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1. Introduction 

1.1 Background 

This report is adapted from a study performed for AWE in 2001 by the author while at 
Logica.  It investigates the feasibility of using the CSP specification language and 
FDR2 model-checking tool, and Handel-C programming language, in combination, 
with FDR2 as a front-end specification and proof tool, then automatically translating 
the formal designs into executable Handel-C.  Such an approach could provide a 
development path from an abstract specification to a correct executable 
implementation running on an FPGA. 

This report contains the following 

• Identification of a subset of CSP that maps closely to Handel-C.  That subset is 
large enough to accommodate a large subset of CSP specifications. 

• A sketch of a mapping from the identified CSP subset to Handel-C, suitable to be 
performed automatically.  As proof-of-concept, the identified mappings are hand-
applied to two example CSP specifications to produce Handel-C implementations. 

1.2 The languages of CSP, FDR2 and Handel-C 

1.2.1 CSP and FDR2 

CSP (Communicating Sequential Processes) was first described in [Hoare78], then in 
more detail in [Hoare85].  The version that forms the basis of the FDR2 tool is that 
described in [Roscoe97], which differs only in a minor technical way, on the 
treatment of alphabets (essentially, the events that can occur).1  Throughout the rest of 
this report, “CSP” refers to the version in [Roscoe97].   

The FDR2 tool model-checks a machine-processable subset of CSP.  (When it is 
important to distinguish the concrete form of the language supported by FDR2 from 
full CSP, it is referred to as “CSP_M”.)  FDR2 mechanically checks (proves) whether 
a proposed implementation is a correct refinement of a more abstract specification.   

CSP_M has a properly defined syntax, including ASCII versions of CSP’s large 
collection of unusually-shaped operators.  [Roscoe97] provides the link between the 
CSP and CSP_M syntaxes. 

                                                 
1 [Hoare85] requires every process P to have a pre-defined alphabet αP, with the parallel operator 

synchronising on the intersection of alphabets: P || Q synchronises on αP ∩ αQ.  [Roscoe97] and 
FDR define the alphabet of interest explicitly on the parallel operator: P X||Y Q synchronises on 
X ∩ Y , and P ||A Q synchronises on the events in A.   
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A CSP_M program comprises definitions of processes and other objects, a declarative 
style rather like that of a functional language program. 

CSP_M supports multiway input and output channels (one event can simultaneously 
comprise inputs and outputs, at multiple ends).  For example, a.2?x!y is a 
communication over channel a of three components: the first is the value 2, the 
second is an input and will bind to x, and the third is the output y.  It is equivalent to 
a!2?x!y 

1.2.2 Handel-C 

Handel-C is an implementation language, targeting FPGAs, with a semantics based on 
CSP.  It is a procedural style language, rather like occam, but with a C-like concrete 
syntax.  It has a parallel construct PAR, channel communication, and an ALT 
construct.   

The language supports single input or single output point-to-point channels (one 
communication event comprises an output from one end and an input at the other 
end). 
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2. Overview and scope  

2.1 Development process structure 

The envisioned full development process, from abstract CSP safety specifications 
down to their efficient Handel-C implementation, has the following components and 
transformations. 

FDR2 : abstract
system

specification

FDR2 : abstract
system

specification

FDR2 : concrete
system design

refinements proved correct
by FDR tool
(possibly multiple steps)

Handel-C : naive
system

implementation

Handel-C : efficient
system

implementation

automatic
translation of subset
of FDR2 to Handel-C

code optimisatons by
meaning-preserving transforms

(possibly multiple steps)

 
 

• Abstract system specification(s) – The high level CSP specification(s) of the 
system, which state the desired properties of the system – probably relatively 
abstractly as safety properties. 

• Concrete system design – The concrete CSP design specification, close to an 
executable implementation, is proved a correct refinement of the abstract 
specification by using the model checking facilities of the FDR2 tool.   

• There may need to be multiple refinement steps to move from specification 
to design, each proved using the tool 

• If the specification has gone through at least one proof step, assumptions can 
be made about it that are stronger than merely “syntactically correct” – what 
are these assumptions?  are they helpful for translation? 

• The design specification will need to be restricted to a subset of the CSP_M 
language, to be translatable to Handel-C. 
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• Naive implementation – The concrete CSP design specification is translated 
automatically into an abstract Handel-C implementation.  This is runnable, but 
may not be very efficient. 

• Efficient implementation – The naive Handel-C implementation is optimised, by 
meaning-preserving transforms, into a suitable efficient Handel-C 
implementation. 

• There is a trade-off between doing “optimisations” in FDR2 with existing 
tool support, or as meaning-preserving Handel-C transformations, requiring 
some tool support to be built. 

2.2 Scope of this study 

This study focuses on the translation step from the CSP concrete design specifciation 
to the Handel-C naive implementation.  It considers the following 

• the constraints on the CSP_M language to make it translatable 

• the feasibility of automatic translation – any need for “translation directives” 
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3. Translator from CSP to Handel-C 

The approach taken is to identify a subset of CSP_M that can be translated directly to 
Handel-C.  The FDR2 tool should be used to refine the specification into this subset 
language. 

The translations described below follow the structure of the CSP_M syntax given in 
[FDR2, Appendix A].  The syntax of CSP_M is described only informally in [FDR2].  
CSP_M specification fragments are written in bold typewriter font.  The BNF 
syntax of Handel-C is given in [Handel-C].  Handel-C code fragments are written in 
typewriter font.   

The semantics of each language is described only sketchily.  The translations 
suggested below have been tested only to a limited degree: a more in-depth 
exploration is needed before a translator can be built. 

3.1 Recursion 

The main point to note is that CSP definitions tend to be recursive.  They are often 
process definitions of the form “process P does this, then that, then behaves like P”.  
Handel-C does not support recursion. 

3.1.1 Tail recursion 

Fortunately, most of the recursive definitions in actual use are tail recursive, and so 
can easily be turned into loops. 

For example, consider a typical CSP process definition like: 
 
P = in ? x -> out ! sq -> P 

If recursion were available in Handel-C, this could be naively translated as 
 
void P() { 
  in ? x; 
  out ! sq; 
  P(); 
} 

This is not possible.  However, because the definition is tail recursive, it can be 
translated as 
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void P() { 
  while (1) { 
    in ? x; 
    out ! sq 
  } 
} 

3.1.2 Parameterised recursion 

Recursive processes can be parameterised.  For example (ignoring overflow for now) 
 
COUNT(n) = in -> COUNT(n+1) 

If recursion were available in Handel-C, this could be naively translated as 
 
void COUNT(int n) { 
  in ? null; 
  COUNT(n+1); 
} 

Using tail recursion and a local variable, it can be translated as (ignoring where the 
initial value comes from for now): 

 
void COUNT() { 
  int n = 0; 
  while (1) { 
    in ? null; 
    n = n+1; 
  } 
} 

3.1.3 Exponential recursion 

Not all recursive processes are tail recursive.  For example 
 
P(n) = if n == 0 then a -> STOP else P(n-1) ||| P(n-1) 

If recursion were available in Handel-C, this could be naively translated as 
 
void P(int n) { 
   if (n == 0) { 
     a ? null; 
     STOP(); 
   } else { 
     par { P(n-1); P(n-1); } 
   } 
} 

This could in principle be translated by unfolding the recursion and maybe using a 
replicated par.  But such a step is probably too large to do in a translation.  Better 
would be to do the unfolding within FDR2 and prove it correct, and then do a simple 
translation. 

3.1.4 Summary 

Translation of tail recursive processes is straightforward and can be translated as the 
equivalent loop.  Non-tail recursive processes should be refined within FDR2, and 
then translated. 
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3.2 Channels 

3.2.1 Channel communications 

3.2.1.1 Simple channels 

Channels are key in both CSP and Handel-C.  The mapping is straightforward for 
single item communications 

 
chan ? var     --->   chan ? var 
chan ! expr    --->   chan ! expr 

3.2.1.2 Structured channels 

Where the CSP channels have dotted types, a Handel-C struct can be used to 
capture the data structure passed across the channel.  A data structure is defined.  The 
channel is declared to have this type.  Local variables of this type might also be 
needed, to assign values to the struct before outputting it. 

