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The transition graph of a cellular automaton (CA) represents
the CA’s global dynamics. The automorphisms of the transition
graph are its self-isomorphisms or “symmetries”, and in a sense
these are precisely the symmetries of the CA’s dynamics.

Previously we have argued that studying how the total number
of automorphisms varies with the number of cells on which the
CA operates yields a partial classification of CA rules. One of
the classes thus identified consists mainly of /inear CAs; that is,
CAs whose local rules are linear functions.

In this paper, we use the algebraic properties of linear CAs in
general, and of one linear CA (elementary rule 90) in particu-
lar, to derive an expression for the number of automorphisms
admitted by that CA. We use this expression to produce numer-
ical results, and observe that the number of automorphisms as
a function of the number of cells exhibits a correlation with a
number-theoretic function, the suborder function.

1 INTRODUCTION

A cellular automaton (CA) consists of a finite nonempty set of szates, a dis-
crete lattice of cells, and a local update rule which maps deterministically
the state of a cell and its neighbours at time ¢ to the state of that cell at time
t 4+ 1. A configuration of a CA is an assignment of a state to each cell. The
local update rule extends to a global map, a function from configurations to
configurations, in the natural way.
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FIGURE 1
Plot of log,, log,, A(f, N) (where A(f, N) is the number of automorphisms) against
N, for 6 < N < 16 and for all 88 essentially different ECA rules. From [3].

The transition graph of a CA is a directed graph representation of the
CA’s global dynamics: the vertices of the transition graph correspond to the
configurations of the CA, and the edges to the transitions between configu-
rations according to the global map. An automorphism of a transition graph
is an isomorphism of the graph onto itself. It can be shown that the group
of automorphisms of the transition graph is precisely the group of bijections
which commute with the CA’s global map. In physics, a common notion of
“symmetry” is of a transformation which, when applied to the initial state of
a system, causes the subsequent behaviour of the system to undergo the same
transformation but remain otherwise unchanged. Thus the automorphisms of
the transition graph are, in a sense, the symmetries of the CA’s global dynam-
ics.

In [3] we investigate how the sizes of the automorphism groups vary with
the number of cells IV on which the CA operates, for the 88 essentially differ-
ent elementary CAs (ECAs; see Section 2.2). Our numerical results are shown
in Figure 1. We identify three distinct types of behaviour:

1. The relationship between N and the double logarithm of the number of
automorphisms is approximately linear;
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FIGURE 2
As Figure 1, but for 6 < N < 17, and showing the (a) second and (b) third types of
behaviour described in the text. From [3].

2. The number of automorphisms seems to alternate between large and
small values for even and odd N respectively (illustrated in Figure 2 (a));

3. The relationship is neither linear nor alternating, and the average rate of
growth of the number of automorphisms is relatively slow (illustrated
in Figure 2 (b)).

The majority of ECAs exhibit the first type of behaviour. Two of the three
ECAs which exhibit the third type of behaviour are those identified by Wol-
fram [6] as being particularly well-suited to the generation of pseudo-random
numbers, and all three exhibit relatively long-lived transient behaviour before
reaching an attractor cycle. However, it is the second type of behaviour on
which we focus in this paper.

A CA is linear if its local update rule is a linear function (a sum of constant
multiples of its arguments). Of the six ECAs which exhibit the second type of
behaviour described above, three are linear and a further two are linear plus
a constant term. Furthermore, the only linear ECAs which do not exhibit this
type of behaviour are the “trivial” ones: the identity ECA, the zero ECA, and



the left- and right-shift ECAs. Thus we are justified in saying that this type
of behaviour is characteristic of non-trivial linear rules, at least among the
ECA:s.

In [3], we describe a way of counting the automorphisms of a transition
graph by iterating over its structure in a recursive fashion. The major draw-
back to that approach is that the entire transition graph must be generated, and
the number of vertices in this graph is exponential with respect to N. In this
paper (which extends and generalises some of the results presented in [2]),
we use results of Martin et al [1] concerning the structure of the transition
graph for a linear CA, and for one linear ECA (known as rule 90) in partic-
ular, to count automorphisms without the need to generate the entire graph.
While the “brute force” method of [3] exhausts our computational resources
for N > 17, the approach described herein only begins to do so for N > 185.

