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Abstract. The arguments for using formal techniques in the construc-
tion of complex systems are reviewed, and the refinement and retrench-
ment techniques in particular are summarised. Coarse grained retrench-
ment, with its capacity to analyse and express system properties at var-
ious levels of granularity, is promoted as a laboratory for understanding
emergent behaviour of complex systems.

1 Introduction

Complex systems of many interacting parts with possibly explainable but unpre-
dictable global behavior are an increasingly evident part of the technologically
advanced world we live in these days. In the past, the fact that interaction be-
tween systems was via mechanical or analogue electrical couplings, meant that
assembling truly vast communities of systems that interacted in nontrivial ways,
was all but impossible. These days though, we have software, which can express
arbitrarily complex interactions between systems with ease. Equally importantly,
we have processor hardware on which to run the software, which has, in effect,
negligible cost. All of this has meant that vast communities of interacting sys-
tems are not only conceivable, but actually arise in practice. See eg. [2] (and
previous conferences in this series), [19], [16], [33], [1], [30].

Some such systems arise as a result of explicit and intentional design. The
most obvious example is the international telecommunications system, which
has evolved through the deliberate integration of many already large and rel-
atively autonomous but much more functionally focused systems. Others, and
the internet is the best known example, have arisen in a more or less ad hoc and
unplanned manner, through the individual actions of many people, acting more
or less independently. It is interesting that the more anarchic internet has arisen
on top of the more disciplined but still not completely predictable international
telecoms network.



To the extent that software is pervasive in such arenas, software platforms
should be able to provide flexible, robust, adaptable and possibly evolvable ar-
chitectures and methodologies for the development of such systems. There are a
number of possible approaches to such development that one could consider. One
could adopt one of the many existing informal software development techniques
and attempt to model the evolving complex system using it. However the prob-
able outcome of this is that the most important aspects of emerging complexity,
are quite likely to be overlooked by the methodology during the development
process. The reason is that due to the relatively informal approach, the details
that ultimately give rise to the complexity, may well be relatively innocuous
features of the system that the informal technique simply overlooks:- since in-
formal techniques are not characterised by the unforgiving and unblinking eye
that ensures completeness of coverage, in the way that formal techniques are.

The above observations, while conceding that informal techniques may lead
to a ‘product’ more quickly, indicate that the use of informal techniques may
nevertheless lead to increased costs further down the line, when unforseen but
unacceptable aspects of emergent behaviour make their presence felt as a large
system is assembled in anger. Of course such observations are not new as regards
the inadequacies of informal techniques. There is by now plenty of evidence
in the simpler arena of the development of stand-alone systems, that informal
techniques alone do not routinely lead to the highest levels of dependability in
the systems produced [13], [14].

So the argument leads inexorably to the espousal of formal techniques. These
are founded on the idea that from a precise and complete mathematical model
of the desired system, an implementation can ultimately be developed whose
properties include the properties built into the mathematical description of the
original model. Following the precepts of the formal mantra, the passage from the
original model to the implementation is normally via some variety of refinement.
The theory of the specific method being followed generates sound proof rules
for refinement, that guarantee that if they are adhered to precisely, then the
implementation that emerges will conform to the original model as required.

That at least is the ideal story. Already though, in the world of stand-alone
systems, there is plenty of evidence that following the precepts of some particu-
lar refinement methodology with complete precision can be a daunting challenge
[32], [23], [15], [8]- Indeed one of the authors has had extensive experience of
industrial scale refinement projects, and knows at first hand the problems that
rigorous insistence on refinement can bring [31]. Many aspects of real life devel-
opment conspire to make the adoption of a naive refinement methodology often
run ultimately into the sand. It is often for example the case that the mathemat-
ical models used near the top of the design hierarchy are of a different character
than the ones used further down. For example, the former may be expressed us-
ing continuous mathematics and the latter using discrete mathematics. It turns
out that for more or less all cases of interest, a sensible refinement cannot be
established between relevant models in these two domains: the refinement goal is
simply unachievable. For another example, the sheer complexity of real life appli-



cations may make unswerving loyalty to the exacting demands of the refinement
methodology used, prohibitively expensive on the one hand, and frustratingly
obfuscating on the other. The frustrating obfuscation can arise from the way
logic treats all facts, whether major structural features or minor details, on the
same footing, making the manipulation of a system description rise steeply with
the size of the description itself, often at an exponential rate. This in turn rapidly
leads to the prohibitive expense.