For example, 
 
channel pipe1  : BYTE.BYTE.OPCODE.BYTE.REG 
... pipe1!x.y.a.i.d ... 
... pipe1?v.w.add.i.d ... 
 
  ---> 
 
struct pipe1_DATA { 
  BYTE byte1; 
  BYTE byte2; 
  enum OPCODE opcode1; 
  BYTE byte3; 
  REG reg1; 
} ; 
chan struct pipe1_DATA pipe1 ; 
 
struct pipe1_DATA pipe11; 
pipe11.byte1 = opcode_set1.byte1 ; 
pipe11.byte2 = opcode_set1.byte2 ; 
pipe11.opcode1 = opcode_set1.opcode1 ; 
pipe11.byte3 = byte1 ; 
pipe11.reg1 = reg2 ; 
pipe1!pipe11 ; 
 
pipe1?pipe11 ; 

3.2.1.3 Constrained input 

CSP also has constrained input, c?x:a.  Before translation to Handel-C, the CSP 
specification must be refined to one with only unconstrained inputs. 

3.2.1.4 Combined input and output 

CSP also allows mixed input and output, c?x!y.  Before translation to Handel-C, the 
CSP specification must be refined to one where each communication is purely input 
or purely output. 
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3.2.2 Hiding in CSP 

CSP declares all the channels used globally.  The channels actually used by a process 
are determined by examining the process.  If a compound process composes two 
subprocesses on a channel, then hides it, the compound process does not have that 
channel visible.  Consider 

 
CHANNEL in, mid, out : INTEGER 
LEFT = in ? x -> mid ! x -> LEFT 
RIGHT = mid ? x -> out ! x -> RIGHT 
BUFFER = ( LEFT [| {|mid|} |] RIGHT ) \ {| mid |} 

The three channels are globally declared.  Examining the processes, we see that LEFT 
has in and mid visible; RIGHT has mid and out visible, and BUFFER had in and out 
visible. 

3.2.2.1 Parameterised and local Handel-C channels 

If we want to replicate this behaviour in Handel-C, the channels visible to a process 
could be passed as parameters, and the internal ones could be hidden by being 
declared locally. 

 
chan int in, out ; 
void LEFT(chan int in, chan int mid) {  
  int x ;  
  while (1) { in ? x ; mid ! x ; }  
} 
void RIGHT(chan int mid, chan int out) {  
  int x ; 
  while (1) { mid ? x ; out ! x ; } 
} 
void BUFFER(chan int in, chan int out) { 
  chan int mid ; 
  par { LEFT(in, mid) ; RIGHT(mid, out) ; } 
} 

Although this seems to give good correspondence with the CSP, it is actually quite 
hard to work out from the CSP specification which channels are truly global and 
which are intended to be local.  So we do not follow this approach. 

3.2.2.2 Global Handel-C channels 

Alternatively the channels could be left global, and the hiding ignored.  (This is the 
approach adopted.) 

 
chan int in, mid, out ; 
void LEFT() {  
  int x ;  
  while (1) { in ? x ; mid ! x ; }  
} 
void RIGHT() {  
  int x ; 
  while (1) { mid ? x ; out ! x ; } 
} 
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void BUFFER() { 
  par { LEFT() ; RIGHT() ; } 
} 

3.2.3 Input and output channels 

In CSP the visible channels are all those that have not been hidden.  In Handel-C they 
are those that have only one end, and are explicitly declared to be input or output 
channels.  A translation directive is needed to mark the channels intended for input or 
output. 

 
--!! channel in Name 
channel Name : Type 
 
   --->   
 
chanin Type Name ; 
 
--!! channel out Name 
channel Name : Type 
 
   --->   
 
chanout Type Name ; 

3.2.4 Indexed array of channels 

Consider the channels used in the Dining Philosopher example (later). 
 
channel pickupleft:{0..4}.Bool 

This appears to be communicating a structured value (comprising an integer and a 
boolean) on the channel pickupleft, and with many processes communicating 
separate values on this one channel. 

 
struct pickupleft_struct { 
  Int s1 ; 
  Bool s2 ; 
} 
chan pickupleft_struct pickupleft; 

But this is actually being used as an array of channels, indexed by the first value, with 
an array of processes, also indexed, each communicating on separate elements of this 
array.  This instead translates to Handel-C as 

 
chan Bool pickupleft[5]; 

A translation directive is needed to say when the first parameter of a channel should 
be interpreted as an index, and the range of that index. 

 
--!! channel array pickupleft index 5 

3.2.5 Pure event channels 

In CSP an event is the channel and any values communicated across it.  There need be 
no actual communicated value, the processes can merely synchronise on a bare event. 
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In Handel-C a communication always involves a value, and a direction. 

The translation provides a dummy SYNC value for use in these cases.  A translation 
directive can be used to provide the (arbitrary) direction, if required.   

For example 
 
channel c 
 
--!! sync in c 
P = c -> P 
--!! sync out c 
Q = c -> Q 
 
R = P |[ c ]| Q 
 
   --->   
 
typedef unsigned int 1 SYNC ; 
const SYNC syncout = 0 ; 
SYNC syncin ; 
 
chan SYNC c ; 
 
void P() { while (1) { c?syncin ; } } 
void Q() { while (1) { c!syncout ; } } 
void R() { par { P() ; Q() ; } } 

3.3 Expressions 

3.3.1 Identifiers 

A CSP_M identifier starts with a letter, followed by any number of letters, digits and 
underscore characters, followed by any number of prime characters.  Identifiers with 
trailing underscores are reserved for machine-generated code, and so will not occur in 
user scripts.  [Note: this assumes the “trailing underscores” occur before the primes, 
and that addition of a prime does not affect the rule on trailing underscores.] 

 
csp_id ::= letter [ { letter | digit | _ } ( letter | digit ) ] { ‘ } 

Identifiers in Handel-C may start and end with an underscore. 
 
hc_id ::= ( letter | _ ) [ { letter | digit | _ } ]  

Letters, digits and underscores are translated unchanged, and final primes are 
translated as final underscores.  Any resulting name that conflicts with a Handel-C 
keyword gets an initial underscore. 

 

 



CSP / FDR2 to Handel-C translation  11 

letter | digit | _    --->   letter | digit | _ 
 
                 ‘    --->   _ 
 
          <keyword>   --->   _<keyword> 

3.3.2 Numbers 

CSP_M integer literals are written only in decimal format, so can be translated 
directly. 

 
number   --->   number 

All the CSP_M arithmetic operators have the same syntax, associativity and meaning 
as C arithmetic integer operations, and so translate directly to the Handel-C 
equivalents. 

3.3.3 Sequences 

CSP_M has a sequence data type.  This includes sequence literals, sequence 
comprehensions, and some elementary operations for manipulating sequences.   

It would be possible to build in some support for sequence literals and the operations 
as a library.  Sequence comprehensions would be much more difficult.  So, at least 
initially, we require that before translation to Handel-C, the CSP specification must be 
refined into one with no occurrences of sequences. 

3.3.4 Sets 

CSP_M has a set data type.  This includes set literals, set comprehensions, and some 
operations for manipulating sets.   

It would be possible to build in some support for set literals and the operations as a 
library.  Set comprehensions would be much more difficult.  So, at least initially, we 
require that before translation to Handel-C, the CSP specification must be refined into 
one with no occurrences of sets. 

3.3.5 Booleans 

CSP_M’s boolean corresponds to Handel-C’s int 1, with false represented as 0, 
and true as 1. 

 
false   --->   0 
true    --->   1 

The CSP_M boolean operators translate directly to their Handel-C counterparts: 
 
and    --->   && 
or     --->   || 
not    --->   ! 
==     --->   == 
!=     --->   != 

<     --->   <           and similarly for other comparisons 
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if b then e1 else e2   --->  if ( b ) { e1 } else { e2 } 
 

3.3.6 Tuples 

CSP_M has a tuple data type.   

