
Investigations of Game of Life
Cellular Automata rules on Penrose Tilings:

lifetime, ash, and oscillator statistics

Nick Owens1, Susan Stepney2

1 Department of Electronics, University of York, UK
2 Department of Computer Science, University of York, UK

Abstract. Conway’s Game of Life (GoL) rules can be applied to Cellu-
lar Automata (CAs) running on aperiodic grids, namely Penrose tilings.
Here we investigate the result of running such CAs from random initial
conditions. We describe our experimental setup, and demonstrate that
the GoL on the Penrose kite and dart tiling has significantly different
statistical behaviour from that on the Penrose rhomb tiling.

1 Introduction

John Horton Conway’s Game of Life [2][4] is a simple two-dimensional, two
state cellular automaton (CA), remarkable for its complex behaviour [2][11].
That behaviour is known to be very sensitive to a change in the CA rules. Here
we continue our investigations [6][9] into its sensitivity to changes in the lattice,
by the use of an aperiodic Penrose tiling lattice [5][10].

Section 2 generalises the concepts of neighbourhood and Game of Life rules
to Penrose lattices. Section 3 describes the experimental setup for running the
Game of Life rules on aperiodic lattices; section 4 reports the statistics of life-
times, ash densities, and growth of the region of activity; section 5 reports the
oscillator statistics.

2 Game of Life rules on Penrose lattices

Classic cellular automata are defined on regular lattices. The update rule de-
pends on the state of the surrounding cells, and the updating cell itself, and the
structure of that surrounding neighbourhood is invariant: all places in the lattice
look the same, and the update rule can be applied uniformly across the lattice.

In general, the update rule depends on the particular state of each separate
neighbour. For outer totalistic CA rules such as the Game of Life, however,
the next state of a cell depends only on its current state, and the number of
neighbourhood cells3 in certain states.
3 The standard definition of CA ‘neighbourhood’ includes both the surrounding cells

and the updating cell. Throughout this paper we use slightly different terminology
(because we are referring to outer totalistic rules): by neighbourhood we mean only
the surrounding cells.
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Fig. 1. The generalised Moore neighbourhoods on a kite and dart Penrose tiling, with
neighbourhood sizes.

In Conway’s Game of Life outer totalistic CA, the neighbourhood of each cell
comprises the 8 nearest cells (of the regular Moore neighbourhood). Each cell
has two states, ‘dead’ and ‘alive’. If a cell is alive at time t, then it stays alive iff
it has 2 or 3 live neighbours (otherwise it dies of ‘loneliness’ or ‘overcrowding’).
If a cell is dead at time t, then it becomes alive (is ‘born’) iff it has exactly 3
live neighbours.

For the aperiodic Penrose lattice, the detailed structure of the neighbour-
hood varies at different locations in the lattice. We define the generalised Moore
neighbourhood of a cell to be all the cells with which it shares a vertex.

Not only do cells have irregular shaped neighbourhoods, with the generalised
Moore neighbourhood not all cells have the same number of neighbours.

Figure 1 shows the eight distinct generalised Moore neighbourhoods in a kite
and dart tiling: there are no other valid ways to surround a kite or a dart (this
can be established by exhaustive consideration of the valid vertex configurations
[9]). So there is one neighbourhood configuration of size 8 around a kite, and
two around a dart; three of size 9 around a kite, and one around a dart; and one
of size 10, around a dart. ([6] incorrectly states that kite and dart tilings have
neighbourhoods of size 8 and 9 only.)

Similarly, figure 2 shows the 11 distinct generalised Moore neighbourhoods in
a rhomb tiling. There is a larger range of distinct neighbourhood configurations
for rhomb tilings.

Not all sizes of neighbourhoods appear with the same frequency. Figure 3
shows the distribution of neighbourhood sizes in a kite and dart tiling and in a
rhomb tiling.