Having introduced in Section 2 the necessary definitions, in Section 3 we
discuss how the property of linearity restricts the possible shape of the tran-
sition graph for a linear CA, and in Section 4 we consider how this helps us
in counting the graph’s automorphisms. Up until this point our discussion
applies to all linear CAs, but in Section 5 we apply and extend the results
for ECA rule 90 in particular, which allows us in Section 6 to produce and
discuss numerical results.

2 PRELIMINARIES

2.1 Linear CAs
We restrict our attention to finite one-dimensional CAs, i.e. we take the lattice
to be Zy (the cyclic group of integers modulo N). This lattice has periodic
boundary condition, in that we consider cell N — 1 and cell 0 to be adjacent.
The neighbourhood is specified in terms of its radius r, so that the neighbours
of cell 4 are cells ¢ — r,...,7 4+ r. We further restrict our attention to CAs
whose state set is Zj, for some k > 2. Thus the local update rule is a function
f: Zi”'l — Zx,, which extends to a global map F : Z}Y — ZL.

Such a CA is said to be linear if the local update rule is a linear function;
that is, if there exist constants A_,., ..., A\, € Zj such that

f(x—m-"axr) =A T+ ATy, (D

where the operations of addition and multiplication are the usual operations
of modular arithmetic in Zj,.
Define the sum of two configurations u, v by

(u+v)[i] = uli] + v[i] 2)



for all cells 4, where w[i] denotes the state of cell 7 in configuration u. Then
linear CAs obey a principle of additive superposition: for all configurations
u, v, we have

Flu+v)=F(u)+ F(v). 3)
Clearly the analogous results hold for any number of repeated applications of
F. Intuitively, the evolution of the CA from initial configuration v + v is the
sum of the evolutions from initial configurations u and v.

2.2 Elementary CAs

An elementary CA (ECA) has neighbourhood radius » = 1 and state set Zs.
There are 22° = 256 possible local rules for an ECA. Wolfram [4] describes
a way of assigning each of these rules a number between 0 and 255 inclusive;
we use this numbering scheme throughout this paper.

Consider two rules to be equivalent if one can be obtained from the other
by exchanging states 0 and 1, or by reflecting (reversing) the neighbourhood,
or by performing both of these transformations in series. Then the space of
local rules is partitioned into 88 equivalence classes [7]; thus we obtain the
88 essentially different ECA rules by choosing one rule from each class.

Of the 88 essentially different ECA rules, six are linear:

f(x_1,20,21) = (rule 0) (@)
flx_1,20,21) = (rule 170) ®)
f(x_1,20,71) = 20 (rule 204) (6)
fle_1,m0,21) = 21 + 20 (rule 60) 7
flx_1, 20, 1)=x 1+ 21 (rule 90) ®)
[y, 20,21) =21 + 20 + 71 (rule 150) 9)

In terms of global maps, rule 0 immediately maps every configuration to the
homogeneous configuration of zeros, rule 170 shifts the entire configuration
by one cell to the left, and rule 204 is the identity. The global dynamics of the
other three rules are illustrated in Figure 3.

2.3 Transition graphs
Consider a CA with state set Zy,, and global map F" on NN cells. The transition
graph* of this CA is the directed graph with vertex set ch\' and edge set

E={(s,F(s) : s€Zp}. (10)

* Some authors use the term state transition graph or state transition diagram; however, given
that we use “state” to mean the local condition of a single cell (as opposed to “configuration”
meaning the global condition of the entire lattice), this term would be confusing.
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FIGURE 3

Space-time diagrams for the three non-trivial linear ECAs, on an initial configuration
consisting of a single cell in state 1 (top) and an initial configuration in which each
cell is randomly assigned state O or 1 (bottom).

In other words, the vertices correspond to configurations, and the edges show
which configurations are mapped to which by the global map. In terms of
dynamical systems, the transition graph represents the phase space of the
CA, with paths in the graph corresponding to trajectories through the phase
space.

Examples of transition graphs are shown in Figures 4 and 5.

Since CAs are deterministic, every vertex has out-degree 1. Therefore
the graph consists of a number of disjoint cycles, with a (possibly single-
vertex) tree rooted at each vertex in each cycle; the edges in the trees are
directed away from the leaves and towards the root (i.e. towards the cycle).
The disjoint connected components of this graph, each consisting of a single
cycle and its trees, are the basins of attraction of the CA, and so we call them
the basins of the graph.