It would be possible to build in some support for tuples as structs.  But, at least 
initially, we require that before translation to Handel-C, the CSP specification must be 
refined into one with no occurrences of tuples. 

3.3.7 Local definitions 

CSP_M supports local definitions with a let ... within clause.   

In Handel-C, functions cannot be defined within other functions.  It would be possible 
to provide some support for local declarations, by making them global with a suitable 
unique renaming.  But, at least initially, we require that before translation to Handel-
C, the CSP specification must be refined into one with no occurrences of local 
definitions. 

3.3.8 Lambda terms 

CSP_M supports lambda terms (anonymous functions).   

In Handel-C, functions cannot be anonymous.  It would be possible to provide some 
support for lambda terms, by converting them to functions and providing a suitable 
unique name.  But, at least initially, we require that before translation to Handel-C, 
the CSP specification must be refined into one with no occurrences of lambda terms. 

3.4 Pattern Matching 

CSP_M supports pattern matching in defining its functions like a full functional 
programming language.   

Handel-C is a declarative language, with no support for pattern matching.  Supporting 
pattern matching in a translator is a task equivalent to writing a functional language 
compiler. So we require that before translation to Handel-C, the CSP specification 
must be refined into one with no occurrences of pattern matching. 

3.4.1 Functions 

Once CSP_M function definitions have been refined to have no occurrence of pattern 
matching, they can be translated into the obvious Handel-C equivalent function.  
Translation directives communicate the parameter types and return type.  The function 
may need to be inlined if it is used in multiple processes (indicated by a translation 
directive). 
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For example 
 
--!! function inline int dec(int x) 
dec(x) = (x - 1) % 5 
 
  --->  
 
inline int dec(int x) { return( (x - 1) % 5); } 

Parameterless functions are translated as constants. 

3.4.2 Processes 

Process definitions, with or without parameters, are translated as procedures, that is, 
void functions (see later).  Translation directives communicate the parameter types.   

3.5 Types 

3.5.1 Simple types 

CSP_M has two simple types, Int and Bool. 

Int is the set of 32 bit signed integers.  This corresponds to Handel-C’s int 32, or, 
equivalently, long.  The translation to the explicit int 32 is to be preferred, as it 
emphasises the possibility of reducing the variable’s width.  To make the translation 
more transparent, we define the Handel-C name Int. 

 
typedef unsigned int 32 Int ; 
 
Int   --->  Int 

Bool is the set of Boolean values true and false.  This corresponds to Handel-C’s 
int 1, with false represented as 0, and true as 1.  To make the translation more 
transparent, we define the Handel-C name Bool. 

 
typedef unsigned int 1 Bool ; 
 
Bool   --->  Bool 

CSP_M can use various expressions in type expressions.  The only one not already 
required to be refined away is the dot operation, which denotes a composite type.  
This can be translated as a Handel-C struct. 

 
T1.T2. ... Tn 
 
   --->   
 
struct <typename> { 
  T1 s1 ; 
  T2 s2 ; 
  ... 
  Tn sn ; 
} 
 
<typename> 
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3.5.2 Named types 

CSP_M allows types to be named.  A similar effect can be achieved in Handel-C 
using a typedef 

 
nametype Name = Type   --->  typedef Type Name ; 

For example (remember in this example that CSP integer ranges are uniformly 
translated to Ints) 

 
nametype Values = {0..199}   --->  typedef Int Values ; 
 
nametype Ranges = Values . Values 
 
   --->   
 
struct Ranges_struct { 
  Values s1 ; 
  Values s2 ; 
} 
typedef Ranges_struct Ranges ; 

3.5.3 Data types 

CSP_M’s simple datatypes can be translated to Handel-C enums. 
 
datatype Name = t1 | t2 | ... | tn 
 
   ---> 
 
enum Name { t1 , t2 , ... , tn } ; 

For example 
 
datatype SimpleColour = Red | Green | Blue 
 
   ---> 
 
enum SimpleColour { Red , Green , Blue } ; 

CSP_M datatypes may also have values associated with the tags.  This would 
correspond to a union type in C, but Handel-C does not support the union construct.  
So we require that before translation to Handel-C, the CSP specification must be 
refined into one with only simple datatypes. 

3.5.4 Subtypes 

CSP_M Integer variables restricted to subranges and subtypes could possibly, with 
some calculation, be used to specify narrower Handel-C types.  But the resulting 
mixed width Handel-C variables would probably require considerable casting to be 
usable together, and so this approach is not recommended.  Rather, some form of 
assertion mechanism, checking that the Handel-C variables stay within their CSP_M 
ranges, might be tried. 
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3.5.5 Closure operations 

The main use for CSP_M closure operations is in writing the communication sets for 
parallel operators.  Since these sets are refined away (usually to the full event set) 
before translation into Handel-C, no specific translation of them is required. 

3.6 Processes 

3.6.1 Primitive processes 

3.6.1.1 SKIP 

The CSP process SKIP does nothing except terminate successfully. 

The obvious way to implement this in Handel-C is for the process to do nothing 
except return.   delay is the Handel-C statement that takes one clock cycle to do 
nothing.  (For technical Handel-C reasons we want the process to take at least one 
clock cycle.) 

 
void SKIP() { delay; } 
 
SKIP   --->   SKIP(); 

3.6.1.2 STOP 

The CSP process STOP does nothing.  It never communicates, and never terminates.  It 
is deadlocked.  Although the entire process should not deadlock, it is possible that 
branches of it may, whilst other branches continue executing. 

The obvious way to implement this in Handel-C is for the process to do nothing, not 
even return. 

 
void STOP() { while (1) { delay; } } 
 
STOP   --->   STOP(); 

In a true parallel implementation, the deadlocked branch sits in a loop doing nothing.  
In a simulated environment, there is a danger that the entire process will get caught in 
this busy loop, and livelock.  We assume the Handel-C simulator does not behave this 
way. 

3.6.1.3 CHAOS 

The CSP process CHAOS(a) non-deterministically either stops, or engages in any 
event from the set a then behaves like CHAOS(a).  So it can engage in any event in a, 
any number of times, and just stop at any time.  It never terminates. 

If we choose to allow the translation into Handel-C to include refinement, there is a 
particularly simple implementation of CHAOS, that, independently of a, resolves all the 
non-determinism to STOP. 
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void CHAOS() { STOP(); } 
 
CHAOS   --->   CHAOS(); 

3.6.2 Sequential composition 

3.6.2.1 Prefix 

Channels are the basis of events – the values communicated over them form the rest 
of the event. 

3.6.2.2 Simple sequential 

With sequential composition, P ; Q, the two processes proceed in sequence, first P 
until it terminates, then Q.   

Handel-C provides two syntaxes for sequential composition: the conventional C semi-
colon, and the seq keyword.  To allow for nested block structure, and to highlight the 
connection between the CSP and the Handel-C, the seq keyword is preferred. 

 
P ; Q ... ; R   --->   seq { P(); Q(); ...; R(); } 

Multi-statement Handel-C translations of complex processes should be enclosed in 
the usual braces.  Such braces are elided here, for clarity. 

3.6.2.3 Replicated sequential 

Because Handel-C replicators require a numerical index, the CSP specification must 
be refined to one using only “closed range” numerical replicators (using say an array 
of events). 

With numerical replicated sequential, ; n:{i..j} @ P(n), the processes indexed by 
n proceed sequentially. 

 
; n:{i..j} @ P(n)   --->   seq (n=i; n<=j; ++n) { P(n); } 

3.6.3 Choice 

3.6.3.1 External choice 

With external environmental choice, P [] Q, the process offers the environment the 
choice of the first event of P and the first event of Q.  If the first event chosen is that 
from P, then P [] Q behaves like P; if the first event chosen is that from Q, then 
P [] Q behaves like Q.  If the first events from P and Q are the same, then P [] Q 
nondeterministically behaves like P or like Q . 

