Susan Stepney. Non-Classical Hypercomputation.
Int. J. Unconventional Computing 5(3-4):267-276, 2009

Non-Classical Hypercomputation

SUSAN STEPNEY

Dept. Computer Science, University of York, YO10 5DD, UK

Received 30 Jan 2007; in final form 16 Apr 2007

Hypercomputation that seeks to solve the Halting Problem, or to
compute Turing-uncomputable numbers, might be called “clas-
sical” hypercomputation, as it moves beyond the classical Tur-
ing computational paradigm. There are further computational
paradigms that we might seek to move beyond, forming the ba-
sis for a wider “non-classical” hypercomputation. This paper
surveys those paradigms, and poses various non-classical hyper-
computation questions.

1 INTRODUCTION

Today’s computing, classical computing, is an extraordinary success story.
However, there is a growing appreciation that it encompasses an extremely
small subset of all computational possibilities. A variety of paradigms encom-
pass classical computing, and their assumptions need to be carefully scruti-
nised. The UKCRC’s Grand Challenge exercise [1] includes the Grand Chal-
lenge of Non-Classical Computation (GC-7) [1, 2, 30, 31], whose task it is to
challenge and move beyond the various classical computational paradigms,
thereby broadening and enriching the subject area.

GC-7 identifies and challenges the classical paradigms [30], of which the
Turing paradigm is arguably the most prominent one. The Turing paradigm
speaks in terms of Turing machines, Turing-computability, Halting, and so
on. Hypercomputation traditionally seeks to solve the Halting Problem, or to
compute Turing-uncomputable numbers. Let us call this “classical” hyper-
computation, as it seeks to move beyond the most prominent classical com-
putational paradigm.
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In [30] we identify several further computational paradigms that may be
challenged, in addition to the Turing paradigm. The rest of this paper dis-
cusses how classical hypercomputation seeks to move beyond the Turing
paradigm, and the various forms of “non-classical” hypercomputation that
could seek to move beyond other paradigms.

2 CLASSICAL HYPERCOMPUTATION

2.1 Physics matters
Classically, Turing computability is an abstract mathematical notion, inde-
pendent of the laws of physics.

However, that notion assumes the classical Newtonian physical laws. As
Deutsch [12] neatly sums it up:

“Turing hoped that his abstracted-paper-tape model was so simple, so
transparent and well defined, that it would not depend on any assump-
tions about physics that could conceivably be falsified, and therefore that
it could become the basis of an abstract theory of computation that was
independent of the underlying physics. ‘He thought,” as Feynman once
put it, ‘that he understood paper.” But he was mistaken. Real, quantum-
mechanical paper is wildly different from the abstract stuff that the Tur-
ing machine uses. The Turing machine is entirely classical”

Quantum computers have already shown that algorithmic feasibility de-
pends on the laws of physics. Exploitation of quantum superposition makes a
difference to computational efficiency. (Some authors refer to this as “super-
Turing computation™: faster, but not different.) Certain quantum random walk
algorithms are exponentially faster than their classical counterparts; see [18]
for an overview. Shor’s quantum factorisation algorithm is polynomial time
complexity [27] whereas the best known classical one is essentially exponen-
tial (but it is not known if there is a polynomial time classical algorithm).
Other quantum effects can lead to results simply not possible classically. For
example wavefunction “collapse” makes genuine random number generation
possible [3], and quantum entanglement can be exploited to achieve untap-
pable communication channels, dense coding, and information teleportation
[6]. It is not all gain, however: quantum information cannot be cloned [37],
leading to interesting problems in developing quantum error-correcting codes
[8], among other things.

To emphasise further the critical importance of the underlying physical
laws, it has been shown that the deep conundrum of whether P = NP (with



definitions suitably extended to quantum computation) would be answerable,
in the affirmative, if the laws of quantum mechanics were non-linear [4]
(which, currently, they are not thought to be). The fact that the precise form
of the laws of physics have an impact on what is classically thought to be a
purely mathematical question is considerable food for thought.