An automorphism of a transition graph is an isomorphism of the graph
onto itself; that is, a bijection v on the vertex set such that there is an edge
from vertex u to vertex v if and only if there is an edge from a(u) to a(v).
Automorphisms are “symmetries” in the sense that they are transformations
of the graph which leave the overall shape of the graph unchanged.

Denote by A(f, N) the number of automorphisms of the transition graph
for the CA with local rule f on N cells. For the ECAs, we replace f with the
rule number, so for example A(90, N) is the number of automorphisms for
rule 90 on N cells.
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FIGURE 4
Transition graph for ECA rule 90 on 11 cells.
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FIGURE 5
Transition graph for ECA rule 90 on 12 cells.



It follows almost immediately from the definitions that « is an automor-
phism of the transition graph if and only if

aoF =Foa, (11
where F' is the CA’s global map. If
S50,51,52,83,. .. (12)

is a sequence of configurations visited by a CA on successive time steps, it
follows that applying « to the initial configuration yields the sequence

a(sp), a(s1),a(s2), a(ss),... . (13)

In other words, « is applied to each configuration in the sequence, but the se-
quence is otherwise unchanged. Thus, borrowing terminology from physics,
« can be considered a “symmetry” of the CA’s global dynamics.

A predecessor of a configuration s is a configuration p such that F'(p) = s.
When constructing the transition graph, it is often preferable to begin at a con-
figuration on a cycle and “work backwards”, iteratively finding predecessors
until that particular basin has been exhausted, than to compute the adjacency
matrix by iterating through the entire configuration space. Wuensche and
Lesser [8] describe the process in full.

A configuration is reachable if it has at least one predecessor, and unreach-
able otherwise. Unreachable configurations are sometimes referred to as Gar-
den of Eden configurations. The unreachable configurations correspond to the
leaf vertices in the trees of the transition graph.

3 TRANSITION GRAPHS FOR LINEAR CAS

This section presents some results which restrict the possible forms of the
transition graph for a linear CA.

Lemma 1 ([1, Lemma 3.3]). In the transition graph for a linear CA, the trees
rooted at vertices in cycles form a single isomorphism class.

Figures 4 and 5 illustrate this result. Note that this result applies to all trees
in a given transition graph, whether rooted at vertices in the same cycle or in
different cycles. An immediate consequence of this result is that two basins
are isomorphic if and only if their cycles have the same length.

Now that we know the trees are all identical, the following result gives us
some insight into their structure:



Lemma 2. All reachable configurations of a linear CA have the same number
of predecessors.

Proof. The zero configuration is always reachable (since F'(0) = 0), so it
suffices to show that any configuration has the same number of predecessors
as the zero configuration.

By additive superposition, for all configurations u,v we have F'(u) =
F(v) if and only if u = v+ ¢ for some predecessor ¢ of the zero configuration
[1, Lemma 3.2]. Let w be a reachable configuration, and choose a predecessor
v of w. Then the predecessors of w are the configurations

{v: Fluy=F@w)=w}={v+q : F(q) =0} . (14)

Note that v + ¢ = v + ¢ implies ¢ = ¢/, so each value of ¢ yields a unique
element of this set. In other words, the predecessors of w are in one-one
correspondence with the possible values of ¢, which themselves are the pre-
decessors of the zero configuration. O

Suppose that the zero configuration has p predecessors. If we restrict our
attention to a tree in the transition graph, we see that all non-root non-leaf
vertices have in-degree p. However, one of the predecessors of the root vertex
is the preceding vertex in its cycle, so within the tree the root vertex has in-
degree p — 1. This can be seen in Figure 5, where p = 4.

What are the cycle lengths? We do not know of a general answer to this
question, but we do have the following result:

Lemma 3 ([1, Lemma 3.4]). For alinear CA on N cells, let Il be the length
of the cycle reached from an initial configuration in which a single cell has
state 1 and all other cells have state 0. Then Il is the maximal cycle length;
furthermore, all cycle lengths are factors of 11 .

Note that the initial configuration described is not necessarily on the cycle
itself; indeed, there are linear CAs in which such a configuration is unreach-
able.

4 COUNTING AUTOMORPHISMS

In [3] we give recursive expressions for the number of automorphisms of a
transition graph for a CA in general, in terms of the sizes of isomorphism
classes of certain families of subgraph. The results in this section can be
considered as special cases of the results in [3], although we prove them here
from first principles.