As a response to these phenomenological observations on refinement in prac-
tice, and recognising completely the internal solidity of refinement in theory, re-
trenchment was introduced to allow high level abstractions of system behaviour
to evolve. The generality of the retrenchment formalism means that many kinds
of system evolution can be contemplated. The most obvious kind is the evolu-
tion of high level abstractions towards low level implementations; this is an aim
clearly intended to complement (we emphasise to complement, not to replace)
the original remit of refinement. Another kind of evolution is the evolution of
high level abstract models in response to changes in requirements, which (be-
cause they arise from real world considerations) are not a priori constrained or
guaranteed to fit the refinement technical game plan. Yet another is the evolu-
tion of partial but internally consistent component submodels into into a larger
complete design, where designing the component submodels in such a way that
they composed seamlessly and without change into the larger whole, would make
them internally incomplete and/or unconvincing.

Now we outline the rest of the paper. We review the refinement and re-
trenchment techniques in the next section. Then we introduce the retrenchment
simulation relation in the one that follows. The section after that introduces
coarse grained retrenchment, with its ability to give descriptions of the relation-
ship between two systems at more than one level of granularity, and it is argued
that this provides a good environment in which to explore emergent properties
of complex systems.

2 Refinement and Retrenchment

Retrenchment may be viewed as a more generously parameterised variation of
refinement. See [34], [17], [18] for treatments of model oriented refinement in
general and [20], [26], [29], [35], for more details of the Z methodology, or [3], [27],
[27] [28], for more details on B; both Z and B being specific incarnations of the
model oriented approach to refinement. In particular retrenchment is defined by
a more generously parameterised variation of the archetypical refinement proof
obligation. Let us see this in a little more detail now. Refinement, in its most
frequently encountered model oriented forward simulation form, relies on the
following proof obligation (PO):

G(U,’U) A Op(j(’l),j, vlap)
= (3u';i,000pa(u,i,u’,0) ANG(u',v') A (i = j) A (0= p))



In this G(u,v) is the glueing or retrieve relation, which relates abstract state
values u to concrete state values v.! Opc (v, j,v', p) is the relation that describes
a particular operation Op at the concrete level, where (v, j,v’, p) is the tuple of
before-state, input value, after-state, output value, for the transition. With the
hypotheses of G and Opc we infer that there is an abstract after-state, input
value, output value, such that the operation Op at the abstract level has the
transition Opa (u,,u’, 0) and that furthermore G(u',v") and (i = j) and (o = p)
hold.? The reestablishment of G for the after-states enables an induction to be
set up that says that a concrete execution sequence can be simulated by an
abstract one. If G is the vehicle by which the concrete states are interpreted to
correspond to abstract ones, a user of the abstract system may indeed be fooled
into thinking that he is using the abstract system when it is in fact the concrete
system doing the work.

Unfortunately, the PO above turns out to be extremely demanding when
confronted with many real world scenarios. Often it is extremely hard to find a
G such that the naturally occuring operation models at abstract and concrete
levels are actually related by it. The most extreme such examples arise when the
abstract world is described using continuous mathematics and the concrete world
is described using discrete mathematics. Doubly unfortunately, this is precisely
the world of many safety critical developments, where the target discrete code
has to control or influence continuous physical apparatus, and the assurance that
formal techniques can offer is sorely missed.

