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The transition graph of a cellular automaton (CA) is a graphi-
cal representation of the CA’s global dynamics. Studying auto-
morphisms of transition graphs allows us to identify symmetries
in this global dynamics. We conduct a computational study of
numbers of automorphisms for the elementary cellular automata
(ECAs) on finite lattices. The ECAs are partitioned into three
classes, depending on how the number of automorphisms varies
as a function of the number of cells in the lattice. While one
of these classes contains the majority of the ECAs, and encom-
passes dynamical behaviour ranging from trivial to complex, the
other two classes identify those ECAs whose local rule is a non-
trivial linear function of its inputs, as well as those ECAs capable
of producing chaotic dynamics from ordered initial configura-
tions, and a small number of other “exceptional” ECAs.
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1 INTRODUCTION

An elementary cellular automaton (ECA) is a 1-dimensional cellular automa-
ton, whose state set is Z2 = {0, 1} and where the neighbourhood of a cell
consists of the cell itself and those cells immediately adjacent to the left and
right. The ECAs were introduced by Stephen Wolfram in 1983 [5], and sub-
sequently studied extensively by Wolfram and others [8, 9]. More recent
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interest in the ECAs has been fuelled by Cook’s proof that at least one of
them (rule 110 according to the numbering scheme described in Section 2) is
Turing complete [1].

Wolfram [6] proposed that the ECAs (and CAs in general [4]) can be di-
vided into four classes, depending on whether the long-term dynamics start-
ing from a random initial configuration is homogeneous, periodic, chaotic or
complex. This “classification” relies on visual inspection of the CA’s evolu-
tion.

In CAs, as in many complex systems, complex “global” dynamics can
emerge from simple “local” behaviour. Attempts to predict the complexity of
the global dynamics based solely on properties of the local update rule are of-
ten unsuccessful, at least for ECAs. For example, Langton [3] points out that,
although his λ parameter is a good predictor of complexity for CAs with more
states and larger neighbourhoods, it is “only roughly correlated with dynam-
ical behavior” for ECAs. Thus we might expect that a more global approach
is required; indeed, measures such as Wuensche’s Z parameter [10], which
arises from an algorithm for finding the pre-images of a given configuration,
seem to be improvements over Langton’s λ parameter.

We propose a partial classification of the ECAs based on a property of
their global dynamics. A transition graph is a representation of a CA’s global
dynamics as a directed graph. Transition graphs tend to have a high degree of
symmetry (or more formally, admit a large number of automorphisms). We
can compute the number of automorphisms for a given transition graph; our
classification is based on studying how the number of automorphisms varies
with the number of cells on which the ECA operates.

2 ELEMENTARY CELLULAR AUTOMATA

An ECA has state set Z2 = {0, 1}, and each cell has three neighbours includ-
ing itself. Thus the local update rule for an ECA is a function f : Z3

2 → Z2.
The 256 possibilities for f are assigned to the numbers 0 to 255 by interpret-
ing the string

f(1, 1, 1) f(1, 1, 0) . . . f(0, 0, 0) (1)

as a number in binary notation and converting to decimal.
A configuration of a CA is an assignment of states to cells. In this paper,

we focus on ECAs on the finite lattice of N cells with periodic boundary con-
dition; a configuration is thus an element of the set ZN

2 , which is effectively
the set of all functions from ZN to Z2. The local update rule f extends to a
global map F : ZN

2 → ZN
2 in the usual way.
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We consider two rules to be equivalent if one can be obtained from the
other by left-right reflection, by exchanging states 0 and 1, or by perform-
ing those two transformations sequentially. This partitions the space of 256
rules into 88 equivalence classes. Rules in the same equivalence class exhibit
equivalent dynamics (in particular, their transition graphs are isomorphic),
thus we obtain the set of 88 “essentially different” ECA rules by choosing an
element from each equivalence class.

3 TRANSITION GRAPHS

The transition graph for an ECA is the digraph (ZN
2 , E) whose edge set is

E =
{
(s, F (s)) : s ∈ ZN

2

}
. (2)

In other words, the transition graph is the functional graph [2] for the
global map F : there is an edge from vertex x to vertex y if and only if
y = F (x). It is clear that every vertex in the transition graph has out-degree 1.
This forces the transition graph to have a “circles of trees” topology: the
graph consists of one or more disjoint cycles, with a (possibly single-vertex)
tree rooted at each vertex in each cycle. An example of a transition graph is
shown in Figure 1.

