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Abstract.
We present a simple numerical optimisation procedure to search for highly

entangled states of 2, 3, 4 and 5 qubits. We develop a computationally tractable
entanglement measure based on the negative partial transpose (NPT) criterion, which
can be applied to quantum systems of an arbitrary number of qubits. The search
algorithm attempts to optimise this entanglement cost function to find the maximal
entanglement in a quantum system.

We present highly entangled 4 qubit and 5 qubit states discovered by this search.
We show that the 4 qubit state is not quite as entangled, according to two separate
measures, as the conjectured maximally entangled Higuchi-Sudbery state. Using this
measure, these states are more highly entangled than the 4-qubit and 5-qubit GHZ
states.

We also present a conjecture about the NPT measure, inspired by some of our
numerical results, that the single-qubit reduced states of maximally entangled states
are all totally mixed.

1. Introduction

There are known examples of maximally and highly entangled quantum states of 2 and

3 qubits. Yet for multipartite entanglement of 4 qubits and more, the mathematical

structure of the entangled states is less clear. The 4 qubit Higuchi-Sudbery state is

conjectured, but not known, to be maximally entangled (at least in some measures of

entanglement).

There is an alternative to the analytic approach. Faced with finding an optimum in

a complicated, mathematically intractable space, we at least have an arsenal of numerical

search and optimisation techniques to hand.

In this paper we apply numerical search techniques to hunt down highly entangled

multi-qubit states. This work is exploratory in studying multipartite maximal

entanglement across all possible partitionings of the state.

2. Entanglement measures and cost functions

In order to perform a search, we need a cost function: a measure of the amount

of entanglement in a quantum state. There are several entanglement measures, and

their usefulness depends on the type of analysis to be done. Properties for a good

entanglement measure are reviewed in [Horodecki et al. 2000], [Horodecki 2001]; not all

entanglement measures display all these properties.

2.1. Requirements

We want an entanglement measure for a very specific purpose: to be used as a cost

function in a numerical search algorithm for highly entangled states. This puts certain

constraints on the function, but also allows certain freedoms.
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• The cost function must be computationally tractable. It will be evaluated many

thousands of times during each search run. Most proposed entanglement measures

in the literature are computationally intractable.

• The cost function must define a searchable landscape. It must not be so rugged

or discontinuous that the search algorithm is unable to use the information in the

cost function to find improved solutions.

• The cost function must be suitable for mixed as well as pure states.

• The cost function must correspond closely to agreed entanglement measures at high

entanglement, where the search is aiming, but can be rather more approximate at

low entanglement, since we are not searching for such states.

2.2. Negative Partial Transpose

The partial transpose of a density matrix ρ can be used to determine whether the mixed

quantum state represented by ρ is separable. As a result it can also be used to detect

entanglement in ρ.

Consider a mixed state ρAB , composed of subsystems A and B. The partial

transpose of ρ with respect to subsystem A is(
ρTA

)
m µ,nν

= ρn µ,mν (1)

[Peres 1996] proves that a necessary condition for separability is that the partial

transpose of ρ has only non-negative eigenvalues. This is also known as the positive

partial transpose (PPT) test. Conversely, if the partial transpose of ρ has one or

more negative eigenvalues then the system is inseparable and contains some degree

of entanglement. Such states have a non-positive partial transpose (NPPT).

The Peres-Horodecki criterion states that PPT is a necessary and sufficient

condition for bipartite states to be separable for Hilbert spaces of size 2× 2 and 2× 3.

In other cases PPT is only a necessary condition for separability and [Horodecki 1997]

shows the existence of entangled PPT states. Entangled states which maintain positive

partial transpose are known as bound entangled states.

We are not worried by this lack of sufficiency, however. We are interested only in

highly entangled states, so a measure that fails to spot a few lesser entangled states is not

of concern. Given the simplicity and computability of the partial transpose condition,

we choose to use a cost function based on it, namely the negativity introduced by

[Życzkowski et al. 1998] and investigated by [Vidal & Werner 2002], who demonstrated

its monotonicity under local operations and classical communication (LOCC), and its

convexity. This measure of entanglement was also used in numerical explorations of

multipartite states by [Kendon et al. 2002].
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2.3. Negative Partial Transpose definition

Consider an n qubit state in the form

|ψ〉 =
2n−1∑
k=0

ck |k〉 (2)

where the ck ∈ C obey the normalisation condition. Each k is a basis state |a1a2 . . . an〉,
where a1a2 . . . an is the binary representation of the integer k , with ai ∈ {0, 1}.