In many discrete real world cases also, the sheer complexity of the real world
situation prohibits its complete modelling to the satisfaction of the refinement
PO, a situation that leads to various compromises, whether in the modelling itself
or in the degree to which the PO is faithfully discharged. In extremis, even if one
strives hard and succeeds in constructing a refinement that rigorously conforms
to the refinement PO, and such that at least one of the models would be of
interest from an engineering vantage point, it is often the case that the other
model is not relevant from an engineering vantage point, and thus the whole
refinement activity, while perhaps of some interest as an academic exercise, fails
to be of any real value from an engineering point of view, (other than that of
having provided a demanding intellectual challenge for the humans involved,
which will undoubtedly deepen their understanding of the system, whatever the
appropriateness of the end result).

Retrenchment arose as a response to this state of affairs. See [7], [8], [9], [10],
[11], [12] for the basic framework. The idea is to weaken the specific structure of
the PO, in order to allow it to express relationships that actually hold between

! The ‘abstract’ and ‘concrete’ terminology is standard, if slightly inappropriate in
contexts where the main goal is other than to move directly towards runnable code,
such as indicated for retrenchment in the preceding paragraph. ‘Source’ and ‘target’
systems might have been better nomenclature, but we will stick with conventional
usage here.

There is also an initialisation PO that says that for each concrete initial state there
is an abstract intial state related to it by G, but since this proof obligation remains
unchanged in retrenchment, we will not discuss it further here.



the abstract and concrete models in practice, rather than have it remain a struc-
ture that though appealing, does not have content (or has too exacting content)
in many practical cases. The retrenchment PO corresponding to the above is:

G(U,’U) A POp(iajauaU) A OpC(vaja Ulap)
= (EI ulao b OpA(u,i,u',o) A ((G(ulavl) A OOp(Oap; UI,UI,U,U,i,j))
\% COp(ula’UlaOvp;uvvvivj)))

Here we see ingredients familiar from the refinement PO, but the whole state-
ment is littered with a number of escape clauses which leaven the rigidity with
which it might be applied. Thus the antecedent is polluted by the within re-
lation Pop(i,j,u,v) which limits the scope to which the relationship between
the models needs to be established; it also permits the inclusion of changes of
a general sort between inputs and before-state values should these prove to be
convenient in the evolution from abstract to concrete model. The consequent of
the PO features a corresponding output relation Ooy (0, p;u',v', u,v,1, j), which
is required to hold in those fortunate cases when the retrieve relation G can be
reestablished for the after-state values, and which not only describes how the
output values are related, but also features all the other variables occurring in
the formula, allowing any other property of interest to be mentioned when the
two systems’ behaviour falls into this benign scenario.

Most dramatically however, the consequent of the PO features a disjunc-
tion, at the top level, with the concedes relation Cop(u',v’, 0, p;u,v,1, j). Now,
whereas slightly strengthening the antecedent and the G(u',v") part of the con-
sequent, are both relatively mild modifications of the PO and most of existing
refinement theory could be carried through for such modifications without the
theory suffering extensive damage, the introduction of the disjunction has a dev-
astating effect on the theory. The behaviour of the two systems can now depart
from the ideal G(u',v") in the after-states in an arbitrary way. Certainly any in-
duction that relies on the reestablishment of the PO for the after-states collapses
immediately.

The concedes relation is the most characteristic feature of retrenchment. It
is the thing that differentiates retrenchment most markedly from any form of
refinement to be found in the literature. It also makes retrenchment supremely
expressive as a relationship between abstract and concrete models at the single
step level, since the occurrence of all the variables of the system in the concedes
relation, allows any relationship whatsoever to be incorporated in it, just as for
the output relation, but (unlike for the output relation) this time in a completely
unconstrained manner. There is no G’ (or anything else for that matter) to limit
when C' may or may not apply.

This can be seen as a weakness of the theoretical framework, but it is better
understood as a transfer of responsibility from the theoretical framework to
the designers themselves. Since, for dealing with the kind of examples referred
to above, something new and different from refinement was required, rather
than risk limiting the applicability of any new framework by imposing ad hoc
constraints that were diNcult to justify a priori, and that might prove to be an



obstacle with the wisdom of hindsight, the most general possible statement was
chosen, that defaulted to the refinement PO when its additional components
were suitably constrained. It is clear that the retrenchment PO does indeed
reduce to the refinement PO when P and O are suitable identities and C is false.