In terms of dynamical systems, the vertices of the transition graph form the
phase space of the CA, and paths in the graph are trajectories in this phase
space. Each “circle” (a cycle and its trees) is a basin of attraction, and thus
we call the disjoint components of the transition graph basins.

A high degree of symmetry is apparent in the transition graphs for the
ECAs. Many of the individual basins are isomorphic to each other, many
basins within themselves exhibit rotational symmetry, and trees tend to con-
tain subtrees which are isomorphic to each other. These symmetries are all
examples of automorphisms: isomorphisms of the graph onto itself. It turns
out that automorphisms of transition graphs are, in a sense, “symmetries” of
the global dynamics of the corresponding ECAs.

Definition 1. Consider F,G : X → X , where X is a discrete topological
space. A bijection α : X → X is a topological conjugation from F to G if
G ◦ α = α ◦ F .

Theorem 1. Consider a function F : X → X . A bijection α : X → X is an
automorphism of the functional graph of F if and only if α is a topological
conjugation from F to F .
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FIGURE 1
Transition graph for ECA 110 on the periodic lattice Z10.

This follows immediately from the definitions. Applying this theorem to
transition graphs, we obtain the following result:

Corollary 1. For a given ECA and a given lattice size N , a bijection
α : ZN

2 → ZN
2 is an automorphism of the transition graph if and only if

α is a topological conjugation from F to F , where F is the ECA’s global
map.

In other words, α is an automorphism if and only if F ◦ α = α ◦ F . In
a sense, α is a symmetry of the CA: consider the evolution of the ECA from
a given initial configuration s, and the evolution from the configuration α(s).
The latter evolution is simply the image under α of the former. Compare
this with the concept of symmetry in physical laws, where the only effect of
applying a symmetry transformation to an initial condition is to apply that
same transformation to the subsequent dynamics of the system.

There is one class of transformations which must be automorphisms for
all ECAs. For any integer k, we define the k-shift transform σk : ZN

2 → ZN
2
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by

σk(x0 . . . xN−1) = x0+k . . . xN−1+k for all x0 . . . xN−1 ∈ ZN
2 , (3)

where the arithmetic in the subscripts takes place in ZN ; that is, modulo
N . So σk shifts the entire configuration to the left by k cells, obeying the
periodic boundary condition. It is easy to see that σk is a bijection, and it
follows from the definition of a CA that σk must be a topological conjugation
from the global map to itself. Thus, by Corollary 1, {σk : k ∈ ZN} must be a
subgroup of the group of automorphisms of the transition graph for any ECA.

Similarly, we find that the reflection transform ρ and the conjugation trans-
form c, defined by

ρ(x0 . . . xN−1) = xN−1 . . . x0 (4)

and
c(x0 . . . xN−1) = (1− x0) . . . (1− xN−1), (5)

are automorphisms for precisely those ECAs which exhibit “left-right sym-
metry” and “0-1 symmetry” respectively.

The shift, reflection and conjugation transforms are the most obvious “ge-
ometric” symmetries, but by no means are they the only symmetries which
an ECA may possess. How many more are there? In the next section, we
describe a simple algorithm to count them.

4 COUNTING AUTOMORPHISMS

Let A(f,N) denote the order of the automorphism group for the transition
graph of ECA rule f on the lattice of N cells. It is easy to find A(f,N) for
some ECAs. For rule 204 (the identity rule), every permutation of configura-
tions is an automorphism, and so there are 2N ! automorphisms in total (and
clearly this is an upper bound on the number of automorphisms for any ECA).
For rule 0, the automorphisms are precisely those permutations which fix the
all-zeros configuration, and so there are (2N − 1)! automorphisms.

The following results describe how A(f,N) may be computed in the gen-
eral case, by induction over the “circles of trees” structure of the transition
graph.

Lemma 1. Consider a tree with root vertex v, and let {u1, . . . , un} be the set
v’s children:

{u1, . . . , un} =
{
u ∈ ZN

2 : (u, v) ∈ E , u is not in a cycle
}

. (6)
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Denote by {ui} / ∼= the set of isomorphism classes of {u1, . . . , un}, consid-
ering two vertices to be isomorphic if the subtrees rooted at those vertices are
isomorphic. Denote by A(v) the order of the isomorphism group of the tree
rooted at v. Then A(v) is defined inductively by

A(v) =

 ∏
I∈{ui}/∼=

|I|!

 n∏
i=1

A(ui)

 . (7)

Lemma 2. Consider a basin B in a transition graph, and suppose that the
vertices of the basin’s cycle are 〈v1, . . . , vm〉. Let q > 0 be minimal such
that, for all i, the tree rooted at vi is isomorphic to the tree rooted at vi+q.
Clearly q must divide m. Then the order of the automorphism group of the
basin is

A(B) =
m

q

m∏
i=1

A(vi), (8)

with A(vi) as defined in Lemma 1.