Construct a density operator of a mixed state ρ using N pure states of the same

form as |ψ〉:

ρ =
N∑

j=1

pj |ψj 〉 〈ψj | (3)

Expand this out in terms of the individual coefficients.

ρ =
N∑

j=1

pj

1∑
a1...an=0

cj
a1...an

|a1 . . . an〉
1∑

a′
1...a′

n=0

cj ∗
a′
1...a′

n
〈a ′1 . . . a ′n | (4)

=
N∑

j=1

pj

1∑
a1...an=0
a′
1...a′

n=0

d j
a1...ana′

1...a′
n
|a1 . . . an〉 〈a ′1 . . . a ′n | (5)

where d j
a1...ana′

1...a′
n

= cj
a1...an

cj ∗
a′
1...a′

n
.

Now construct the partial transpose of ρ with respect to the index i (also known

as the cut set {i}). This achieved by transposing the bits ai and a ′i in the basis states

and reconstructing the new matrix ρT{i}

ρT{i}=
N∑

j=1

pj

1∑
a1...an=0
a′
1...a′

n=0

d j
a1...ai ...ana′

1...a′
i ...a

′
n
|a1 . . . a

′
i . . . an〉 〈a ′1 . . . ai . . . a

′
n | (6)

=
N∑

j=1

pj

1∑
a1...an=0
a′
1...a′

n=0

d j
a1...a′

i ...ana′
1...ai ...a′

n
|a1 . . . ai . . . an〉 〈a ′1 . . . a ′i . . . a ′n | (7)

The partial transpose with respect to a larger set of indices (larger cut set) is constructed

similarly, by transposing the bits corresponding to each index in the set.

We can then calculate the eigenvalues of this new matrix ρT{i} to see if it has any

negative eigenvalues indicating entanglement.

2.4. The relevant cut sets

Each density operator has 2n different partial transposes. The density operator can be

transposed with respect to each subset of indices, or cut, taken from the n qubit cut

set. If the n qubit computational basis is in the form |a1a2 . . . an〉 then the cut set is

the power set 2{a1,a2,...,an}.

Even for an entangled system, some cuts might exhibit no negative eigenvalues.

For example, a system of two individually entangled, but jointly separable subsystems.
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Additionally, the more negative eigenvalues, the more entangled the state. Since we

want a measure of entanglement, we should investigate all the possible cuts.

In practice, however, it is unnecessary to compute the partial transpose with respect

to every cut, since certain cuts are equivalent. Only 2n−1−1 of the 2n partial transposes

need to be calculated.

Consider the partial transpose of ρ with respect to index 1, ρT{1} . Calculating

the complementary cut with respect to all the other indices together, {2 . . . n}, is

redundant, because ρT{1} and ρT{2...n} have the same eigenvalues. We can neglect the

other complementary cuts similarly, leaving 2n−1 cut sets.

Additionally, we do not need to consider the trivial partial transpose with respect

to the empty cut, ρT{∅} , since this is the original density matrix, which is known to have

no negative eigenvalues.

Hence we need consider only 2n−1 − 1 partial transposes to find all the negative

eigenvalues.

2.5. The cost function

Once we have all partial transposes with respect to all necessary cuts then any negative

eigenvalues of these new matrices detect entanglement in the state ρ.

There are 2n−1 − 1 sets of 2n eigenvalues (not necessarily unique). We take the

negation of the sum of all the negative eigenvalues as our cost function ENPT(ρ), a

measure of entanglement in a given quantum state ρ. (We negate the sum in order

to make the result positive. This helps to make the terminology clearer: we seek to

maximise the cost function in order to maximise the entanglement.) The larger E

becomes, the greater the amount of entanglement ρ contains.

