous sin/sin NAND gates.

The evolved robust NAND gate is shown in Fig. 5 (see §7 for the CGP param-
eters used). It displays the desired feature of well-defined, discrete state areas.
The behaviour towards the centre differs from Fig. 4a, but provides no contribu-
tion to the fitness function. The evolved circuit for the robust NAND gate is a
linear array of nine simple NAND gates (Fig. 5b). With increasing lengths of the
NAND-gate chains, the resulting circuit for the robust gate becomes fitter. Odd
length chains converge to the robust NAND gate behaviour, whereas even-length
chains converge toward a corresponding robust AND gate. This is illustrated in
Fig. 6. The first simple NAND gate in the chain performs the NAND opera-
tion; all the remaining gates, with their paired inputs, act as simple NOT gates.
The increasing length chain converges to fitter circuits, because of the S-shaped
(1 − sin2 π

2
x) form of the sin/sin gate along its x = y diagonal: any value pass-

ing through a pair of simple NOT gates moves closer to being 0 or 1, and so
converges to 0 or 1 as the chain of simple NOT gates lengthens. The maximum
displacement of points by a single NOT gate operation towards 0 or 1 is ≈ 0.11.
This can be interpreted as a threshold for the convergence and stability of the
array. Random fluctuations added numerically to every gate output in the range
of [±0.1] do not hinder the convergence of the array (Fig. 6 last column). For
rather large error values (> 0.2) the arrays tend to destabilise, especially for
longer arrays.
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Fig. 6. Convergence of theoretical NAND gate arrays. Odd-numbered arrays converge
toward target NAND gate (top row), even-numbered arrays (bottom row) converge
toward a corresponding AND gate. The final circuit in each row displays the stability
of the array convergence under erroneous signal transduction between gates, assuming
random fluctuations in the range of [±0.1].

There are two possible sources for experimental imperfection and therefore
imperfect gate behaviour: the accuracy by which the experimental NMR pa-
rameters (ωp, τp, . . .) can be executed by the NMR hardware; and the accuracy
by which the NMR spectra can be acquired and analysed (integrated in this
case). A comparison shows that the fluctuations caused by the measurement
and analog-digital conversion are by far the dominating factors (e.g. pulses used
were of duration 2.5 ms ±50 ns [1], while fluctuations in signal intensity were
< ±0.5%).

3.2 Continuous NAND Gate with sin/sinc Characteristics

We now consider circuits based on the continuous simple sin/sinc NAND gate
(Fig. 3b), again aiming for the target robust NAND gate with discrete state
areas (Fig. 4a). Here mapping of the NMR parameters ωp (r.f. pulse frequency
offset) and τp (r.f. pulse duration) is the following

In1 =
τp

τp90
; In2 = 1−

ωp

ωpmax

(4)

where ωpmax
is the maximum allowed r.f. frequency offset (minimum of sinc

function).
The output of the simple sin/sinc NAND gate implemented by the NMR

experiment is then

Out = 1−
|κp90|

√

κ2
p90 sin

2 (ωeffτp) + 2ω2
p (1− cos (ωeffτp))

ω2
eff

(5)
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Fig. 7. a) Initial simple sin/sinc NAND gate with one minimum included. b) CGP
evolved result. c) Array of nine simple continuous sin/sinc NAND gates.

Fig. 8. Convergence of one-minimum sin/sinc NAND gate chains for increasing (odd-
numbered) chain length.

where ωeff =
√

ω2
p + κ2

p90 assuming a perfect π/2 magnetisation flip for an on-

resonance r.f. pulse of amplitude and duration κp90 and τp90 respectively.

The continuous sin/sinc NAND gate is a more complicated situation because
it does not display symmetry along the diagonal, in contrast to the sin/sin NAND
gate. We approach evolution of a robust NAND circuit based on simple sin/sinc
NAND gates in a step-wise manner.