Outer totalistic rules can be given an interpretation in these aperiodic tiling
neighbourhoods. Using our definition of the generalised Moore neighbourhood,
the definition of the Game of Life on a regular lattice as given earlier can be
used unchanged on a Penrose lattice. Some early investigations are reported in
[6]; more detailed investigations are reported in [9] (including the lifetime and
ash results reported here); better statistical tests, and further investigations (on
oscillator numbers and periods) are additionally reported here.
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Fig. 2. The generalised Moore neighbourhoods on a rhomb Penrose tiling, with neigh-
bourhood sizes.

3 Experimenting with Life

In our investigations, we use some typical GoL terminology, defined here. (The
quoted definitions are from [12].)

soup “A random initial pattern, often assumed to cover the whole Life uni-
verse.” Here we consider only finite soup extents, but allow subsequent ac-
tivity outside the initial soup patch.

quiescence Eventual periodic CA activity. Once the CA has entered a quiescent
state, its future activity is periodic, and hence predictable.

ash “The (stable or oscillating) debris left by a random reaction.” Hence an ash
is the quiescent state left by a soup.

In [6] we report that the Game of Life has different quantitative behaviour
on a regular lattice and on a Penrose kite and dart lattice: on the Penrose lattice
the lifetime to quiescence is much shorter, and the ash density is lower. This
paper investigates if there are similar differences between the behaviour of the
rules running on kite and dart and on rhomb lattices.

Null Hypothesis: The Game of Life run on kites and darts has identical
statistical behaviour to the Game of Life run on rhombs.

To test this hypothesis, we investigate the following statistics: lifetime to
quiescence, ash density, growth of the active area, number of oscillators in the
ash, period of oscillators in the ash.

3.1 Experimental setup

To test the hypothesis we vary the density D of soups of similar sizes S on rhomb
and kite and dart tilings, run the cellular automaton to quiescence, and record



kite/dart rhomb
size type cells % type cells %

7 b0 2831 9.1
2831 9.1

8 a0 4994 14.7 b1 4576 14.6
a1 4248 12.5
a2 1890 5.6

11132 32.7 4576 14.6

9 a3 6116 18.0 b2 2134 6.8
a4 6125 18.0 b3 2842 9.1
a5 3762 11.1
a6 3774 11.1

19777 58.2 4976 15.9

10 a7 3083 9.1 b4 2370 7.6
b5 1735 5.6
b6 2133 6.8
b7 3475 11.1
b8 3501 11.2

3083 9.1 13214 42.3

11 b9 3522 11.3
b10 2136 6.8

5658 18.1
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Fig. 3. Generalised Moore neighbourhood statistics, on a 33992 cell kite and dart tiling
(black bars, median size = 9), and a 31255 cell rhomb tiling (grey bars, median size =
10)



Fig. 4. The initial tiling grid G, the central soup area S, the maximum activity area
during the run A, and the possibly extended tiling grid Gq (dashed box) to accommo-
date the activity. Our lazily expanding tiling algorithm is defined in [9].

the lifetime to quiescence tq, ash density ρ (measured over the soup box), and
soup growth g.

Lifetime tq : The lifetime, or the time to quiescence, is defined to be the
number of timesteps from the soup state (t = 1) until the pattern of live cells
(measured over the whole tiling Gq, (figure 4) first repeats (at t = tq). Each
timestep, the CA’s current state is stored, along with the number of live cells.
To check for quiescence, the current state is compared to all previous states with
the same number of live cells.

Ash period p : The number of timesteps since the first repeating state was
previously seen: p = tq− tprev. The ash period may be 1, in which case there are
no oscillators in the ash, only “still life” constructs with trivial period 1. Any
oscillators in the ash have a period posc that is a factor of the ash period p.

Ash density ρ : The proportion of live cells in the ash at t = tq, measured
over the soup tiles S.

Soup growth g : The number of cells in the maximum active area divided
by the number of cells in the soup: g = A/S (figure 4).

Ash oscillator number density : The total number of oscillators of period
2 and above in the ash at t = tq, divided by the number of cells in the active
area A.