Handel-C’s PRIALT construct implements simple external choice on channels (input 
or output channels, but no Boolean guards).  The channels must all be different.  The 
first channel in the list whose other end is ready to communicate is chosen.  If no 
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channel is ready to communicate and there is no default branch, the entire PRIALT 
statement waits until a channel becomes ready.  

Before translation to Handel-C, the CSP specification must be refined into one where 
each process in an external choice is written as a prefix process (that is, must be 
written as a -> P), and with no occurrences of repeated channels in the external 
choices. 

In particular, there must be no Boolean guards.  These can be transformed away in 
CSP as 

 
(ba & a -> P) [] (b -> Q) ... [] (c -> R) 
 
   --->    
 
if ba then (a -> P) [] (b -> Q) ... [] (c -> R) 
      else (b -> Q) ... [] (c -> R) 

The suitably reduced CSP construct has the translation 
 
(a -> P) [] (b -> Q) ... [] (c -> R) 
 
   --->    
 
prialt {  
  case a : P(); break; 
  case b : Q(); break; 
  ... 
  case c : R(); break; 
} 

3.6.3.2 Internal choice 

With internal nondeterministic choice, P |~| Q, the system non-deterministically 
behaves like either P or Q.   

If we choose to allow the translation into Handel-C to include refinement, there is a 
particularly simple implementation of nondeterministic choice that resolves the 
determinism in favour of P, or maybe of the “easiest” process to translate (say STOP 
or SKIP if they were present).   

 
P |~| Q ... |~| R   --->   P(); 

This suggests that a CSP specification containing non-deterministic choice may be at 
too high a level of abstraction to be realistically translated into an implementation.  
The translation could proceed as above, but with a warning. 

3.6.3.3 Replicated choice 

Handel-C has no replicated ALT.  Before translation to Handel-C, the CSP 
specification must be refined into one with all occurrences of replicated choice 
unwound to an explicit list of choices. 
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3.6.3.4 Untimed timeout 

The untimed time-out process, P [> Q, begins by offering the option of P before it 
opts to behave like Q. 

 
P [> Q  ==  (P |~| STOP) [] Q 

If we resolve the nondeterminism of the internal choice always to pick the STOP 
branch (equivalent to always timing out before there is a chance to engage in P), and 
then use the identity STOP [] Q == Q, this can be translated as Q. 

 
P [> Q   --->   Q(); 

This suggests that an CSP specification containing untimed timeout may be at too 
high a level of abstraction to be realistically translated into an implementation.  The 
translation could proceed as above, but with a warning. 

3.6.3.5 Conditional choice 

The conditional choice process, if b then P else Q, behaves like P if b is true, 
otherwise it behaves like Q. 

 
if b then P else Q   --->   if (b) then { P(); } else { Q(); } 

CSP_M also has a shorthand form 
 
b & P  ==  if b then P else STOP 

which can be used to guard external choice in CSP specifications.  However, such a 
guard cannot be reduced to the prefix form required before translation into Handel-C 
(Handel-C does not allow Boolean guards in PRIALTs). 

3.6.4 Parallel 

In CSP, processes can communicate by synchronising on events.  Multiple processes 
in parallel can synchronise on a shared event.  Processes can be combined in parallel 
in several ways that specify whether they do, or do not, synchronise on a potentially 
shared events. 

In Handel-C, this synchronisation communication is implemented by channels.  The 
flexibility of the CSP events is greatly reduced.  A Handel-C channel is a 
unidirectional point-to-point (two ended) link from one process to one other process.  
To use a channel there must be precisely two processes, running in parallel, one 
inputting and one outputting.  The following are illegal: 

1. two processes in parallel, each inputting or each outputting on the same channel 

2. one process both inputting and outputting on a channel 

These constraints disallow more complex cases.  For example, consider trying to 
implement a CSP specification of three processes in parallel synchronising on an 
event.  Since in Handel-C every synchronisation event looks like either an input or an 
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output, at least two of these three processes must be either inputting or outputting.  
But this is illegal in Handel-C. 

There is one parallel construct in Handel-C, the par statement.  Processes execute in 
parallel, and synchronise on any shared channels.  Hence processes within a par 
block must obey the rules for shared channel usage. 

3.6.4.1 Sharing parallel 

With sharing, or synchronised, parallel, P [| a |] Q, the two processes proceed in 
parallel, synchronising on the events in a.  So if both P and Q share an event in a, they 
synchronise.  If both P and Q share an event not in a, they do not synchronise with 
each other; they may synchronise with another parallel process, or with the 
environment. 

Provided that a is big enough to contain all the events common to P and Q, 
synchronised parallel translates directly to the Handel-C par construct.  Such a set of 
events that is big enough is Σ (CSP) or Events (CSP_M), the set of all possible events 
(the entire alphabet).  Before translation to Handel-C, the CSP specification must be 
refined into one with all occurrences of synchronised parallel referencing only the set 
of all events. 

 
P [| Events |] Q ... [| Events |] R 
 
   ---> 
 
par { P(); Q(); ...; R(); } 

3.6.4.2 Alphabetised parallel 

With alphabetised parallel, P [ a || b ] Q, the two processes run in parallel, P 
engaging only in events in a, Q engaging only in events in b, and synchronising on the 
events in the intersection of a and b. 

Provided P and Q never communicate outside a and b respectively, alphabetised 
parallel reduces to synchronised parallel of the intersection: 

 
P [ a || b ] Q  ==  P [| a ∩ b |] Q 

Before translation to Handel-C, the CSP specification must be refined into one with 
all occurrences of  (replicated) alphabetised parallel replaced by (replicated) sharing 
parallel. 

3.6.4.3 Interleaving parallel 

With interleaving parallel, P ||| Q, the two processes run independently of each 
other, with no synchronised communication.  Any event in the parallel composition 
arises in only one of P or Q.  So if both P and Q can engage in an event in a, only one 
of them does, synchronising with another parallel process, or with the environment.   

 



20  CSP / FDR2 to Handel-C translation 

So interleaving is equivalent a synchronised parallel composition synchronised on the 
empty set. 

 
P ||| Q  ==  P [| {| |} |] Q 

Since in Handel-C, all channels are unidirectional and point to point, an interleaving 
composition where there are potentially shared events is illegal.  An interleaving 
where there are no potentially shared events reduces to a synchronised parallel 
(because in this case the synchronisation set is already empty). 

Before translation to Handel-C, the CSP specification must be refined into one with 
all occurrences of (replicated) interleaving parallel replaced by (replicated) sharing 
parallel. 

3.6.4.4 Replicated sharing parallel 

The only replicated parallel we consider here is replicated sharing parallel, since the 
other replicated parallels must be refined to this before translation.  In addition, 
because Handel-C replicators require a numerical index, the CSP specification must 
be refined to one using only “closed range” numerical replicators (using say an array 
of events). 

With numerical replicated synchronised parallel, [| a |] n : {i..j} @ P(n), the 
processes indexed by n proceed in parallel, synchronising on the events in a. 

Before translation to Handel-C, the CSP specification must be refined into one with 
all occurrences of replicated synchronised parallel referencing only the set of all 
events. 

 
[| Events |] n : {i..j} @ P(n) 
 
   --->    
 
par (n=i; n<=j; ++n) { P(n); } 

3.6.5 Channel names and visibility 

3.6.5.1 Hiding 

In CSP, channels can be hidden, to make them unavailable to participate in further 
events.  In Handel-C, channels are unidirectional and point to point.  Any channel 
engaged in a communication is unavailable for further communication, and so is 
implicitly hidden. 

Once the CSP specification has been refined to one in which all channels are used in 
this Handel-C manner, there is no need to translate the hidings explicitly. 