It is more conventional to define an entanglement measure to lie between zero (no

entanglement) and one (maximally entangled). We could achieve this by normalising

with respect to the maximally entangled state, and use ENPT(ρ)/Emax
NPT. However, the

value Emax
NPT is unknown for the cases of interest (it is in part what our search is attempting

to discover). Such normalisation is unnecessary in our numerical explorations, where

we simply need a monotonic function. Hence we choose to maximise the negated sum

of negative eigenvalues, ENPT.

2.6. NPT Entanglement of GHZ states

The n-qubit GHZ state |ψGHZ 〉n = 1√
2
(|0〉n + |1〉n) has a simple form of this NPT

entanglement measure.

In every cut, there is a partial transpose containing a 4× 4 block like
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (8)
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(multiplied by 1
2
) and with all other entries zero. So each cut has eigenvalues −1

2
, 1

2
, 1

2
,

1
2
. Since we take into acount the 2n−1 − 1 distinct cuts, we have

ENPT |ψGHZ 〉n = 1
2
(2n−1 − 1) (9)

2.7. Limits of Entanglement

We use known results of maximally entangled states of 2 and 3 qubits to provide insights

into our chosen entanglement cost function.

The Peres-Horodecki criterion guarantees that a separable state has no negative

eigenvalues and hence the entanglement measure ENPT = 0 for separable states.

2.7.1. 2 qubits. Consider the maximally entangled 2 qubit state

|ψ+〉 =
1√
2

(|00〉+ |11〉) (10)

Constructing the density operator of |ψ+〉 gives

ρ = |ψ+〉 〈ψ+ |
= 1

2
(|00〉 〈00 |+ |00〉 〈11 |+ |11〉 〈00 |+ |11〉 〈11 |) (11)

For 2 qubits the 22−1 − 1 = 1 cut is {1}. The partial transpose with respect this cut is

ρT{1} = 1
2
(|00〉 〈00 |+ |10〉 〈01 |+ |01〉 〈10 |+ |11〉 〈11 |) (12)

ρT{1} has a single negative eigenvalue of − 1
2
. So ENPT |ψ+〉 = 0.5.

2.7.2. 3 qubits. We can determine a limit for 3 qubit maximal entanglement from

the GHZ and W states. For 3 qubits the 23−1 − 1 = 3 cuts are {1}, {2}, and

{3}. Our entanglement cost function yields different values for entanglement for

|ψGHZ 〉 = 1√
2
(|000〉+ |111〉) and for |ψW 〉 = 1√

3
(|000〉+ |010〉+ |001〉).

We have ENPT |ψGHZ 〉 = 1.5. Each W-state transpose has a single negative

eigenvalue of −
√

2
3

, and so ENPT |ψW 〉 =
√

2 ≈ 1.4142. For three qubits, 1.5 is the

maximal possible entanglement value, since there are only single cuts (one qubit against

two), and the maximal amount in these single cuts is 1
2
.

We examine whether our search procedure for maximal entanglement tends to the

limit of 1.5 and hence a GHZ state, or a limit of
√

2 and hence a W-state.

2.7.3. 4 qubits. The 24 − 1 = 7 cuts for 4 qubit partial transposes are {1}, {2}, {3},
{4}, {1, 2}, {1, 3}, {1, 4}.

We have ENPT |ψGHZ 〉4 = 7
2

= 3.5.

The highly entangled 4 qubit Higuchi-Sudbery (HS) state is conjectured to be

maximally entangled [Higuchi & Sudbery 2000]. The state is

|ψHS 〉 = 1√
6

(
|1100〉+ |0011〉+ ω(|1001〉+ |0110〉)

+ ω2(|1010〉+ |0101〉)
)

(13)
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where ω = −1
2

+
√

3
2

i .

This gives ENPT |ψHS 〉 ≈ 6.0981. Our aim is to see if our search technique can

equal, or better, this value.

2.7.4. 5 qubits. The 25 − 1 = 15 cuts for 5 qubit partial transposes are {1}, {2}, {3},
{4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {5, 5}.

We have ENPT |ψGHZ 〉5 = 15
2

= 7.5.