Tiling grid : We use a lazily expanding tiling for both kites and darts, and
rhombs. We use an initial tiling of size G = 23194 for the kite and dart experi-
ments, and of size G = 23123 for the rhomb experiments. It is difficult to produce
identical sized tilings: these are close enough (within 0.3%) for fair comparison,
since the statistical fluctuations in the results due to different random starting
conditions are much greater than this difference in tiling sizes. These differences
in tile numbers are of similar scale to the differences in tile numbers between
regular and kite and dart tilings used in [6] (and the tilings are about twice the
size of the largest grid explored there).

Soup area : Three initial soup areas S, covering the central 25%, 50%, 75%
of the area of the tiling. See figure 5 and 6.

Soup density : 100 soup densities D, in the range [0.01, 1.0] with increments
of 0.01. Each cell in the soup area S is initially alive with probability D; all other
cells in G are initially dead.



Fig. 5. The three central soup areas, to scale with the initial grid area.

25% 50% 75% G

kite and dart 5842 11670 17527 23194
rhomb 5815 11611 17405 23123

Fig. 6. Number of tiles involved in the experiments, soup sizes S = 25%, 50% and
75%, and full initial grid size G

Runs : Each of the 100 soup densities D across the three soup sizes S is run
to quiescence 1000 times from different random soup starting conditions.

3.2 Non-parametric statistical analysis

We want to test whether certain distributions are statistically the same or dif-
ferent.

The commonly-used statistical tests (such as Student’s t-test) are parametric
tests that assume an underlying normal distribution. Are the distributions here
(sufficiently) normal4 to justify using such parametric tests?

Figures 7 and 8 show the histograms of lifetime and ash density results over
the 1000 runs for one particular soup size and soup density. The lifetime distri-
butions, at least, do not look normal.

We investigate further the distribution of lifetimes and ash densities for these
examples. We calculate the median, mean, standard deviation, skew and kurtosis
of these distributions (using the MS-Excel functions median, average, stdev,
skew, and kurt respectively), for the lifetimes (figure 9) and the ash densities
(figure 10).

For large samples (N > 150) drawn from a normal population, the skewness
statistic is approximately normally distributed with mean 0 and standard devi-
ation ss =

√
6/N [13, §5.13]; for very large samples (N > 1000) drawn from a

normal population, the kurtosis statistic is approximately normally distributed
with mean 0 and standard deviation sk =

√
24/N [13, §5.14]. Hence skew values

beyond two standard errors of skewness, or kurtosis values beyond two stan-
dard errors of kurtosis, indicate that the distribution is not normal at the 95%
confidence level.

For N = 1000 (just valid for the kurtosis test), 2ss = 0.15 and 2sk = 0.31.
Both these values are considerably lower than those calculated for the lifetimes
4 Use of a parametric test on a non-normal distribution can give misleading results.

A good discussion of the importance of not using an inappropriate parametric sta-
tistical test can be found in [7].



0

10

20

30

40

50

0 50 100 150 200 250

0

10

20

30

40

50

0 50 100 150 200 250

Fig. 7. The distribution of lifetimes to quiescence on the kite and dart tiling (top) and
rhomb tiling (bottom), for 1000 runs with soup size S = 25% and soup density D = 0.8;
with comparison normal distributions of the same mean and standard deviation.
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Fig. 8. The distribution of ash densities on the kite and dart tiling (top) and rhomb
tiling (bottom), for 1000 runs with soup size S = 25% and soup density D = 0.8; with
comparison normal distributions of the same mean and standard deviation.



D = 0.4 D = 0.8
soup k&d rhomb k&d rhomb

25% m 96 158 37 57.5
µ 99.4 163.0 41.9 65.1
σ 19.6 37.0 18.6 37.3
s 1.1 0.9 1.2 1.5
k 2.0 1.2 2.1 3.9

50% m 108 179 40 60
µ 111 185.1 44.7 66.6
σ 19.6 37.2 18.5 33.7
s 0.7 0.8 1.2 1.2
k 0.9 0.5 2.0 2.1

75% m 116 190 44 67
µ 118.6 198.1 47.1 74.1
σ 20.0 40.4 17.9 35.9
s 0.9 1.2 1.3 1.2
k 1.1 2.8 4.3 4.3

Fig. 9. Statistics for the lifetime distributions (median m, mean µ, standard deviation
σ, skew s, kurtosis k) for soup densities D = 0.4 and 0.8; soup sizes S = 25%, 50% and
75%. All the skewness and kurtosis values rule out normality at the 95% confidence
level.