Gate Confined to Include only the First Minimum of the sinc Function
To start with, we use a simple sin/sinc NAND gate confined to include only the
first minimum of the sinc function (Fig. 7a).

Fig. 7b shows the CGP evolved result, a robust arrangement of discrete state
areas. The evolved circuit shown at the top of Fig. 7b is more complicated than
the linear chain of NAND gates previously found in the circuit based on simple
sin/sin NAND gates. If we build such a linear circuit from simple sin/sinc NAND
gates we do find an acceptable solution (Fig. 7c), but with slightly poorer fitness.
Despite the loss of symmetry of our sin/sinc starting NAND gate, repeated
application of linear chains of increasing lengths still converges to the desired
behaviour (Fig. 8).
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Fig. 9. a) Initial simple sin/sinc NAND gate with two minima included. b) CGP
evolved result. c) Array of nine simple continuous sin/sinc NAND gates.

Fig. 10. Convergence of two-minima sin/sinc NAND gate chains for increasing (odd-
numbered) chain length.

Gate Confined to Include the Second Minimum of the sinc Function
Next, we use a simple sin/sinc NAND gate confined to include the first two
minima of the sinc function (Fig. 9a).

Again, we compare the result of a CGP evolution (Fig. 9b) and the result
of applying the linear array of nine simple sin/sinc NAND gates (Fig. 9c). CGP
is successful in finding a solution which is fairly well optimised around the 16
sampling points (Fig. 4b), but the areas in between now display less obvious and
more complicated characteristics.

The linear chain of nine simple sin/sinc NAND gates is here slightly less
successful finding a good solution at and around the sampling points, but a
pattern relating to the number of minima in the starting gate is emerging. With
only one minimum included, there are essentially just two levels in the contour
plot (Fig. 7c). Now, with two minima included, we find three distinct levels
(around 0, around 0.5, and around 1; see Fig. 9c), separated from each other
by steep steps. Fig. 10 shows the results of repeated application of linear arrays
of simple sin/sinc NAND gates of increasing length. One can see how for the
application of longer chains the terraced structure and step functions converge.
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Fig. 11. a) Initial simple sin/sinc NAND gate with three minima included. b) CGP
evolved result. c) Array of nine simple continuous sin/sinc NAND gates.

Gate Confined to Include the Third Minimum of the sinc Function Fig.
11 summarises the results when we include three minima of the sinc function in
our starting sin/sinc NAND gate.

CGP again evolves a solution which is optimised around all 16 sampling
points (Fig. 11a), but with even more complicated behaviour in between. The
(unevolved) linear chain of sin/sinc NAND gates now creates four distinct levels
and an overall stepped structure, but is less fit with respect to the fitness function
sampling points of Fig. 4b.

From these results, we can see that continuous simple sin/sinc NAND gate
can act as a good starting point for the implementation of a variety of com-
plicated functions, simply by choosing the number of minima included appro-
priately for the starting continuous gate, and by defining a suitable number of
sampling points.

4 Evolving XOR Circuits Using NAND Gates

Here we briefly demonstrate that this strategies used for evolving robust NAND
circuits can also be used to obtain circuits with other functionality built from
simple NAND gates. We use the continuous simple sin/sin NAND gate (Fig. 3a)
as the starting point. Our target circuit is a robust XOR gate with discrete state
areas (Fig. 12a), with the same 16 sampling points as before.

An XOR gate constructed from simple sin/sin NAND gates (the grey region
of Fig. 12b) gives the continuous behaviour shown in Fig. 13a. If this is followed
by our previously discovered strategy of a chain of simple NAND gates (Fig.
12b), we get the result shown in Fig. 13b: a robust XOR gate.

If we use CGP to evolve a solution from scratch, we get the more complicated
circuit shown in Fig. 12c, with fitter continuous behaviour (Fig. 13c). Note that
evolution here rediscovers the chaining strategy, and applies it to the final part
of the circuit.
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Fig. 12. a) The target XOR gate with discrete state areas. b) Applying the NAND-gate
chain approach for optimisation. c) CGP evolved circuit.