Theorem 4. Consider a transition graph for a linear CA, in which the distinct
cycle lengths are l1, . . ., li, and there are m; cycles of length l;. Suppose that
each of the trees in this transition graph has Ar automorphisms. Then the
transition graph has

Ag = ﬁ <m' X 1 Agami> (15)

i=1
automorphisms.

Proof. An automorphism of the transition graph is a permutation of the basins
which preserves their isomorphism classes, composed with an automorphism
on each of the basins. Since all trees rooted at cycle vertices are isomorphic,
two basins are isomorphic if and only if they have the same cycle length;
thus the isomorphism classes have sizes my, . . . , my, and the total number of
permutations is

k
Pg =[] ma. (16)
i=1

An automorphism of a basin is a “rotation” of the basin’s cycle which
preserves isomorphism classes of the trees rooted on the cycle, composed
with an automorphism on each of the trees. Since all trees are isomorphic,
any of the /; rotations will suffice, and so the number of automorphisms of a
basin whose cycle length is [; is

Ap(ly) = 1; A% (17)

Thus the total number of automorphisms of the transition graph is

Ag = Pp x ﬁAB(lz‘)mi (18)
=1

—ﬁ“@ngM@mv (19)

:Ii(mﬂxl?ixAng (20)

as required. O

Note that the overall exponent of Ar in Ag is Zle l;m;, which is the
number of configurations which appear in cycles.

10



FIGURE 6
A basin in the transition graph for the linear CA with state set Z, and local rule

f(x_g,...,l’g):CC_3—|—$0—|—$2—|—$3, (28]

on N = 12 cells. The entire transition graph comprises 40 isomorphic copies of
this basin, five basins with cycle length 3, and one basin with cycle length 1. The
trees are unbalanced. For example, the configurations v = 111111111111 and
v = 001100110011 are predecessors of the zero configuration 000000000000, and
neither u nor v is on the cycle. Configuration w is reachable (one of its predecessors
is 000100010001), but v is unreachable, as are the other five non-zero predecessors
of the zero configuration.

Say that a tree is balanced if all leaf vertices are the same distance from
the root. Trees in transition graphs for linear CAs are not always balanced,
although empirical investigation shows counterexamples to be rare enough to
make balanced trees worth studying. The trees shown in Figures 4 and 5 are
balanced; Figure 6 shows an example of a transition graph with unbalanced
trees.

The depth of a balanced tree is the distance from the root to a leaf. The

trees shown in Figure 4 have depth 1, and those shown in Figure 5 have depth
2.

Theorem 5. Consider a balanced tree of depth d in which the root vertex has
in-degree p — 1, and all other non-leaf vertices have in-degree p. Such a tree

has
p!pd—l

automorphisms.

11



Proof. If d = 0, the tree consists of a single vertex (the root vertex). Clearly
this vertex has zero in-degree, and so we must have p = 1. (Indeed, the
converse of this argument also holds, so that d = 0 if and only if p = 1.) This
“tree” has only a single automorphism (the identity), and

m
1

Ar(0,1) = =1 (23)
as required.

Suppose d > 0, and proceed by induction on d. If d = 1, then the tree
has p — 1 leaf vertices, each an immediate predecessor of the root vertex. The
automorphisms of this tree are precisely the permutations of the leaves, of
which there are (p — 1)!. Substituting d = 1 into Equation 22 yields

1p° ]
AT(l,p):p'—z%:(p—l)!, 24)

as required.
Now let d > 1, and assume, as an inductive hypothesis, that
2

p
Ar(d—1,p) = b (25)

Denote by Ty the tree, as described in the statement of the theorem, of depth
d. Now T, can be obtained from 7, by taking each leaf v in T, and
adding p new leaves as immediate predecessors of v (so that v is no longer a
leaf but the root of a subtree of depth 1).

An automorphism of T} is an automorphism of 7;_; composed with an
automorphism of each of the new subtrees added in transforming 7_; into
T,. There are (p — 1)p?—2 such subtrees, each having p! automorphisms, and
so Ty has

Ar(d,p) = Ar(d— 1,p) x pl»=D7"" (26)
1?72 o plp—1)p??
_ P x p! 27
p
1(14+p—1)p? 2
S AR — (28)
p
1t
=L (29)
p
automorphisms, as required. O

12



5 EXAMPLE: ELEMENTARY RULE 90
Recall that rule 90 is the linear ECA with local rule
fle_q,z0,21) =21 + 271 (30)

The properties of rule 90 are studied extensively by Martin et al [1]; in this
section, we use these properties to derive an expression for the numbers of
automorphisms in rule 90’s transition graphs.