Our aim is to see if our search technique can find a highly entangled 5 qubit state.

3. The Search

3.1. The search algorithm

There are several numerical optimisation techniques available (such as hill climbing,

simulated annealing, or genetic algorithms), of differing sophistication. Which to use

depends on the structure of the search space defined by the cost function.

The negativity cost function is convex [Vidal & Werner 2002]. So it is relatively

smooth, and increasing towards the surface of the hypersphere defined by the state

vectors. This suggests the simplest form of search, hill climbing, since the convexity

means that is no chance of being caught in a mixed state local optimum. It remains to

be seen if the search gets caught in a pure state local optimum on the surface of the search

hypersphere. We use hill climbing to maximise ENPT(ρ). The hill climbing algorithm

involves repeatedly making a small random change to the current best solution, and

accepting the changed solution if it is better.

3.2. The search space

The cost function is defined on density matrices, so these constitute the search space.

Looking at equation 3, there are two clear possibilities: confining the search to pure

states with N = 1, or allowing mixed states with N > 1.

Using pure states is equivalent to searching on the surface of a hypersphere, whilst

mixed states allow movement through the interior of the hypersphere, too. We know

that there are multiple different entanglement maxima on the hypersurface (for example,

in the 3 qubit case corresponding to the GHZ and W-states), which might potentially

lead to the problem of getting trapped at an uninteresting local optimum.

So our initial search space comprised mixed states, with N = 2n being sufficient

to span the space. It transpires that the search very rapidly converges to (close to) the

hypersurface of pure states, so we also experimented with a pure state search space,

with N = 1 (section 3.6.1).

3.3. The move function

The move function defines how to choose the next point in the search space.
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For the mixed state case, the move function choses a random one of the N state

vectors ψj , and a random one of its (complex) components, cj
i , and multiplies its real

and imaginary components by the current (real) values of the move sizes δre and δim .

The state vector is then renormalised. The probability pj is multiplied by the current

value of the move size δp and then the probabilities are renormalised.

The various move sizes are each set to a random number between 0.5 and 1.5, and

changed if there have been too many consecutive rejected moves. (We note that hill

climbing, along with most other search algorithms, becomes less efficient as it gets close

to an optimum, since each random move choice becomes more likely to point in the

wrong direction. This problem increases as the number of dimensions increases.)

3.4. The implementation

We used Matlab 6.5 to implement all the matrix manipulations. Outer products,

eigenvalues, complex numbers, and so on, are built in. All we had to implement was

the partial transpose definition, the random state initialisation, and the move function.

The move size is set to a random number uniformly distributed in the interval

(1 − α, 1 + α), with α = 0.5. This is changed to a new random number in the same

interval if there have been 500 consecutive rejected moves. The search terminates once

there are 10000 consecutive rejected moves. The search algorithm is as follows:

initialise N random state vectors ψj , probabilities pj

construct initial density matrix ρ := ρ0

calculate eigenvalues and hence E := E0

α := 0.5;
δre :∈ (1 − α, 1 + α); δim :∈ (1 − α, 1 + α); δp :∈ (1 − α, 1 + α);
t0 := 0; ti := 0;
while t0 < 10000

while ti < 500
apply move function to give ψ′, ρ′

calculate eigenvalues and hence E ′

if E ′ > E then accept move (ψ := ψ′; E := E ′; t0 := 0; ti := 0)
else reject move (++t0; ++ti)

endwhile
ti := 0; reset δs

endwhile
return ψ,E

Some optimisations are included. If a probability drops below 10−10, it is set to zero, and

that case drops out of further consideration. If the real or imaginary part of a coefficient

drops below 10−2, it is set to zero. At the end of a search, the result is hand-tweaked,

setting any remaining small coefficients to zero, and used as the input to a further run,

to see whether that improves the result. If appropriate, some algebraic simplification of

the result is then performed.
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Figure 1. Patterns of probability evolution during a search, from an initial
mixed state with random probabilities pj (eqn 3). At the end of the search,
one probability is 1, and the other have dropped to zero, indicating a final pure
state. (a) atypically, the initial maximum probability state does not eventually
dominate (b) more typically, the initial maximum probability state eventually
dominates

Figure 2. Typical patterns of probability evolution during a search, from an
initial mixed state with equal probabilities pj (eqn 3). (a) typical 2-qubit search
(b) typical 3-qubit search

3.5. Validation

For 2 and 3 qubits, the search discovers the known states, both when started randomly,

and when started close to the known solutions.