We know some of the consequences on feasibility of considering compu-
tation in a world that includes quantum mechanics. Does what is computable
similarly depend on the non-classical laws of physics? What are the conse-
quences for computability in a world that includes special and general rela-
tivity? Certain uses of general relativistic devices appear to be able to solve
the Halting Problem, by performing infinite Turing computation in the com-
puter’s rest frame, in a finite elapsed time in the observer’s frame (see for
example, [15]).

When we move from the mathematical to the physical domain to analyse
our computations, we need to take into account more infrastructure: the same
laws of physics that provide more computational power also constrain our
ability to measure the outputs of our new exotic devices. So, even if we can
design classical hypercomputers on paper, we may not be able to build them.
But this should not worry us, for we can’t build a Turing machine either.
Unbounded memory is unphysical. Even if classical hypercomputers don’t, or
can’t, exist, their study can enrich our understanding of what classical Turing
computation is, what its limits are, and why.

2.2 Challenging the questions

The Turing machine is based on concepts consistent with Newtonian physi-
cal laws, and on “disembodied” mathematical abstractions that, for example,
require unbounded memory resources and ignore power consumption. But
the world is not Newtonian, and all computation is physically embodied in
devices whose behaviour cannot be completely captured by a closed math-
ematical model. The mathematical model of the Turing Machine is not an
adequate model for all notions of computation.

Classical hypercomputation goes some way to extending the model of
computation. However, it goes only so far: it seeks different answers, but
does not really challenge the questions; in some sense it still plays by the
“Turing rules” [22]. The insolubility of the Halting Problem is a classical
limit, and classical hypercomputation seeks to solve it (or seeks to find an un-
computable number, often to use that as an oracle to solve the Halting Prob-
lem). But what if we challenge the very basis of this problem? Is the Halting
Problem of any relevance or interest to our particular non-classical domain



of choice? In fact, is halting of interest? What about the other questions
and assumptions underlying the Turing paradigm, and other computational
paradigms?

3 NON-CLASSICAL HYPERCOMPUTATION

This section examines some further traditional computational paradigms, and
hence the various forms of non-classical hypercomputation that would move
beyond them.

3.1 21st century science

Classical hypercomputation exploits quantum theory, and special and general
relativity. These theories are now a century old. We could say that classical
hypercomputation has moved the physical basis of computation from the 17th
century into the early 20th century.

Science itself has moved on in the meantime. Although the underlying
theories are now a century old, some of their stranger and more powerful con-
sequences are still being worked out* . Notions from Quantum Information
Theory are having profound effects on the way we understand even classi-
cal information. And further scientific advances are being made. What will
be the properties of, say, a string theory computer, or loop quantum gravity
computer (assuming that these theories stand the test of time)?

Once the importance of the underlying laws of physics in relation to mod-
els of computation is appreciated, one can start playing with counterfactual
physical systems, and examining the effect they have on computation (for ex-
ample, the case of non-linear quantum mechanics and the P = NP question
cited earlier). What is fascinating is how little “wiggle room” there seems
to be in this relationship: change the laws of physics too much, and get silly
computational possibilities (such as one bit seemingly encoding too much
information); relax the computational constraints too much, and get acausal
physical laws. See for example, [7]. Wheeler [34] speculates that computa-
tion is more fundamental than physics in his “It from bit” programme.

So, some questions for physical hypercomputation are:

Which are more fundamental, the laws of computation, or the
laws of physics? Do the laws of computation constrain those

* As Bob Coecke puts it [private communication], it wasn’t until the Bell inequalities had
been demonstrated in the laboratory that quantum mechanical weirdness stopped being a bug,
and became a feature.



of physics, or vice versa? Or are they two sides of the same
question? Or, despite the seeming mutual constraints, are they in
fact independent?

3.2 Substrate as implementation detail v. embodiment
Classically, computation is a mathematical abstraction, independent of the
underlying implementation. The substrate is mere implementation detail.