3.6.5.2 Renaming 

In CSP a process’s channels can be renamed. 
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The translation of channels into Handel-C does not explicitly link them with a 
process.  Processes are not parameterised by thier channels.  Hence there is no simple 
way to translate renaming. 

Before translation to Handel-C, the CSP specification must be refined into one with 
all occurrences of renaming removed. 

3.6.5.3 Linked parallel 

With linked parallel P [a1 <-> b1, ..., an <-> bn] Q, the two processes are in 
parallel.  Channel ai of P and channel bi of Q are joined together, and hidden.   This 
provides a more sophisticated form of “chaining”.  It can be defined in terms of 
renaming and hiding. 

 
P [a1 <-> b1, ..., an <-> bn] Q  ==   
  ( P [[a1 <- temp1, ..., an <- tempn]] 
    |[ {| temp1, ..., tempn |} |] 
    Q [[b1 <- temp1, ..., bn <- tempn]] 
  ) 
    \ {| temp1, ..., tempn |} 

Before translation to Handel-C, the CSP specification must be refined into one with 
all occurrences of linked parallel replaced by sharing parallel. 

3.6.6 Interrupt 

The interrupt process, P /\ Q, begins by behaving like P and then behaves like Q. 

There is no support for interrupts in Handel-C.  Before translation to Handel-C, the 
CSP specification must be refined into one without any interrupted processes. 

3.7 Others 

3.7.1 Operator precedence 

In a translation, the module that parses the CSP_M and the module that outputs the 
Handel-C must be aware of their respective languages’ precedences.  The translation 
module operates at the syntax tree level (manipulating already-parsed forms), and so 
it does not need to worry about precedences.  Any necessary bracketing will be the 
concern of the Handel-C output. 

3.7.2 External 

The external keyword is provided by CSP_M to allow the use of functions defined 
by other tools.  Handel-C does not use such functions, and so no translation support is 
required. 
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3.7.3 Transparent 

The transparent keyword is provided by CSP_M to allow the use of certain 
semantically neutral optimisations.  The functions introduced have the semantics of 
the identity function.  Hence the translator should translate any transparent names to 
the identity function (that is, remove them) wherever they occur.   

 
transparent Name 
T1 Name T2 
 
   --->    
 
T1 T2 

For example 
 
transparent diamond, normalise 
squidge(P) = normalise(diamond(P)) 
 
   --->    
 
squidge(P) = P 

3.7.4 Assert 

The assert keyword is provided by CSP_M to state properties to be proved by the 
model checker.  There is no need to translate these assert statements.   

3.7.5 Print 

The print keyword is provided by CSP_M to enable certain expressions to be 
evaluated and examined with the tool.  There is no need to translate these print 
statements.   

3.7.6 Comments 

CSP_M end of line comments start with -- and continue to the end of the line.  Block 
comments start with {- and continue to the matching -} (that is, they can be nested).   

Handel-C end of line comments start with // and continue to the end of the line.  
Block comments start with /* and continue to the first */ (that is, they may not be 
nested).   

So CSP_M comments can be translated directly to Handel-C comments (to help 
document the generated code), provided any nested closing block comment markers 
are stripped. 

3.8 Summary 

Quite a large subset of CSP_M can be mapped to Handel-C.  Of the remaining 
language, much of it can readily be refined into a translatable form. 
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4. Translator from Handel-C to CSP  

The translations mentioned in the previous section can often be applied in reverse, to 
map Handel-C into CSP_M, to allow it to be analysed. 

Handel-C that has been written in the style of the target of the translator can be 
translated back into CSP_M.  There are some features of Handel C that need care. 

• Procedures need to be written as infinite while loops, to be translated into tail 
recursive processes. 

• No translation for signals has been determined. 

• Hardware specific features (ram, rom, etc) should be ignored. 

More work is needed to determine the appropriate sub-language and style for 
translation. 
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5. Dining Philosophers Example 

5.1 Original specification 

This example is taken from 
http://www.cs.bris.ac.uk/Teaching/Resources/COMS40204/Exercise/Files/dphil_butler.fdr2 
 

-- The dining philosophers with a butler. 
-- 
-- Simon Gay, Royal Holloway, January 1999 
--  
channel pickup:{0..4}.{0..4} 
channel putdown:{0..4}.{0..4} 
channel sitdown:{0..4} 
channel getup:{0..4} 
 
inc(x) = (x + 1) % 5 
dec(x) = (x - 1) % 5 
 
PHIL(i) =  sitdown.i -> pickup.i.inc(i) -> pickup.i.i ->  
           putdown.i.inc(i) -> putdown.i.i -> getup.i -> PHIL(i) 
 
FORK(i) = pickup.i.i -> putdown.i.i -> FORK(i) 
        [] pickup.dec(i).i -> putdown.dec(i).i -> FORK(i) 
 
PHILS = || i:{0..4} @ [{|pickup.i.i, pickup.i.inc(i), 
                         putdown.i.i, putdown.i.inc(i),  
                         sitdown.i, getup.i|}]           
                    PHIL(i) 
 
FORKS = || i:{0..4} @ [{|pickup.i.i, putdown.i.i,  
                         pickup.dec(i).i, putdown.dec(i).i|}]  
                    FORK(i) 
 
DINNER = PHILS [ {|pickup,putdown,sitdown,getup|} || 
                 {|pickup,putdown|} ]  FORKS 
 
BUTLER(i) = if i == 0  
            then sitdown?x -> BUTLER(1) 
            else if i == 4 
                 then getup?y -> BUTLER(3) 
                 else (  sitdown?x -> BUTLER(i+1) 
                      [] getup?y -> BUTLER(i-1) ) 
 
NEWDINNER = DINNER [ {|pickup,putdown,sitdown,getup|} || 
                     {|sitdown,getup|} ] BUTLER(0) 
 

5.2 Introducing external channels 

This has all the events “visible”.  In a Handel-C implementation, all channels are 
point-to-point, and the only visible communications are those that take place with the 
outside world.  So we modify this specification by adding a new channel, world, that 
the BUTLER process uses to communicate with the world whenever a PHIL sits down 
or gets up.  All the other channels are hidden in the NEWDINNER process. 
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-- (0) explicit external channel 
 
channel pickup:{0..4}.{0..4} 
channel putdown:{0..4}.{0..4} 
channel sitdown:{0..4} 
channel getup:{0..4} 
channel world_sit:{0..4} 
channel world_up:{0..4} 
 
inc(x) = (x + 1) % 5 
dec(x) = (x - 1) % 5 
 
PHIL(i) =  sitdown.i -> pickup.i.inc(i) -> pickup.i.i ->  
           putdown.i.inc(i) -> putdown.i.i -> getup.i -> PHIL(i) 
 
FORK(i) = pickup.i.i -> putdown.i.i -> FORK(i) 
        [] pickup.dec(i).i -> putdown.dec(i).i -> FORK(i) 
 
PHILS = || i:{0..4} @ [{|pickup.i.i, pickup.i.inc(i), 
                         putdown.i.i, putdown.i.inc(i),  
                         sitdown.i, getup.i|}]           
                    PHIL(i) 
 
FORKS = || i:{0..4} @ [{|pickup.i.i, putdown.i.i,  
                         pickup.dec(i).i, putdown.dec(i).i|}]  
                    FORK(i) 
 
DINNER = PHILS [ {|pickup,putdown,sitdown,getup|} || 
                 {|pickup,putdown|} ]  FORKS 
 
BUTLER(i) = if i == 0  
            then sitdown?x -> world_sit!x -> BUTLER(1) 
            else if i == 4 
                 then getup?y -> world_up!y -> BUTLER(3) 
                 else (  sitdown?x -> world_sit!x -> BUTLER(i+1) 
                      [] getup?y -> world_up!y -> BUTLER(i-1) ) 
 
NEWDINNER = (DINNER [ {|pickup,putdown,sitdown,getup|} || 
                     {|sitdown,getup|} ] BUTLER(0) ) 
  \ {|pickup,putdown,sitdown,getup |} 

A diagram of the processes and channels helps shows how these are arranged.   