For 3 qubits, when started randomly it discovers the maximal GHZ state, rather

than the W state. When started close to the W state, it does converge to that state.

For 4 qubits, when started close to the HS state, it converges to that state.
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3.6. Performance

Runs typically converge in 10000–50000 generations. Most runs result in some highly

entangled state. Using Matlab 6.5 on a Pentium PC, typically a 2 qubit search takes

3–5 CPU seconds; a 3 qubit search takes 10–20 CPU seconds; a 4 qubit search takes 3–6

CPU minutes; a 5 qubit search takes 2–4 CPU hours. The running time is exponential

in the number of qubits.

3.6.1. Probability evolution. Convergence to a pure state (all but one probability pj

tending to zero) is to be expected, because of the convexity of the negativity function

[Vidal & Werner 2002]. All the mixed state searches very rapidly converge to a pure

state, in approximately 1000 generations. Using a random spread of initial probabilities

for the N state vectors nearly always results in the largest initial probability eventually

dominating (figure 1). Using uniform initial probabilities still results in one probability

dominating after a relatively small number of generations compared to the total number

for convergence (figure 2). We note that [Wei et al. 2003] have performed a more refined

investigation of two-qubit states, searching for the most entangled state (under various

measures of entanglement) with given purity.

Based on the observed rapidity of the convergence, we experimented with starting

from an initial random single pure state. The converged results were essentially the

same, with some increase in efficiency (in the calculation of the density matrix). We

conclude that we are no more likely to escape a local optimum on the search hypersphere

surface by starting in a mixed state than a pure state. However, we need not fear such

local optima: we are searching for highly entangled states (good local optima), not only

maximally entangled states (global optima).

3.6.2. State evolution. Using the move function with δ ∈ (0.5, 1.5), the states typically

converge to a near optimum fairly rapidly (figures 3, 4). It can be seen that, even close

to the converged result, the movement can be quite large. However, causing the value of

α to decrease as the search progresses, to force the move function to take smaller steps,

has no appreciable effect on the results.

4. Results

4.1. A highly entangled 4-qubit state

4.1.1. A new state. The search procedure resulted (after algebraic simplification) in

the following two highly entangled states

|Ψ〉 = 1
2
√

2
(i |0010〉+ (1 + i) |0101〉+ |0110〉 (14)

+ (1 + i) |1000〉+ |1011〉+ i |1111〉)
ENPT |Ψ〉 = 5.9142
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Figure 3. Typical pattern of evolution of the eventually dominant state
component during a 3-qubit search, here converging to (near to) the state
1+i
2 |000〉 + 1√

2
|111〉. (a) Argand diagram showing evolution of all state

components. (b–d) Evolution of the real and imaginary parts of selected
components, as a function of iteration number (log scale). The coincident
changing of real and imaginary parts is due to renormalisation of the state
vector after one of the other components is changed.

|Ψ′〉 = i
2
(|0001〉+ |1111〉) (15)

+ 1
2
√

2
(|0100〉+ |1010〉+ i |0110〉+ i |1000〉)

ENPT |Ψ′〉 = 5.9142

These states are essentially equivalent, and can be reformulated as

|ψ4〉 = 1
2
(|0000〉+ |+011〉+ |1101〉+ |−110〉) (16)

where |+〉 = 1√
2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉).

The state has 22 negative eigenvalues from 7 partial transposes. For the four single-

index cuts, the partial transposes each have a single negative eigenvalue of −1
2
. One

of the two-index cuts has six negative eigenvalues of −1
4
; the other two two-index cuts

each have negative eigenvalues of − 1
4
√

2
(4 times), −2+

√
2

8
and −2−

√
2

8
. So

ENPT |ψ4〉 = 2 +
√

2 ≈ 5.9142 (17)
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Figure 4. Evolution of a highly entangled 4-qubit state, |Ψ′〉 (section 4.1.1)
(a) evolution of all 16 components. (b) evolution of 6 components that do not
vanish: two end near i

2 , two end at 1
2
√

2
, and two end at i

2
√

2
.