In practice, all computation is embodied. A computation, being embodied,
takes time to execute, and consumes power as it executes, usually in a data-
dependent manner’ . These time and power consumption side-channels can
be measured and analysed. Such analyses have been used to attack security
mechanisms, for example [19, 20]. Side channels are outside the classical
mathematical model of computation. Even if the known channels are explic-
itly modelled, the world is open, and further side channels always exist: no
mathematical model of the world is complete, and further attacks are always
possible [10]. As we broaden the base of physical laws on which we base our
computations, more side-channels will become apparent. Side-channels may
themselves become rich computational resources.

Classical computation is abstracted away from the implementation sub-
strate precisely to make it substrate-independent. The computational virtual
machine can be implemented on any suitable embodying substrate, no matter
how ‘unnatural’ that implementation is for the substrate (for example, analog
transistors being run saturated to make them act as digital switches). This
leads to certain operations being more difficult than they need to be. For ex-
ample, operations on real numbers could be implemented directly by certain
substrates, rather than as in a real number virtual machine running on top of
the computational virtual machine? . The classical need for (at least) two lev-
els of virtual machines results in real number computations being classically
“inefficient”.

Direct analog implementation of many computations, not only real num-
ber calculations, can be more efficient (in terms of speed, power consumption,
and substrate area) than their classical discrete counterparts. For this reason

T Landauer [21] argues that it is irreversible computations that necessarily require energy, and
generate entropy. Reversible computations might not necessarily do so, in the adiabatic limit.
Today’s and tomorrow’s devices, however, consume noticeable power as they process.

£1 am not referring here to the infinite-precision real numbers of mathematics, which are
sometimes employed to achieve a form of theoretical analog hypercomputation. I am referring
to “physical” real numbers (real real numbers, if you like): the measurable values of physical
quantities, the kind of number we want to manipulate in computations that relate to (possibly
other) physical quantities.



they are of great interest in domains where power and weight are at a pre-
mium: embedded systems, particularly in spacecraft.

Direct implementation in a physical substrate constrains what kind of com-
putations can be supported “naturally”: ideas of universality may have to be
abandoned for particular implementations. However, direct implementation
may enable certain other kinds of computations, by letting the substrate “nat-
urally” perform them [9, 17, 29].

So, some questions for substrate hypercomputation are:

What are the computational constraints imposed by physical em-
bodiment? What computational tasks can be offloaded onto the
physical embodiment, easing the computational burden of the

program?

Classical computation is performed by artefacts that are specifically de-
signed to implement the relevant rules.

Biological systems are increasing being interpreted as information pro-
cessing agents. Yet they do not fit into the classical framework: they are
essentially embodied, a hybrid of continuous and discrete components, noisy,
evolved not designed, and it is not clear what “program” they are in fact “ex-
ecuting” (if any).

As discussed earlier, there are computational constraints imposed by both
logical information processing, and by physical embodiment. These two sets
of constraints come together in embodied biological systems.

So, some questions for biological hypercomputation are:

What are the emergent constraints when logical and physical
computation are combined in biological systems and complex
embodied computational artefacts (robots, and beyond)?

3.3 Sequential v. parallel

Classically, a (finitely) parallel computer is no more powerful than a sequen-
tial one: the computation it does can always be transformed into an equivalent
sequential one of the same computational complexity.

In practice, all computation is embodied, and interacts with a real world
in real time. Even though classical Turing computation has no notion of real
time, it still appreciates this fact: exponential-time algorithms are infeasible
because they fake too long to execute.

So all computations interact with the real world, from the classical Tur-
ing level of providing an answer to a question, through an embedded real



time control system in a physical machine, to ants following evaporating
pheromone trails. The real world acts on it own timescales. Computation
needs to take these timescales into consideration: parallelism may be the only
feasible way to achieve real time response.