D = 0.4 D = 0.8
soup k&d rhomb k&d rhomb

25% m 0.00440 0.00337 0.00181 0.00104
µ 0.00442 0.00343 0.00184 0.00107
σ 0.00083 0.00078 0.00051 0.00045
s 0.19 0.26 0.35 0.49
k 0.19 −0.02 0.19 0.10

50% m 0.00845 0.00627 0.00220 0.00151
µ 0.00842 0.00629 0.00224 0.00154
σ 0.00112 0.00103 0.00058 0.00051
s −0.07 0.09 0.23 0.30
k 0.14 −0.04 −0.14 0.03

75% m 0.01233 0.00908 0.00285 0.00234
µ 0.01234 0.00912 0.00288 0.00234
σ 0.00136 0.00126 0.00067 0.00056
s −0.08 0.19 0.20 0.13
k −0.12 −0.10 0.04 −0.14

Fig. 10. Statistics for the ash densities (median m, mean µ, standard deviation σ, skew
s, kurtosis k) for soup densities D = 0.4 and 0.8; soup sizes S = 25%, 50% and 75%.
Skewness values in bold rule out normality at the 95% confidence level.
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Fig. 11. Soup growth g: skew (left) and kurtosis (right) of the distributions for soup
sizes 25%. The distributions clearly differ with soup density: they have a much higher
skew and kurtosis at low and high soup densities than at intermediate ones. (Skew and
kurtosis 95% confidence lines 2ss = 0.15 and 2sk = 0.31 are also shown.)

(figure 9), so the lifetime distributions are not normal at the 95% confidence
level. Normality of the ash densities for some soup size and density parameters,
but not all, is ruled out by this test (figure 10).

So, in most cases, we cannot justify using tests that assume normality of the
distributions. Not only do we not know what the underlying distributions are,
in some cases they can vary markedly across the parameter ranges explored (see
figure 11). Since we wish to apply a uniform set of tests, we therefore use the
same non-parametric (or distribution-free) tests in all cases.

The distributions are, in at least some cases, highly skewed, so the non-
parametric median and quartile statistics give a better measure of the data than
means and standard deviations. So we calculate the median and quartiles of each
set of runs, for the range of soup densities (figures 13 and 14). These results are in
qualitative agreement with those in [6]: low lifetimes and ash densities at extreme
soup densities with a ‘plateau’ in the behaviours for soup densities ∼ 0.2− 0.6;
lifetimes ∼ 100 − 200; ash densities ∼ 1 − 2%. We now, however, have better
statistics for kite and dart tilings, and new results for rhomb tilings.

3.3 Statistical significance

We use the Wilcoxon rank-sum test (also known as the Mann-Whitney U test)
to test whether the medians of two samples are significantly different, using
Matlab’s ranksum function.

Null Hypothesis T: for soup size S = 25%, density D = 0.8, there is no
difference between the median lifetimes on kites and darts, and on rhombs.

If the p-value given by the rank-sum test is less than 0.05, we can say that
the null hypothesis is rejected at the 95% confidence level because the medians
differ. Running the test on our data for this case gives p = 10−56, or essentially
zero. Therefore we can reject Null Hypothesis T, with an extremely high degree
of statistical confidence.



3.4 Effect size

The difference in the medians in the above test case is statistically significant
to an almost ludicrous degree. This extreme level of statistical confidence is due
mostly to the large number of samples, N = 1000. (Such large samples are
much more typical in computer science than, say, medicine, because computer
experiments are relatively cheap, and have no ethical considerations.) As Bakan
says ([1, ch.1, p.7], as quoted in [8]): “there is really no good reason to expect the
null hypothesis to be true in any population”. A sufficiently large sample size will
always be able to reject a null hypothesis: the smaller the effect, the larger the
sample required to detect it. For normally-distributed populations with means
and standard deviations similar to those of figure 10, sample sizes in the low
tens would be sufficient to establish a statistically significant difference of their
means at the 99% confidence level.