4.1.2. Comparison with the GHZ state. We have ENPT |ψGHZ 〉4 = 7
2

= 3.5. Hence the

state |ψ4〉 is more entangled, according to the NPT measure.

Note that [Chen 2004] claims that the GHZ states are the maximally entangled

states. Our result emphasises that maximal entanglement is relative to the particular

measure of entanglement chosen [Wei et al. 2003]. Indeed, with repect to our NPT

measure, the state |ψGHZ 〉4 is not even a local maximum: there are nearby states with

a higher NPT entanglement measure.

4.1.3. Comparison with the Higuchi-Sudbery state. The HS state also has 22 negative

eigenvalues from 7 partial transposes. For the four single-index cuts, the partial

transposes also each have a single negative eigenvalue of −1
2
. But each of the three

two-index cuts have three negative eigenvalues of − 1
2
√

3
and three of −1

6
. So

ENPT |ψHS 〉 = 2 + 3
2

√
3 ≈ 6.0981 (18)

Hence the HS state is more entangled, according to the NPT measure, yet |ψ4〉 does

have a very high measure of entanglement.

When the state |ψHS 〉 was conjectured to be maximally entangled, the entanglement

measure used involved taking the average von Neumann entropy of 2 qubit subsystems

[Higuchi & Sudbery 2000], EVN = 1
3
(EAB+EAC +EAD), where EXY = −Tr(ρXY log ρXY ).

(For comparison, the von Neumann entropy of the GHZ state is log2 2 (that is, 1) for

every cut.) The HS state is more entangled than state |ψ4〉 using this measure, too:

EVN |ψHS 〉 = 1 + 1
2
log2 3 ≈ 1.7925 (19)

EVN |ψ4〉 = 5
2
− 1

2
√

2
log2(3 +

√
2) ≈ 1.7426 (20)

EVN |GHZ 〉4 = 1 (21)

This is another example of a computationally feasible entanglement measure on a pure

state 4 qubit system. (We do not use this measure in our numerical searches, however,
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because we also look at mixed states. The von Neumann entropy measure cannot

distinguish between classical and quantum correlations, and so would not help us secure

information about the features we were attempting to capture.)

4.1.4. Observation on the Higuchi-Sudbery state. Since for some reason our search

procedure did not converge to the HS state from a random starting point, we deliberately

seeded the search with an initial state at, and one near, the HS state. Those searches

did converge to the HS state, implying that it is at least a local maximum with respect

to the NPT entanglement measure. The HS state is also a local maximum with respect

to the entropy measure‡.

4.2. A highly entangled 5-qubit state

4.2.1. A new state. The search procedure resulted (after algebraic simplification) in

the following two highly entangled states

|Ψ′′〉 = 1
2
√

2
(|00110〉+ |01011〉+ |10001〉+ |11100〉 (22)

+ i(|00101〉+ |01000〉+ |10010〉+ |11111〉))
ENPT |Ψ′′〉 = 17.5

|Ψ′′′〉 = 1
2
√

2
(|00110〉+ |01001〉+ |10101〉+ |11010〉 (23)

+ i(|00000〉+ |01111〉+ |10011〉+ |11100〉))
ENPT |Ψ′′′〉 = 17.5

These states are essentially equivalent, and can be reformulated as

|ψ5〉 = 1
2
(|000〉 |Φ−〉+ |010〉 |Ψ−〉+ |100〉 |Φ+〉+ |111〉 |Ψ+〉) (24)

where |Ψ±〉 = |00〉 ± |11〉 and |Φ±〉 = |01〉 ± |10〉.
For the five single-index cuts the partial transposes each have a single negative

eigenvalue of −1
2
. Each of the 10 two-index cuts have six negative eigenvalues of −1

4
.