Theorem 2. Consider a transition graph composed of basins {B1, . . . , Bk},
and denote the set of isomorphism classes of {B1, . . . , Bk} by {Bi} / ∼=.
Then the order of the automorphism group of the transition graph is

A(f,N) =

 ∏
I∈{Bi}/∼=

|I|!

 k∏
i=1

A(Bi)

 , (9)

with A(Bi) as defined in Lemma 2.

Intuitively, an automorphism of the transition graph is composed of:

1. A permutation $ of {B1, . . . , Bk}which preserves isomorphism classes,
so that $(Bi) is isomorphic to Bi for all i;

2. For each i, an isomorphism from Bi to $(Bi); or equivalently, an au-
tomorphism on Bi.

Thus the total number of automorphisms is given by Equation 9, with the two
products on the right-hand side corresponding to the total numbers of choices
for items 1 and 2. The argument for Lemma 1 is similar. For Lemma 2, we
note that an automorphism on basin B is composed of:

1. A cyclic shift of 〈v1, . . . , vm〉 which preserves isomorphism classes;

2. For each i, an automorphism on the tree rooted at vi.
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FIGURE 2
Plot of log10 log10 A(f, N) against N , for 6 ≤ N ≤ 16 and for all 88 essentially
different ECA rules.

A cyclic shift of the type required must be a shift by a multiple of q, and
conversely a shift by a multiple of q must preserve isomorphism classes by
definition of q. Thus there are m/q such shifts.

Computing A(f,N) requires that the entire transition graph of 2N vertices
be generated and traversed, so the computational time complexity is at least
exponential with respect to N . We have computed A(f,N) for the 88 es-
sentially different ECAs for all N ≤ 16, and for N = 17 for selected rules,
and this seems to approach the limit of what can be computed on a modern
desktop PC within a reasonable length of time. Furthermore, the exponen-
tial complexity means that even an orders-of-magnitude increase in compu-
tational power would not significantly increase this limit. However, the data
we are able to generate are sufficient to make some interesting observations.

5 RESULTS

Figure 2 plots A(f,N) for each of the 88 essentially different ECAs, and
Table 1 gives selected numerical values. By inspection of Figure 2, the ECAs
can be partitioned into three sets depending on the behaviour of A(f,N) with
respect to N : the first and largest set shows an approximate linear relationship
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N

Set Rule 10 11 12 13 14 15 16 17
L 204 3.422 3.770 4.115 4.455 4.792 5.126 5.458 5.788

15 2.419 2.430 3.034 3.041 3.645 3.649 4.254 4.257
60 1.976 0.923 2.765 1.221 3.335 3.616 3.994 3.053

Z 90 2.451 1.935 3.141 2.318 3.614 3.617 4.354 4.283
105 2.644 1.984 3.149 2.833 3.646 3.868 4.555 4.311
150 2.642 2.282 3.149 3.133 3.646 3.923 4.555 4.612
154 2.091 2.077 2.945 2.674 3.269 3.268 4.252 3.856
30 0.624 0.937 1.106 0.724 1.336 1.594 1.369 1.296

C 45 1.144 1.388 1.756 1.822 1.293 2.115 1.987 1.833
106 1.389 1.590 1.906 1.991 2.258 2.468 2.627 2.849

TABLE 1
Values, to 3 decimal places, of log10 log10 A(f, N) for rule 204 (the identity rule, for
which log10 log10 A(f, N) is maximal) and the rules in sets Z and C.

between log10 log10 A(f,N) and N , the second shows alternation between
larger and smaller values for successive values of N , and the third shows
a reduced rate of growth with neither linear nor alternating behaviour. We
denote these sets L, Z and C respectively.?

5.1 Set L: approximate linear relationship
The majority of ECAs show an approximately linear relationship between
log10 log10 A(f,N) and N . Furthermore, all of the lines have approximately
the same gradient.

Set L contains examples from all four of Wolfram’s classes, including the
identity rule 204 and the “Turing complete” rule 110.

5.2 Set Z: alternating between large and small values
Figure 3 (a) plots A(f,N) for ECA rules 15, 60, 90, 105, 150, and 154. For
N ≤ 14, these rules are characterised by A(f,N) alternating between large
values for even N , and smaller values for odd N . This pattern seems to break
down, or at least become less pronounced, for 15 ≤ N ≤ 17.