Because of this, we also perform a test of the effect size. The best know effect
size measure is Cohen’s d-test [3, §2.5]. It (roughly) measures (µ1 − µ2)/σ, the
difference in the means, divided by the standard deviation (with corrections if
the populations have different σs). This essentially captures how “far apart” the
peaks of the two distribution are, compared to how much they spread (a physical
analogy from optics might be how easily the two peaks could be “resolved”).

However, Cohen’s d is a parametric measure, assuming a normal distribution.
Here we use the Vargha-Delaney non-parametric “measure of stochastic superi-
ority”, A [14]. AXY measures the probability that a value selected at random
from population X is greater than a value selected at random from population
Y (with a correction to take into account the chance that they are equal). These
probabilities could be estimated directly from the data samples, but [14, eqn(14)]
shows that an unbiased estimator of AXY is

ÂXY = (RX/nX − (nX + 1)/2) /nY (1)

where RX is the rank sum value of X (also calculated by the Matlab ranksum
function), and nX , nY are the sizes of the samples drawn from populations X
and Y .

A = 0.5 indicates that the populations have the same medians (the rank-
sum test, above, can be used to measure the statistical significance of this). The
further A is away from 0.5, the bigger is the effect size, analogous to Cohen’s d.
For the one tailed test (the probability that X is greater than Y ) the effect size
criterion is that A = 0.56 indicates a small effect, A = 0.64 a medium effect,
and A = 0.71 a large effect ([14, table 1]; these values are only indicative, since
they are derived directly from Cohen’s criteria for the d values of different effect
sizes, and those values are themselves only indicative). For the two tailed test,
we test both AXY and AY X (and use the fact that AY X = 1 − AXY ). So, for
example, for a large effect in the two-tailed case, we test whether A > 0.71 or
A < 0.29.

For our test soup sizes and densities, the effect size A values are shown in
figure 12. These indicate a large effect from the change in the tiling.



lifetime ash density
soup D = 0.4 D = 0.8 D = 0.4 D = 0.8

25% 0.955 0.704 0.807 0.865
50% 0.975 0.711 0.918 0.809
75% 0.980 0.746 0.957 0.724

Fig. 12. Effect size A, for the difference between kite & dart and rhomb medians, for
soup densities D = 0.4 and 0.8; soup sizes S = 25%, 50% and 75%. All these values
indicate large effects.

3.5 Null hypotheses

We cast our various null hypotheses in the following form:
Null Hypothesis X: for the Game of Life run on kites & darts, and on rhombs,

there is no meaningful difference in property Y.

For a “meaningful difference” we require both a statistically significant dif-
ference, and a large effect size.

For all the results that follow, we do not present p value for the statistical sig-
nificance: the p values are all essentially zero, and the differences are all extremely
statistically significant. We present the value of the effect size A, demonstrating
that all the statistics chosen exhibit a large effect with the change in the tiling.

4 Lifetime, ash, growth results

4.1 Lifetimes

Null Hypothesis 1: for the Game of Life run on kites & darts, and on rhombs,
there is no meaningful difference in the lifetimes.

The lifetime distributions for the two tilings are different, with a large effect
size for soup densities 0.1 < D < 0.8 (figure 13), refuting Null Hypothesis 1. The
Game of Life on the rhomb tiling has significantly longer lifetimes than it does
on the kite and dart tiling. From [6], we can say that they both have shorter
lifetimes than Life on a regular lattice.

4.2 Ash densities

Null Hypothesis 2: for the Game of Life run on kites & darts, and on rhombs,
there is no meaningful difference in the ash densities.