4.2.2. Comparison with the GHZ state. We have ENPT |ψGHZ 〉5 = 15
2

= 7.5. Hence the

state |ψ5〉 is more entangled, according to the NPT measure.

Recall that the von Neumann entropy for a GHZ state is 1 for every cut. The von

Neumann entropy of |ψ5〉 is also 1 for the single index cuts, but it is 2 for the two-index

cuts. So the state |ψ5〉 is more highly entangled than the GHZ state, according to the

von Neumann entropy measure too.

We note that the von Neumann entropies of |ψ5〉 reflect the fact that in every cut,

the reduced states are as mixed as they can be, that is, the state of the smaller subset

of qubits is totally mixed — something that has been shown to be impossible for four

qubits [Higuchi & Sudbery 2000].

‡ A. Higuchi, private communication 2004

13



5. Conjecture

We note that for 2 qubit Bell states, the 3 qubit GHZ states (but not the W state), the

conjectured maximally entangled 4 qubit HS state, and our highly entangled 5 quibit

|ψ5〉 state, the single index cut partial transposes all have a single negative eigenvalue of

−1
2
. This is because the single-qubit reduced states are all totally mixed. Based on this

partial numerical evidence, we conjecture that this continues to hold for higher numbers

of qubits. That is

Conjecture 1 For an n qubit state maximally entangled with respect to the NPT

entanglement measure, all single-qubit reduced states are totally mixed.

Note that we conjecture this to be a necessary, but not a sufficient, condition for

maximum entanglement: our highly entangled but not maximally entangled state |ψ4〉,
and the non-maximally entangled states |GHZ 〉4 and |GHZ 〉5, also enjoy this property.

6. Conclusions

Numerical search has proved to be a richly rewarding topic.

We have successfully found a near-maximally entangled 4-qubit state (equation 16),

and a highly entangled 5-qubit state (equation 24), using the ENPT cost function. This

cost function can be used to investigate higher numbers of qubits, but the expense of

doing so increases exponentially (both in the size of matrices being manipulated, and

in the number of cuts to be calculated).

Our numerical investigations support the conclusion that the conjectured maximally

entangled HS state is at least a local maximum. Also, under our NPT measure, the GHZ

states of 4 and 5-qubits are neither maximally entangled, nor even local maxima.

We have posed a conjecture that the single-qubit reduced states of maximally

entangled states are all totally mixed.

7. Acknowledgments

Thanks to Viv Kendon for suggesting the use of the NPT criterion and its properties;

to Lieven Clarisse for drawing our attention to some relevant literature; to Charles Fox

for the use of his quantum computation functions for Matlab; and to the anonymous

referee for helpful comments.

References

[Chen 2004] Zeqian Chen. Maximal violoation of the Ardehali’s inequality of n qubits.
quant-ph/0407110, July 2004.

[Higuchi & Sudbery 2000] A. Higuchi and A. Sudbery. How entangled can two couples get? Phys.
Lett. A, 272, 213–217, 2000; quant-ph/0005013

[Horodecki 1997] Pawe l Horodecki. Separability criterion and inseparable mixed states with positive
partial tranpose. Phys. Lett. A, 232, 333–339, 1997.

14



[Horodecki et al. 2000] Micha l Horodecki, Pawe l Horodecki, and Ryszard Horodecki. Limits for
entanglement measures. Phys. Rev. Lett., 84, 2014, 2000; quant-ph/9908065

[Horodecki 2001] Micha l Horodecki. Entanglement measures. Quantum Information and
Computation, 1(1), 3–26, 1997.

[Kendon et al. 2002] V. M. Kendon, K. Nemoto and W. J. Munro. Typical entanglement in multi-
qubit systems. J. Mod. Optics, 49, 1709, 2002; quant-ph/0106023.

[Peres 1996] A. Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77, 8, 1996.
[Vidal & Werner 2002] G. Vidal and R. F. Werner. A computable measure of entanglement. Phys.

Rev. A, 65, 032314, 2002; quant-ph/0102117
[Wei et al. 2003] T.-C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro and F. Verstraete.

Maximal entanglement versus entropy for mixed states. Phys. Rev. A, 67, 022110, 2003; quant-
ph/0208138.
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