The results in Section 3 describe some of the properties of the transition
graph for a linear CA; for rule 90, we can go further than this, and can com-
pletely describe the trees in the transition graphs:

Lemma 6. Let N be odd. The transition graph for rule 90 on N cells has the
following properties:

1. All trees consist of a single edge [1, Theorem 3.3], and thus are bal-
anced and have depth d = 1;

2. Reachable configurations have two predecessors, so p = 2 [1, Theo-
rem 3.2];

3. The number of vertices in cycles is 2N, i.e. precisely half of all ver-
tices [1, Corollary to Theorem 3.3].

Lemma 7. Let N be even, and let Do(N) be the largest power of 2 which
divides N:
D5(N) =max {27 : 2/|N} . (31)

The transition graph for rule 90 on N cells has the following properties:

1. All trees rooted at vertices in cycles are balanced and have depth d =
%DQ(N) [1, Theorem 3.4];

2. Reachable configurations have four predecessors, so p = 4 [1, Theo-
rem 3.2];

3. The number of vertices in cycles is 28 ~P>N) [1 Corollary to Theo-
rem 3.2].

The only elements missing for a complete description of the transition
graph are the cycle lengths and their multiplicities. As far as we are aware,
there is no simple expression for these; however, Martin et al [1] describe
an algorithm which allows them to be computed. We shall not discuss the

13



details of this algorithm, but it is essential in producing the numerical results
described in Section 6.

The following theorem is obtained from Theorems 4 and 5 in the cases
described in Lemmas 6 and 7:

Theorem 8. Suppose that, on some number of cells N, rule 90 has cycles of

distinct lengths 1y, . . . , I, with m; cycles of length l;. Let
1 if N is odd
AL = _ _ (32)
T {242N * 42" e N s even

where Do(N) is as defined in Equation 31. Then the transition graph for
rule 90 on N cells has

k

Ag = (H m;! x l;’”) x A% (33)
i=1

automorphisms.

Proof. By Theorem 4, it suffices to show that

k
AG =[] Ar(d,p)m (34)

i=1

where Ar(d, p) is as defined in Theorem 5, and d and p are chosen appropri-
ately. Note that

k
c=Y lm, (35)
i=1
is the total number of vertices on cycles, and so
k
[[Az(d,p)™ = Ar(d,p)°. (36)
i=1

If N is odd, Lemma 6 gives d = 1 and p = 2. Now

212"

AT(172) = 2

=1. (37)
Indeed, it is easy to see that a tree consisting of a single edge admits only a

single automorphism, namely the identity. Thus we have Ar(1,2)¢ = 1 as
required, regardless of the value of c.

14



If N is even, Lemma 7 gives d = %DQ(N) and p =4, so

4!4%D2(N)—1
Ar(d,p) = 1 (38)
242132(1\’)*2
T4 (39)
Lemma 7 also gives ¢ = 2N ~P2(N) 5o
242D2(N)—2><2N—D2(N)
Ar(d,p)© = YRy (40)
242"
= N (41)
as required. [

6 NUMERICAL RESULTS FOR RULE 90

Theorem 8 yields the number of automorphisms for rule 90 on NV cells, if
the cycle lengths /; and multiplicities m,; are known. Martin et al [1] give an
algorithm for computing the /;s and m;s. This allows us to compute numbers
of automorphisms for any value of IV, although naturally some values of N
require more computation than others.

Some results are shown in Figure 7. Observe that the relationship between
the double logarithm of the number of automorphisms and N is approxi-
mately linear when N is even; fewer automorphisms occur when N is odd,
and there seems to be a lower bound achieved on some (but not all) prime
values of V.