PHIL(i) FORK(j)BUTLER(k)

pickup.i.jsitdown.i

putdown.i.jgetup.i

world.i.b

 

The pickup channels and putdown channels communicate two values: the 
philosopher doing the picking up, and the fork being picked up.  Many values 
possible from the type are not actually communicated, such as pickup.3.0.  A naïve 
implementation as a 2-D array of channels would result in 5×5 = 25 channels, rather 
than the 10 that are ever used. 

The sitdown channels and getup channels communicate one value: the philosopher 
doing the sitting down and getting up. 

The world_sit channel and the world_up channel communicate one value: the 
philosopher involved in sitting down and getting up respectively. 
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Expanding the arrays, we see the processes have the following communication 
structure.  (The pickup channels have similar putdown channels; the sitdown 
channels have similar getup channels.) 

PHIL(0)

FORK(1)FORK(0)

PHIL(1)PHIL(4)

PHIL(2)PHIL(3)

FORK(4) FORK(2)

FORK(3)

BUTLER
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pickup.1.1

pickup.1.2

pickup.2.2

pickup.2.3pickup.3.3

pickup.3.4

pickup.4.4

pickup.4.0

pickup.0.0
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t
d
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n
.
0

sitdown.1
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t
d
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n
.
2
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t
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n
.
3

sitdown.4

world

 

5.3 Left and right pickup channels 

Let us simplify the example to use the 10 pickup channels explicitly.  These channels 
are labelled with the philosopher, and indicate whether the fork on the left (higher 
index) or on the right (same index) is being picked up.  (Note that from the fork’s 
point of view, the pickupleft channel communicates that it has been picked up by 
the left hand of the philosopher, who is on the fork’s right.) 
 

-- The dining philosophers with a butler. 
-- 
-- (1) simpler channel structure 
 
channel pickupleft:{0..4} 
channel pickupright:{0..4} 
channel putdownleft:{0..4} 
channel putdownright:{0..4} 
channel world_sit:{0..4} 
channel world_up:{0..4} 
 
PHIL_1(i) =  sitdown.i -> pickupleft.i -> pickupright.i ->  
           putdownleft.i -> putdownright.i -> getup.i -> PHIL_1(i) 
 
FORK_1(i) = pickupright.i -> putdownright.i -> FORK_1(i) 
        [] pickupleft.dec(i) -> putdownleft.dec(i) -> FORK_1(i) 
 
PHILS_1 = || i:{0..4} @ [{|pickupleft.i, pickupright.i, 
                         putdownleft.i, putdownright.i,  
                         sitdown.i, getup.i|}]           
                    PHIL_1(i) 
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FORKS_1 = || i:{0..4} @ [{|pickupright.i, putdownright.i,  
                         pickupleft.dec(i), putdownleft.dec(i)|}]  
                    FORK_1(i) 
 
DINNER_1 = PHILS_1 [ {|pickupleft,pickupright, 
                   putdownleft,putdownright,sitdown,getup|} 
               || {|pickupleft,pickupright, 
                    putdownleft,putdownright|} ] 
         FORKS_1 
 
BUTLER_1(i) = if i == 0  
            then sitdown?x -> world_sit!x -> BUTLER_1(1) 
            else if i == 4 
                 then getup?y -> world_up!y -> BUTLER_1(3) 
                 else (  sitdown?x -> world_sit!x -> BUTLER_1(i+1) 
                      [] getup?y -> world_up!y -> BUTLER_1(i-1) ) 
 
NEWDINNER_1 = (DINNER_1 [ {|pickupleft,pickupright, 
                       putdownleft,putdownright,sitdown,getup|} 
                   || {|sitdown,getup|} ]  
            BUTLER_1(0) ) 
  \ {|pickupleft,pickupright, 
                       putdownleft,putdownright,sitdown,getup|} 

Now a diagram of the processes and channels looks like: 

PHIL(0)

FORK(1)FORK(0)

PHIL(1)PHIL(4)

PHIL(2)PHIL(3)

FORK(4) FORK(2)

FORK(3)

BUTLER
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pickupright.1

pickupleft.1
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pickupright.4

pickupleft.4

pickupright.0
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world

 

5.4 Proving first refinement 

This modified specification is proved a refinement of the original.  (See later for 
FDR2 screen shot.) 

 
assert NEWDINNER [FD= NEWDINNER_1 
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5.5 Unidirectional channels 

Now we need to make the channels unidirectional, one end outputting, one end 
inputting.   

The sitdown and getup channels are inputs at the butler process (the input value is 
the index of the relevant philosopher), so it seems sensible to make them outputs at 
the philosopher process.  Also we have the identity  sitdown.i = sitdown!i.  
However, we also want these channels to be an array, with i as the array index.  We 
also note that the value transmitted is not used by the butler process.  So we keep i as 
the index in the philosopher process, and make it into an index in the butler process, 
using a replicated external choice. We also add a dummy boolean value (which can be 
implemented in Handel-C as a one-bit channel) to be communicated, from 
philosopher to butler. 

We similarly add a dummy value to the pickup and putdown channels, and arbitrarily 
choose the communication direction to be from philosopher to fork. 
 

-- The dining philosophers with a butler. 
-- 
-- (2) point-to-point channel structure 
 
channel pickupleft_2:{0..4}.Bool 
channel pickupright_2:{0..4}.Bool 
channel putdownleft_2:{0..4}.Bool 
channel putdownright_2:{0..4}.Bool 
channel sitdown_2:{0..4}.Bool 
channel getup_2:{0..4}.Bool 
channel world_sit:{0..4} 
channel world_up:{0..4} 
 
PHIL_2(i) =  sitdown_2.i!true ->  
             pickupleft_2.i!true ->  pickupright_2.i!true -> 
             putdownleft_2.i!true -> putdownright_2.i!true -> 
             getup_2.i!true -> PHIL_2(i) 
 
FORK_2(i) = pickupright_2.i?b -> putdownright_2.i?b -> FORK_2(i) 
        [] pickupleft_2.dec(i)?b -> putdownleft_2.dec(i)?b -> FORK_2(i) 
 
PHILS_2 = || i:{0..4} @ [{|pickupleft_2.i, pickupright_2.i, 
                         putdownleft_2.i, putdownright_2.i,  
                         sitdown_2.i, getup_2.i|}]           
                    PHIL_2(i) 
 
FORKS_2 = || i:{0..4} @ [{|pickupright_2.i, putdownright_2.i,  
                         pickupleft_2.dec(i), putdownleft_2.dec(i)|}]  
                    FORK_2(i) 
 
DINNER_2 = PHILS_2 [ {|pickupleft_2, pickupright_2, 
                       putdownleft_2, putdownright_2, 
                       sitdown_2, getup_2|} 
               ||    {|pickupleft_2,pickupright_2, 
                       putdownleft_2,putdownright_2|} ] 
           FORKS_2 
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BUTLER_2(i) = if i == 0  
            then [] x:{0..4} @ sitdown_2.x?b ->  
                               world_sit!x -> BUTLER_2(1) 
            else if i == 4 
                 then [] y:{0..4} @ getup_2.y?b -> 
                                    world_up!y -> BUTLER_2(3) 
                 else (  [] x:{0..4} @ sitdown_2.x?b ->  
                                       world_sit!x -> 
                                       BUTLER_2(i+1) 
                      [] [] y:{0..4} @ getup_2.y?b -> 
                                       world_up!y -> 
                                       BUTLER_2(i-1) ) 
 
NEWDINNER_2 = (DINNER_2 [ {|pickupleft_2,pickupright_2, 
                       putdownleft_2,putdownright_2,sitdown_2,getup_2|} 
                   || {|sitdown_2,getup_2|} ]  
            BUTLER_2(0) ) 
            \ {|pickupleft_2,pickupright_2, 
                       putdownleft_2,putdownright_2,sitdown_2,getup_2|} 

Now a diagram of the processes and point-to-point channels looks like: 
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5.6 Proving second refinement 

This modified specification is proved a refinement of the original. 
 
assert NEWDINNER_1 [FD= NEWDINNER_2 
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5.7 Conversion to Handel-C 

The CSP specification has been refined to a point where it is suitable for translation 
into Handel-C, on addition of certain translation directives. 