Classical models of computation are inherently sequential, and parallelism
is considered “difficult”. What we seem to have done is take the inherently
massively parallel real world, forcibly sequentialise it into some computa-
tional model, then grudgingly add a little bit of thread-spaghetti back in again.
Trained computer scientists tend to find the sequential model more “natural”
than the parallel one. This is partly because they have forgotten how unnat-
ural it actually is (except maybe for the few who have to teach introductory
programming), and partly because the threads model of parallelism is unnat-
ural, compared to the more agent-like flavour of real world parallelism. In
[31], Welch suggests that CSP-based programming languages provide a more
natural model of concurrency.

So, some questions for parallel hypercomputation are:

What are the natural computational primitives for parallel real-
time embedded and embodied computation? What can we learn
from the physical world to reduce, or remove, classically “diffi-
cult” parallel problems of communication, synchronisation, live-
lock, deadlock, etc?

3.4 Algorithmic v. interactive

Classically, a computation evaluates a mathematical function, executing an
algorithm to map the initial input to the final output, ignoring the external
world while it executes.

Sloman [28] dubs these “ballistic” calculations: the system gets all the
information it needs at the start of the calculation, then launches itself into
the blue, performing the calculation with no further input or feedback from
the external world. Sloman, interested in Al applications, notes that ballistic
calculations do not suit adaptive, reactive intelligence. Ballistic path planning
is a hard task in a static environment; it is impossible in a dynamic one.

Wegner [33] discusses interaction machines: “Turing machines extended
by addition of input and output actions that support dynamic interaction with
an external environment”, and claims that they are more powerful than Tur-
ing machines. That is, he claims that they are hypercomputers¥ . Since all

91 choose to classify this as a claim of non-classical hypercomputation, because, although the
claim is about Turing machines, it is not based on one of the more conventional challenges to the
assumptions underlying the Turing paradigm.



realised computers are, of course, interaction machines, this would mean
that hypercomputers are already with us. Notwithstanding the details of this
claim, interaction machines certainly provide a more natural model of most
computational tasks.

Process algebras such as CSP [14], CCS [23], and w-calculus [24] sup-
port descriptions of interaction machines, since they include descriptions of
engaging in events with the environment. Wegner notes that interaction ma-
chines are a natural interpretation of object-oriented paradigms. Combina-
tions of process algebras and stateful systems, such as Circus [36, 26], can be
used to specify object-oriented systems with communication between objects,
and state within objects.

So, some questions for interactive hypercomputation are:

What extra possibilities do interaction machines allow? What
is a natural manner to specify and describe object orientation?
Is object orientation in fact a natural way to describe interac-
tive systems? What is the relationship between communication
(between objects) and state (within objects)?

3.5 Program development

Classical program development assumes one has an abstract functional spec-
ification, and proceeds to an executable implementation by a process of re-
finement [13, 32].

Reality is rarely so accommodating, even classically. Functional refine-
ment is not sufficient to maintain non-functional properties, such as safety
and security [16]. It can also be overconstraining, unacceptably limiting the
degree of abstraction possible [35]. Our software development process might
not fit into a classical refinement framework, for example, if we are using an
evolutionary or other bio-inspired algorithm to develop our system.

So, a question for development process hypercomputation is:

How can bio-inspired, inexact, “soft”, algorithms be integrated
into a program-development process?

Emergent systems in particular do not exhibit a well defined link between
implementation (the low level local agent behaviours) and the specification
(the high level global system behaviour). The emergent behaviour cannot be
captured by a refinement relation [25], and the relationship need not be exact.

Solid-state, or condensed matter, physics teaches us that more is different
[5], and that new higher-level laws of physics “emerge” from large collections



of particles. How might these ideas and results give new higher-level concepts
of computation and information?
So, some questions for emergent hypercomputation are:

What theories of emergent computation can be built on “non-
elementary” laws of physics, such as condensed matter? What
other laws of physics can support corresponding theories of com-
putation?

And so we come full circle back to the relationship between natural laws
and computation. Trying to solve the Halting Problem is an important part,
but only a part, of a full theory of classical and non-classical hypercomputa-

tion.
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