Definition 2. A local update rule for an ECA is linear if it has the form

δ(x, y, z) = ax + by + cz + d (10)
? These symbols were chosen because the relationship between log10 log10 A(f, N) and N

is either “linear”, “zigzag”, or “chaotic”.
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FIGURE 3
As Figure 2, but for 6 ≤ N ≤ 17, and only showing the ECAs in (a) set Z; (b) set C.

for some constants a, b, c, d ∈ Z2. The rule is non-trivial if more than one of
the coefficients {a, b, c} is nonzero, otherwise it is trivial.

SetZ contains all four of the non-trivial linear ECAs (rules 60, 90, 105 and
150), along with one of the trivial linear ECAs (rule 15). The four remaining
trivial linear rules (0, 51, 170 and 204) are in L.

The single non-linear rule in Z , rule 154, shares one property with the
non-trivial linear rules: from an initial configuration consisting of a single
cell in state 1, a self-similar “Sierpiński gasket” pattern is produced. On other
initial configurations, rule 154 produces periodic patterns, in contrast to the
chaotic patterns produced by the non-trivial linear rules.

5.3 Set C: neither linear nor alternating
Figure 3 (b) plots A(f,N) for rules 30, 45, and 106. This plot shows neither
a linear nor an oscillating relationship, and the rate of growth of A(f,N) with
respect to N seems significantly lower than that for the ECAs in sets L and
Z .

Wolfram [7] identifies rules 30 and 45 as being particularly suited to ran-
dom number generation by ECAs: if the initial configuration assigns state 1
to a single cell and state 0 to all others, then the sequence of states taken
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(a) (b)

FIGURE 4
Evolution of ECA rule 106 from (a) the configuration . . . 001100 . . . ; (b) a random
initial configuration. To make the patterns clearer, each configuration has been offset
to the right by one cell relative to the previous configuration.

by that special cell subsequently is, by several measures, a good pseudo-
random sequence over Z2. Rules 30 and 45 do seem to be unique in this
respect: other “chaotic” ECAs which fall into Wolfram’s class 3 generally
only exhibit this property on a random initial configuration; we may think
of them as merely “preserving” the randomness already present in the initial
configuration, whereas rules 30 and 45 are uniquely capable of “generating”
randomness from an ordered initial configuration.

The evolution of rule 106 from a single cell in state 1 is rather uninter-
esting: the state 1 simply propagates to the left by one cell per generation.
However, two adjacent cells in state 1 yield the self-similar pattern shown in
Figure 4 (a). On a random initial configuration, rule 106 produces chaotic
patterns interspersed with ordered regions, as depicted in Figure 4 (b). Again,
rule 106 seems to be unique among the ECAs: self-similar patterns are not
uncommon, but the pattern depicted in Figure 4 (a) seems more complex than
the “Sierpiński gasket”-like patterns typical of other ECAs.
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6 CONCLUSION

By counting automorphisms in transition graphs, and examining how these
counts vary with the number of cells N , we have partitioned the ECAs into
three classes:

• Set Z , consisting of the “non-trivial” linear rules and a single non-
linear rule (154);

• Set C, consisting of the two “chaotic” ECAs and rule 106;

• Set L, consisting of the remainder.

By no means is this a complete classification of the ECAs: the “remainder”
set L contains 79 out of the 88 essentially different ECAs, and seems to span
all classes of dynamic behaviour from trivial to complex.

For reasons of computational complexity, we have thus far been unable to
study values of N larger than 17. This is barely large enough to support rule
110’s “ether” pattern (whose spatial period is 14), let alone the complex parti-
cles which travel through this ether to make Cook’s construction [1] possible.
We conjecture that rule 110, and other “complex” rules, will deviate from the
approximately linear trend characterising set L, precisely when N becomes
sufficiently large to support the complex structures which make these rules
special.

The reader familiar with parameters such as Langton’s λ [3] and Wuen-
sche’s Z [10] may wonder what the point is of a parameter such as A(f,N)
which is so expensive to calculate! We feel that the interesting aspect of this
work is not necessarily the numbers themselves, but rather the suggestion
of a relationship between “symmetry” and “complexity”. The relationship
between sets L and C already suggest that, for sufficiently large N , chaotic
ECAs such as rules 30 and 45 exhibit far fewer symmetries than the more or-
derly CAs in set L. It is tempting to conjecture that, as N is made larger still,
complex ECAs such as rule 110 will exhibit a critical amount of symmetry
somewhere in the region between setsL and C. This would be in keeping with
the “edge of chaos” phenomena observed with parameters such as Langton’s
λ and Wuensche’s Z.
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