Martin et al [1] define the suborder function of 2 modulo N, denoted
sordy (2), by

min{j : 22 =41 mod N} if N isodd

(42)
0 if N is even.

sordy (2) = {
The suborder function is plotted in Figure 8. The suborder function sord y (2)
has an upper bound of 1 (N — 1), achieved on some (but not all) prime values
of N.
Comparing Figure 8 with Figure 7, a correlation is apparent: values of N
which yield many automorphisms give small values of sordy(2), and vice
versa. Indeed, it can be verified numerically that

log, 10g10 A(90, N) ~ 0.30N — 0.28sordy (2) — 0.04.  (43)

15
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Plot of log;, log;, A(90, N) (lower line) against N, for 3 < N < 185.
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FIGURE 9
Plot of the two sides of Equation 43. The diagonal “y = ” line is plotted for com-
parison.

The error in this approximation is illustrated in Figures 9 and 10.

How does the suborder function relate to rule 907 Let Iy be the length of
the cycle reached from the initial configuration with a single cell in state 1, as
defined in Lemma 3. For rule 90, we have the following results:

Lemma 9. 1. If N is a power of 2, then Il = 1 [1, Lemma 3.5];
2. If N is even but not a power of 2, then Ily = 2l /5 [1, Lemma 3.6];
3. If N is odd, then Iy is a factor of 2°°"4~(2) — 1 [ 1, Theorem 3.5].

Furthermore, Martin et al [1] observe that Iy = 2s0rdn(2) _ 1 for the
majority of odd N, the first few exceptions being

N = 37,95,101, 141,197, 199,203, . . . . (44)

Theorem 8§ states that, if N is odd, the number of automorphisms is given
by

k
Ag = (H m;l x z;"w) : (45)

i=1

17
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FIGURE 10
Plot of the difference between the two sides of Equation 43 against V.

The I;s are factors of ITx, which in turn is a factor of 25074~ (2) — 1. The
m;s have no immediately apparent relationship with sord(2). Thus it is
somewhat mysterious that, of all the quantities which determine the cycle
lengths and multiplicities, it should be sord x(2) which, along with NV, ends
up dominating the expression for the number of automorphisms.

7 CONCLUSION

We have argued that automorphisms of transition graphs are, in at least two
different senses, “symmetries” of a CA. Our original aim with this work was
to investigate whether the “amount” of symmetry in a CA is in any way corre-
lated with its qualitative dynamics (or its “Wolfram class” [5]). As discussed
in [3], the partial correlation we have found is not so much with the amount
of symmetry itself, but with the way in which this amount varies with the
number of cells.

Upon first inspection, this variation seems to be more erratic for the linear
CAs than for the nonlinear CAs: in Figure 1, it is the linear ECAs which
display the most dramatic “zig-zag” patterns. Intuitively, it seems that the
non-trivial linear CAs are much more sensitive to changes in the number of

18



cells. Perhaps this is not so surprising: if N is a power of 2, it can be shown
that the only attractor for rule 90 on N cells is a fixed point, namely the zero
configuration. So there are cases where a small change in the number of cells
significantly changes the long-term qualitative dynamics: rule 90 on 128 cells
is in Wolfram’s class 1 (its long-term behaviour is homogeneous), whereas on
127 or 129 cells it is in class 3 (its long-term behaviour is “chaotic’).

Of course, the range of the data shown in Figure 1 is insufficient to draw
any real conclusions; it is only when the numerical results are extended to
much larger values of N (Figure 7) that a pattern becomes apparent. The
numerical results also show the argument above regarding power-of-2 values
of N to be somewhat misleading: in fact, it is around the powers of 2 that we
observe the smallest fluctuations in numbers of automorphisms.

The data plotted in Figure 2 (a) suggest that the numbers of automorphisms
for other linear CAs exhibit similar behaviour to that for rule 90. To test
this hypothesis, it is desirable to generalise the results of Section 5 to other
linear CAs. In particular, to apply Theorems 4 and 5 (which take care of
the common, though not universal, case where the trees are balanced), four
quantities must be known:

1. The number of predecessors of a reachable configuration;

2. The depth of a tree (or equivalently, the maximum transient length);
3. The set of cycle lengths;

4. The multiplicity of each cycle length.

While we have not yet done so, it seems plausible that such results can be
found for individual linear CAs via similar techniques to those used by Martin
et al [1] for rule 90. Whether results can be found which apply to all linear
CAs remains to be seen.

This work is based entirely on two facts about transition graphs for linear
CAs: all the trees are isomorphic, and every non-leaf vertex has the same
in-degree. These properties certainly do not hold in general, so the approach
described here is not applicable to nonlinear CAs. To extend those numerical
results to larger N, a completely different approach is needed.
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