Of course there is the opposite default. If P is false and/or C' is true, then
the statement holds vacuously, which is often viewed as a serious shortcoming of
retrenchment. But in fact it is no more of a problem, than the observation that
one can assemble an arbitrary sequence of elements from the English lexicon
and thereby obtain rubbish. The distiction is like the one between mathematical
logic and system development.

In mathematical logic one draws a rigid boundary between what one is al-
lowed to discuss and what one is not allowed to discuss. The former is delineated
using a formal laguage, and the latter is simply not expressible. In such an envi-
ronment, ad extremis, just about the only question one is permitted to consider
about some procedure that pertains to the formal system, is whether it is trivial
or not; i.e. whether, being trivial, all statements of a suitable form in the for-
mal system can be related to each other using the procedure (or perhaps none
can), or whether, being nontrivial, only some proper subset of them can be thus
related. However formal system development is not a branch of mathematical
logic, it is an application of it. In such an environment, there are many issues
beyond those inherent in the formal system to consider, and these influence and
often override the purely formal considerations. Thus the fact that retrenchment
is capable of making vacuous statements about pairs of systems should not be
viewed as any more of a weakness than the fact that the English language is
capable of enunciating nonsensical utterances if the speaker so chooses. In both
system development and English speech, one embarks on the activity with some
purpose in mind, and not at random. In formal system development one wants
to end up with a system as close as possible to the requirements one is aware of,
and one wants to describe the activity of constructing that system in the most
precise terms possible. In English speech one has some intention or information
to impart before one opens one’s mouth.

The interplay between the formal structures and the meta- or environmental
considerations is obviously quite different with retrenchment as compared with
refinement. In retrenchment one has a much more intimate interplay between
the formal evolution step as described through the retrenchment relations, G,
P, O, C, than is the case in refinement. The flexibility of retrenchment means
that much more thought has to go into the choice of these relations than into
the corresponding choice of just G in refinement. This is no bad thing on re-
flection. Ultimately human beings have to take responsibility for designs. They
cannot blame the formal systems they used for the errors they made. In refine-
ment, there tends to be a much sharper boundary between the human design
decisions that go into the abstract model, and the formal development that can
then take the implementation forward, often in a close-to-black-box manner be-
cause of the strength of the guarantees offered by refinement. There are no such
guarantees with retrenchment, so human beings must be much more vigilant in



its use. However even though retrenchment does not responsibly permit a black
box approach, it still demands that its PO be provable, and the proving activity
injects valuable feedback into the design process. Thus the injection of mathe-
matical discipline into what was hitherto an exclusively human process taking
place beyond the confines of where refinement might enforce its discipline, can
only be a good thing.

3 The Retrenchment Simulation Relation

Allied to the implicational proof obligation of retrenchment is its conjunctive
counterpart, the retrenchment simulation relation. This is given by:

G(U,’U) A POp(iajauaU) A OpC(vaja Ulap) A OpA(u,i,u',o) A
(G, v") A Oop(o, p;u’ v u,v,4, 7)) V Cop(u', v, 0, psu, v, 1, §))

This contains all the information relating a pair of nontrivial abstract and con-
crete steps that the PO speaks about. Unlike the corresponding refinement sim-
ulation relation:

G(u,v) A (i = j) AOpc (v, 4,v",p) A Opa(u,i,u',0) AG(u',v') Ao = p)

which, because of the paucity of data in G, merely says that ‘these two steps
are in simulation’, the retrenchment simulation relation potentially contains a
wealth of all sorts of data regarding the two systems, because, to put it simply,
there are many more containers (i.e. P, O, C') to put such data into. The fact
that P, O, C, occur only linearly in the PO is a boon here, since one does not
have to struggle to ensure that various occurrences of any of them at different
places in the PO inadvertently threaten the overall provability of the PO, as
might happen if P, O, C, were to occur in multiple places. These remarks apply
with much less force to GG since the relationship between the state spaces of the
two systems is usually well understood and offers little choice.?