The ash density distributions for the two tilings are different, with a large
effect size for soup densities 0.1 < D < 0.9 (figure 14), refuting Null Hypothesis
2. The Game of Life on the rhomb tiling has significantly lower ash densities
than it does on the kite and dart tiling. From [6], we can say that they both
have lower ash densities than Life on a regular lattice.
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Fig. 13. Lifetime to quiescence tq: medians and quartiles (left), and effect size (right);
for soup sizes 25% top, 50% middle, 75% bottom. Effect sizes > 0.71 or < 0.29 are
considered to be large.
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Fig. 14. Ash density ρ: medians and quartiles (left), and effect size (right); for soup
sizes 25% top, 50% middle, 75% bottom.
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Fig. 15. Soup growth g: medians and quartiles (left), and effect size (right); for soup
sizes 25% top, 50% middle, 75% bottom.



4.3 Soup growth

Null Hypothesis 3: for the Game of Life run on kites & darts, and on rhombs,
there is no meaningful difference in the soup growth.

The growths of the two tilings are different, with a large effect size for soup
densities 0.1 < D < 0.8 (figure 15), refuting Null Hypothesis 3. The Game of
Life on the rhomb tiling has significantly more growth from soup than it does
on the kite and dart tiling.

5 Oscillator results

5.1 Ash oscillator number density

Null Hypothesis 4: for the Game of Life run on kites & darts, and on rhombs,
there is no meaningful difference in the ash oscillator number density.

The ash oscillator number densities for the two tilings are different, with
a large effect size for soup densities 0.1 < D < 0.75 (figure 16) refuting Null
Hypothesis 4. The Game of Life on the rhomb tiling has significantly lower ash
oscillator number density than it does on the kite and dart tiling.

5.2 Ash period statistics

Null Hypothesis 5: for the Game of Life run on kites & darts, and on rhombs,
there is no meaningful difference in the ash periods.

The ash periods for the two tilings are different, with a large effect size for
soup densities 0.1 < D < 0.7 (figure 17) refuting Null Hypothesis 5. The Game
of Life on the rhomb tiling has significantly lower ash period than it does on the
kite and dart tiling.

Since the normality tests show that the data is highly skewed, with a fat tail,
we also present “box and whisker” plots of the of the ash period distributions
(figure 18), which show the outliers: high period ash very far from the median
period. Since this is the overall period of the ash, large spikes can be caused
when a few high period oscillators appear out of phase. The preponderance of
kite/dart ash period outliers with periods 15, 30, and 60 are mostly caused by
the common p15 dancer oscillator identified in [6] (figure 19). The total number
of these ash period outliers (across all soup densities) is given in figure 20.

6 Conclusions

We have used a Penrose lazy tiling algorithm to perform experiments with Game
of Life rules. The Game of Life on the rhomb tiling is significantly different from
that on the kite and dart tiling: it has longer lifetimes, lower ash densities, higher
soup growth, significantly fewer oscillators in the ash, and lower ash period.

Even the simplest oscillators seem quite difficult to define without explicit
diagrams. Work is underway to develop a classification scheme for the oscillators.
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Fig. 16. Ash oscillator number density: medians and quartiles (left), and effect size
(right); for soup sizes 25% top, 50% middle, 75% bottom
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Fig. 17. Ash period: medians and quartiles (left), and effect size (right); for soup sizes
25% top, 50% middle, 75% bottom. (Note that the quartiles and median sometimes
have the same value, in which case no quartile bar is drawn beyond a dash.)
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Fig. 18. Box and whisker plots of the ash period, showing median, quartiles, outliers
(beyond 1.5 times interquartile range) and extreme outliers (beyond 3 times interquar-
tile range); for soup sizes 25% top, 50% middle, 75% bottom. Note the logarithmic
scale on the period axis.
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Fig. 19. Histograms of the periods of the individual oscillators in the ash. Note the
relatively high number of p15 oscillators in the kite/dart ash.
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rhomb 2 14416 0 12035 0 10239

Fig. 20. Number of outliers and extreme outliers in the ash period distribution, soup
sizes S = 25%, 50% and 75%
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