The index on the philosopher and fork process represents replication, of process and 
channels.  The index on the butler process represents internal state. 

The initial {0..4} type is taken as an array index.    
 
//--!! channel pickupleft array 5  (etc) 
chan Bool pickupleft[5] ; 
chan Bool pickupright[5] ; 
chan Bool putdownleft[5] ; 
chan Bool putdownright[5] ; 
chan Bool sitdown[5] ; 
chan Bool getup[5] ; 

 
//--!! channel out world_sit  
chanout int world_sit ; 
//--!! channel out world_up  
chanout int world_up ; 

We inline the decrement function to ensure that the parallel philosophers get one each 
 
//--!! function inline int dec(int x) 
inline int dec(int x) { return( (x - 1) % 5); } 
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The parameter to the philosopher process is used internally as a channel index.  The 
tail recursive process is translated to a while loop. 

 
void PHIL(int i) { 
  while (1) { 
    sitdown[0 @ i]!true ;  
    pickupleft[0 @ i]!1 ; 
    pickupright[0 @ i]!1 ;  
    putdownleft[0 @ i]!1 ; 
    putdownright[0 @ i]!1 ; 
    getup[0 @ i]!true ; 
  } 
} 

The parameter to the fork process is used internally as a channel index.  The tail 
recursive process is translated to a while loop.  The external choice is translated to a 
prialt.  The dummy variable b has to be declared in the Handel-C. 

 
void FORK(int i) { 
    unsigned int 1 b ; 
    while (1) { 
      prialt { 
        case pickupright[0 @ i]?b :  
          putdownright[0 @ i]?b ; 
          break ; 
        case pickupleft[0 @ dec(i)]?b : 
          putdownleft[0 @ dec(i)]?b ; 
          break; 
      } 
  } 
} 

The replicated parallel is translated to a replicated par.  The list of synchronised 
channels disappears. 

 
void PHILS() {  
  par (i = 0; i < 5,; ++i) { 
    PHIL(i) ; 
  } 
} 

 
void FORKS() {  
  par (i = 0; i < 5,; ++i) { 
    FORK(i) ; 
  } 
} 

 
void DINNER() {  
  par { 
    PHILS ; 
    FORKS ; 
  } 
} 

The parameter to the butler process is used internally as state, so an internal variable 
is declared, and initialised to the actual parameter.  The tail recursive process is 
translate to a while loop.  The replicated external choice is expanded out (there being 
no replicated prialt in Handel-C) and translated to a prialt.  The dummy variable b 
has to be declared in the Handel-C. 
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void BUTLER(int iparam) {  
  int i = iparam ; 
  unsigned int b; 
 
  while (1) { 
    if (i == 0) { 
      s.s2 = 1; 
      prialt { 
        case sitdown[0]?b : world_sit!0 ; i = 1 ; break ; 
        case sitdown[1]?b : world_sit!1 ; i = 1 ; break ; 
        case sitdown[2]?b : world_sit!2 ; i = 1 ; break ; 
        case sitdown[3]?b : world_sit!3 ; i = 1 ; break ; 
        case sitdown[4]?b : world_sit!4 ; i = 1 ; break ; 
      } 
    } 
    else if (i == 4) { 
      s.s2 = 0; 
      prialt (y = 0; y < 5,; ++y) { 
        case getup[0]?b : world_up!0 ; i = 3 ; break ; 
        case getup[1]?b : world_up!1 ; i = 3 ; break ; 
        case getup[2]?b : world_up!2 ; i = 3 ; break ; 
        case getup[3]?b : world_up!3 ; i = 3 ; break ; 
        case getup[4]?b : world_up!4 ; i = 3 ; break ; 
      } 
    } 
    else prialt {  
          case sitdown[0]?b : world_sit!0 ; i = i+1 ; break ; 
          case sitdown[1]?b : world_sit!1 ; i = i+1 ; break ; 
          case sitdown[2]?b : world_sit!2 ; i = i+1 ; break ; 
          case sitdown[3]?b : world_sit!3 ; i = i+1 ; break ; 
          case sitdown[4]?b : world_sit!4 ; i = i+1 ; break ; 
          case getup[0]?b : world_up!0 ; i = i-1 ; break ; 
          case getup[1]?b : world_up!1 ; i = i-1 ; break ; 
          case getup[2]?b : world_up!2 ; i = i-1 ; break ; 
          case getup[3]?b : world_up!3 ; i = i-1 ; break ; 
          case getup[4]?b : world_up!4 ; i = i-1 ; break ; 
    }  
  } 

  } 
 

void NEWDINNER() {  
  par { 
    DINNER ; 
    BUTLER(0) ; 
  } 
} 
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6. Pipeline processor example 

This example is provided by AWE, augmented with some diagrams showing the 
channel structure. 

6.1 Original specification 
 
-- AEP Analysis by W. Ifill, AWE 
-- v1.6  
 
nametype BYTE   = {0..1} -- 7 
datatype OPCODE = ldi | nop | hlt | add 
nametype REG    = {0..1} -- 8  
datatype ACCESS = start | finish 
datatype MODE   = read  | write 
 
channel read_reg    : REG.ACCESS 
channel write_reg   : REG.ACCESS 
channel reg         : REG.ACCESS 

 
channel fetch  : REG.OPCODE.BYTE.REG 
channel pipe1  : BYTE.BYTE.OPCODE.BYTE.REG 
channel pipe2  : REG.BYTE 
channel fail 
channel unknown_reg 

 
channel req_read     : REG 
channel req_write    : REG 
channel data_read    : BYTE 
channel data_write   : BYTE 
channel source_reg   : REG.OPCODE 
channel dest_reg     : REG 
channel opcode_set   : BYTE.BYTE.OPCODE 

STAGE 0 of pipeline is the fetching of s.o.i.d  (Source_register, Opcode, 
Immediate_data, Destination_register) from program memory.  No specification for 
this stage as yet. 

STAGE 1 of the pipeline:  Fetch gets the contents of the next instruction from the 
instruction reg.  Access to the register bank is signalled as started (like register bank 
enable).  A read is made (data on reg databus).  Two consecutive regs are read.  The 
reg. bank is disabled (finish).  The fetch data and reg data is communicated to the 
next pipeline stage. 

 
LATCH  = fetch?s.o.i.d ->  
           source_reg!s.o -> opcode_set?x.y.a 
            -> pipe1!x.y.a.i.d -> LATCH 

Channel structure: 

LATCH

fetch?

source_reg!opcode_set?

pipe1!
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To prevent a data hazard we define READ_REGISTERS.  The incoming opcode will be 
changed to a nop to prevent simultaneous access of the same register location (loc). 

 
READ_REGISTERS = source_reg?s.o -> dest_reg?d ->  
                  if ( s == d ) then 
                    (opcode_set!0.0.nop -> READ_REGISTERS)  
                  else  
                    (read_reg!s.start  -> 
                      req_read!s -> data_read?x -> 
                      req_read!((s+1)%2) -> data_read?y ->  
                        read_reg!s.finish -> 
                          opcode_set!x.y.o   -> READ_REGISTERS) 

Channel structure: 

READ_REGISTERS

req_read!

source_reg?

dest_reg? read_reg!

opcode_set!

data_read?

 

STAGE 2:  These are the actions of the individual commands. 
• ADD: retrieved register values are added. 
• LDI: new value passes for loading in destination register. 
• NOP: to prevent the setting of the destination register on NOP the 

destination register is set to r0. 
• HLT: stops processor. 