The data in the simulation relation may be tailored and exploited in many
ways. An example concerns the mechanical extraction of fault trees from a re-
trenchment relationship with purposely designed P, O, C, relations [6]. Another
is the general treatment of the translation of system properties (as expressed via
‘sets of traces’ of a certain kind) through the retrenchment process [4]. Unlike
the refinement case, the retrenchment simulation relation is a partial relation
on traces in more senses than one. Not only does it not need to hold for all
(abstract or concrete) traces, it need not hold on the whole of any such trace.
These aspects introduce an element of novelty not present in refinement.

Yet another area where the simulation relation plays a key role is in the
algebraic integration of retrenchment and refinement [5], [21], [22]. It has been

3 The nonlinearity in G of the refinement PO, with G required to be present in both
the antecedent and consequent, and with no extra elbow room ‘to take up the slack’,
is largely responsible for the much more highly constrained possibilities that are
characteristic of refinement.



argued above that retrenchment and refinement offer differing yet complemen-
tary technical tools for the formal development of systems. To gain maximum
benefit from them, it is therefore important to establish how they can interwork
in a mutually supportive manner. A wealth of questions may be asked regarding
such interworking, and the corresponding theory frequently relies, directly or
indirectly, on the properties of the retrenchment simulation relation.

4 Coarse Grained Retrenchments and Complex Systems

The above discussion has focused exclusively on the retrenchment between in-
dividual steps of corresponding operations at two adjacent levels of abstraction,
but while that environment has provided a suitable starting point for the early in-
vestigation and exploitation of the potential of retrenchment, it barely scratches
the surface of what the technique might prove itself useful for if cast into a wider
context, especially so as regards complex systems.

The big payoff for retrenchment will be in the exploitation of coarse grained
retrenchments, that is, retrenchments between collections of atomic steps of ab-
stract and concrete models. Given the nature of retrenchment that we have seen
earlier, what will such a coarse grained retrenchment look like? Single step re-
trenchment is a very partial notion, as both G and P have to hold before a
retrenchment relationship can be asserted. In the case that one wishes to relate
collections of atomic steps via a retrenchment relation, some design decisions
need to be taken in order to tailor the notion of coarse grained retrenchment
arrived at, so that it meets application needs, applies to the widest possible set
of scenarios, and fits smoothly with the single step retrenchment theory.

It turns out that an event structure formulation works best. At a given level
of abstraction, the collections of atomic steps of interest are packaged up into
suitable events in a prime event structure. This choice gives the following possi-
bilities:

— The possibility of abstracting away from global state descriptions to local
state ones.

— The possibility of making the theory equally applicable to distributed and
single processor environments.

— The possibility of abstracting away from the detailed interleavings of inde-
pendent actions of concurrent processes.

— The possibility of abstracting away from the scheduling mechanism that
schedules the constituent steps of the event structure.

— The possibility of exploiting elementary conflict relations to most expres-
sively describe the variety of outcomes of the event structure as a whole
(whether ‘good’ and reestablishing G’ A O, or ‘bad’ and merely establishing
).

— The possibility of replacing the standard notion of conflict by some more
sophisticated notion better suited to the case at hand.



How does retrenchment work between such entities? We just summarise the es-
sentials in order to avoid the somewhat detailed notations which are needed to
express things properly. Essentially the prime event structures used are finite,
and thus have a collection of root and leaf nodes for the causality partial order.
The values of the local variables at the root nodes must be consistent (according
to event structure semantics) and any extension of these to a global state value
defines a state value to which G and P and the before-values of the constituent
concrete steps must apply. Likewise the leaf nodes give definitions for the after-
values to be used in the ((G' A O) V C) part, except that there is a complication
arising from the incompatible flows through the event structure that ensue when
there is a nontrivial conflict relation. Consistency must be maintained so that
the same set of local variables can be deemed to have received a value via any
execution of the event structure. By these means, retrenchments between event
structures can be set up. Executions of the abstract and concrete system exhibit
deployments of retrenchments between such event structures if suitable portions
of the executions, enjoying appropriate atomicity properties, correspond to exe-
cutions of the event structures themselves.