Fig. 13. a) XOR gate built from continuous NAND gates without optimisation. b)
Result of NAND-gate chain approach. c) CGP evolved XOR gate.

5 Truly Continuous Gates

So far we have been using the continuous behaviour of the simple gates to imple-
ment robust, but still essentially digital, gates. In this section we use a different
fitness function to evolve circuits with interesting truly continuous behaviour.

We can make boolean logic continuous on the interval [0,1] by defining
AND(a, b) = min(a, b) and NOT(a) = 1 − a (see [2]). These have the digital
behaviour at the extreme values. Then NAND = 1−min(a, b) (Fig. 14a).

We start from the continuous simple sin/sin NAND gate (Fig. 14b). At first
glance this seems to be a more straightforward optimisation task than for the
robust gates, given that both the starting gate and the target function are con-
tinuous in nature, with a similar initial structure. Here we take a fitness function
sampled over more points in the space, using a regular grid of 6× 6 points.

The evolved result is shown in Fig. 14c, together with the corresponding,
rather elaborate, circuit. Here the more complex circuit yields only modest im-
provements over the simple gate, with agreement between target and evolved
function improving by about a factor 2 over that of the single simple sin/sin
NAND gate. In particular, the evolved circuit does not really help to improve
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Fig. 14. a) The target NAND gate where NAND = 1 − min(a,b). b) The initial sim-
ple sin/sin NAND gate. c) The CGP evolved gate. d) The CGP evolved circuit (5%
mutation rate, population size 500, best fitness 35.25, 10000 generations).

agreement with the most prominent feature of the target function, the sharp
diagonal ridge. More work is needed to match the natural properties provided
by the NMR system with the desired properties of the continuous gates.

Fig. 15 shows the truly error tolerant behaviour of the CGP evolved gate in
Fig. 14c.

6 Conclusions and Next Steps

CGP has proved effective at evolving specific continuous circuits from the con-
tinuous simple NAND gates provided by our NMR approach. In particular, the
simple sin/sinc gates can provide a rich set of disctretised behaviours.

In these experiments, neither the robust gates, nor the truly continuous gates,
are inspired by the natural properties of the NMR system, but rather by math-
ematical abstractions. Next steps will involve investigating and exploiting what
the simple NAND gates “naturally” provide.

7 Experimental Setup

Evolutionary Setup. We use a modified version of the CGP code of [4]. Our
setup uses a linear topology of 60 nodes plus input and output nodes with
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Fig. 15. Stability and error propagation through CGP evolved gate in Fig. 14c: with
random error (a) [±0.5%]; (b) [±1%]; (c) [ ±10%]

the maximum number of level-back connections. Optimum results used between
nine and 33 nodes. The mutation rate during evolution was varied between
0.5% and 50%, where rates between 5% and 10% performed best. Populations
of 50/500 were evolved for 10000 generations. Results presented are the best of
10 evolutionary runs.

NMR Spectroscopy. 1H NMR spectra of 99.8% deuterated CHCl3 (Aldrich
Chemicals) were recorded on a Bruker Avance 600 NMR spectrometer, corre-
sponding to a 1H Larmor frequency of −600.13 MHz. On-resonant 90° pulse
durations were 2.5 ms and recycle delays 3 s.

Hardware limitations [1]: duration of r.f. pulses accurate to ±50 ns; pulse rise
and fall times 5 ns and 4 ns respectively; pulse amplitude switched in 50 ns with
a resolution of 0.1 dB; phases are accurate to ±0.006 degree and switched < 300
ns; r.f. range is 3–1100 MHz with a stability of 3 ·10−9/day and 1 ·10−8/year and
a resolution of < 0.005 Hz. Frequency switching is < 300 ns for 2.5 MHz steps
and < 2µs otherwise. Main source of experimental errors is integration error due
to limited digitisation resolution, 0.5% maximum.
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