The framework just sketched offers a plethora of possibilities for describing
the structure of complex systems. Firstly there is the interplay between fine
grained and coarse grained descriptions of an individual system. Presumably
the system endowed with such a pair of descriptions has particular properties
that bear emphasis at one or other grain of description, and these can therefore
be analysed in the interplay between the two descriptions. Then there is the
possibility, nay likelihood, that one can formulate retrenchments between the
two systems at both fine grained and coarse grained levels. What then is the
relationship between these two kinds of retrenchment? To answer the question
one must examine how retrenchment relationships compose. Compositionality of
retrenchments is in general an extremely thorny issue. This is hardly surprising
given how flexible the intrinsic retrenchment notion is. However, in reasonably
benign circumstances, retrenchments can be composed to give reasonable results.
In cases of interest, one can calculate a composed retrenchment from the individ-
ual retrenchments relating the component operations [6]. One can then relate the
calculated coarse grained retrenchment to the retrenchment given for the coarse
grained description posited ab initio. The converse problem also presents itself,
that of decomposition [24], [25]. Given a coarse grained retrenchment posited ab
initio for a coarse grained description of two systems, one can look to decompose
it to give finer grained retrenchments for the components, and then compare the
calculated retrenchments to the retrenchments given a priori for the individual
fine grained components. In this manner one can gain a more deep appreciation
of the properties possessed by the two systems as a whole. Normally one would
expect the properties of the composition and decomposition approaches to be
complementary, for example they could be adjoint to one another.

In general there are of course many details regarding the two systems be-
ing examined, that can be included in the data of a retrenchment. One of the
challenges in making the best use of retrenchment is to decide what data to put



into the P, O, C, relations, an issue substantially affected by the use to which
one wishes to put the retrenchment. In the case of complex systems, the most
desirable goal is to explain, and even better to predict, the complex system’s
emergent properties. The retrenchment framework furnishes a fertile infrastruc-
ture for such work. In the ideal case, the structures provided by retrenchment
will allow the desired emergent properties to be smoothly extracted.

To be honest, actually predicting novel emergent behaviour is likely to be a
tall order. Emergent properties are so called, precisely because their appearance
on the scene is largely unexpected, or at least not easily predictable from the
more selfevident properties of the component systems. Retrenchment though,
provides a sensible laboratory in which to explore this landscape, even if it is
to the more limited extent of trying to analyse observed emergent behaviour, in
order to understand it on the basis of the properties of the component systems.
One can start with a much simplified system; simplified in terms of utilising
simpler components, or of simplified interactions between them, or both. If the
starting point is simple enough, the system’s behaviour should be amenable to
analysis and be understandable in a fairly complete way. One can then gradually
introduce complexity, each such increment being captured within an appropri-
ate retrenchment. Reanalysis of the incremented systems in terms of the new
properties introduced, can (ideally) predict emergent behaviour, or (realistically)
provide the basis of a post hoc analysis. Done right, the series of retenchments
involved in building up the system, will have structured the introduced complex-
ities in such a way that the cause of unexpected and emergent behaviours will
be easier to ascertain.

5 Conclusions

In the preceding sections, we have reviewed the arguments that lead to the es-
pousal of formal techniques in system construction, and reexamined refinement
and retrenchment in particular. Some of the methodological contrasts between
refinement and retrenchment were reviewed, and this led to an outline of the
richer world of coarse grained retrenchment, and the highly structured environ-
ment for analysis of system behaviour that it in turn led to. This gave rise to the
suggestion that building up a complex system from simple constituents, with the
increments in complexity being captured via retrenchments, was a viable route
to a clearer understanding of emergent behaviour.
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