  
SEQUENCER = ADD [] LDI [] NOP [] HLT 
 
ADD =  pipe1?v.w.add.i.d -> pipe2!d.((v+w)%2) -> SEQUENCER 
LDI =  pipe1?v.w.ldi.i.d -> pipe2!d.i         -> SEQUENCER 
NOP =  pipe1?v.w.nop.i.d -> pipe2!0.i         -> SEQUENCER 
HLT =  pipe1?v.w.hlt.i.d -> STOP 

Channel structure: 

SEQUENCER
pipe1? pipe2!

 

STAGE 3:  The update performs a write if the two zero'ed registers are not requested.  
UPDATE works with READ_REGISTERS to prevent a data hazard as does LATCH.  LATCH 
and READ_REGISTERS together latch a safe instruction. 

 
UPDATE  =  pipe2?d.i     ->  
             if (d != 0) 
             then  
                (dest_reg!d -> 
                   write_reg!d.start  -> req_write!d  ->  
                       data_write!i -> 
                            write_reg!d.finish -> UPDATE) 
             else 
                 UPDATE 
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Channel structure: 

UPDATE
pipe2?

dest_reg!

req_write!

data_write!

write_reg!

 
 
LCU = (LATCH [|{| source_reg, opcode_set |}|] READ_REGISTERS) 
             [|{| dest_reg  |}|] UPDATE 
      \  {|dest_reg, source_reg, opcode_set|} 

Channel structure: 

LCU

LATCH
fetch?

source_regopcode_set

pipe1!

READ_REGISTERS req_read!

read_reg!
data_read?

UPDATE
pipe2?

dest_reg

req_write!

data_write!

write_reg!

 

THE REGISTER BANK:  If access to the same register (loc) is required 
simultaneously then the second request should have been delay. If not fail will be 
signalled.  To speed up analysis only two reg from reg bank are used: 0 and 1.  

 
LOC_START(s) = 
      read_reg.s.start -> reg.s.start -> LOC_START(s) 
   [] write_reg.s.start -> reg.s.start -> LOC_START(s)  
 
LOC_FINISH(s) = 
      read_reg.s.finish -> reg.s.finish -> LOC_FINISH(s) 
   [] write_reg.s.finish -> reg.s.finish -> LOC_FINISH(s) 
 
LOC_MIDDLE(s) = 
      reg.s.start ->  
       (   reg.s.finish -> LOC_MIDDLE(s)  
        [] reg.s.start -> fail -> STOP) 
 
LOC(s) = ((LOC_START(s) [|{|reg|}|] LOC_MIDDLE(s)) 
         [|{|reg|}|] LOC_FINISH(s)) 
       \ {|reg|} 
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Channel structure: (Note: the read_reg and write_reg channels are shown as 
inputs, because that fits the way they are used later.  Also, these channels, and the 
reg channel, are used by parallel processes.) 

LOC(s)

LOC_START

reg.s.start

read_reg.s.start

LOC_MIDDLE
fail

LOC_FINISH

reg.s.finish
read_reg.s.finish

write_reg.s.start

write_reg.s.finish

 
 
DETECT_REG_ACCESS_ERROR = LOC(0) ||| LOC(1)  

Channel structure: (Note: the fail channel is used by two parallel processes.) 

LOC(0)

read_reg.0

write_reg.0

DETECT_REG_ACCESS_
ERROR

LOC(1)

read_reg.1

write_reg.1

fail

 

READING AN INDIVIDUAL REGISTER IN THE REGISTER BANK.  This process 
outputs/inputs values of registers.  To speed up analysis only two reg from reg bank 
are used: 0 and 1.  

 
REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) = 
 
(req_read?s ->   
    if s == 0  
    then data_read!s0 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) 
    else if s == 1  
    then data_read!s1 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) 
    else  unknown_reg -> fail -> STOP) 
[] 
(req_write?s ->  
    if s == 0 
    then data_write?s0 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) 
    else if s == 1 
    then data_write?s1 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) 
    else unknown_reg -> fail -> STOP) 
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Channel structure:  

REGISTER_ACCESS

fail

req_read?

req_write? unknown_reg

data_read!

data_write?

 

INTERFACING WITH REGISTER BANK 
 
LR(s0,s1,s2,s3,s4,s5,s6,s7) = 
     REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) 

Channel structure:  

LR

fail

req_read?

req_write? unknown_reg

data_read!

data_write?

 

PUTTING THE PIPELINE TOGETHER:  when latch does a read it reads a value 
from the REGISTER_ACCESS process.  Initial values are fixed (No write as yet. Similar 
structure but read?...) 

pipeline stages interfaces. 
 
P1 = {| pipe1 |} 
 
P2 = {| pipe2, req_read, req_write, data_read, data_write |} 

Build up pipe line: interfacing stage 1 and 2.  The output of one stage is the input of 
the next 

 
LE(s0,s1,s2,s3,s4,s5,s6,s7) = 
    LR(s0,s1,s2,s3,s4,s5,s6,s7) ||| SEQUENCER 

Channel structure:  

LR

fail

req_read?

req_write? unknown_reg

data_read!

data_write?

SEQUENCER
pipe1? pipe2!

LE

 

Interfacing stages 2 and 3. 
 
LEU(s0,s1,s2,s3,s4,s5,s6,s7) = 
     LE(s0,s1,s2,s3,s4,s5,s6,s7) [|P2|] LCU 
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Channel structure: (Note: this assumes pipe2 is in the communication set.  Note: the 
“internal” channels are not hidden, so are visible to the FDR2 analysis.) 

LE fail

req_read

req_write

unknown_reg

data_write

LCU

pipe1

LEU

fetch?

read_reg!

data_read

pipe2

write_reg!

 

Reg bank access action is synchronised with the pipeline.  Faults in the pipeline may 
force the reg bank to STOP  

 
AEP2(s0,s1,s2,s3,s4,s5,s6,s7) = 
     LEU(s0,s1,s2,s3,s4,s5,s6,s7)  
   [|{| read_reg, write_reg |}|]  
     DETECT_REG_ACCESS_ERROR 

Channel structure: (Note: the fail channel is used by two parallel processes.  Note: 
the “internal” channels are not hidden, so are visible to the FDR2 analysis.) 

LEU fail

unknown_reg

DETECT_REG_ACCESS_
ERROR

AEP2

fetch?

read_reg

write_reg

 

6.2 Hiding internal channels 

For the purposes of refining to Handel-C, we take this final specification, and hide all 
the interior channels, to find our starting point. 

 
P3_0 = {| pipe1, pipe2, req_read, req_write, 
          data_read, data_write, 
          read_reg, write_reg |} 
 
AEP_0(s0,s1,s2,s3,s4,s5,s6,s7) = 
     AEP2(s0,s1,s2,s3,s4,s5,s6,s7) \ P3_0 
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6.3 Refining shared channels 

Now we need to remove the shared channels read_reg, write_reg, reg, and fail.  
The first three cases can be achieved by having separate start and finish channels 
in each case, as these are used by separate processes.  The last case can be achieved 
by using a multiplexor. 

 
-- AEP Analysis  
-- separate start and finish channels, multiplexed fail channel 
 
nametype BYTE   = {0..1} -- 7 
datatype OPCODE = ldi | nop | hlt | add 
nametype REG    = {0..1} -- 8  
 
channel read_reg_start    : REG 
channel write_reg_start   : REG 
channel reg_start         : REG 
channel read_reg_finish    : REG 
channel write_reg_finish   : REG 
channel reg_finish         : REG 

 
channel fetch  : REG.OPCODE.BYTE.REG 
channel pipe1  : BYTE.BYTE.OPCODE.BYTE.REG 
channel pipe2  : REG.BYTE 
channel fail_loc  : REG 
channel fail_reg 
channel unknown_reg 
channel fail 

 
channel req_read     : REG 
channel req_write    : REG 
channel data_read    : BYTE 
channel data_write   : BYTE 
channel source_reg   : REG.OPCODE 
channel dest_reg     : REG 
channel opcode_set   : BYTE.BYTE.OPCODE 
 
LATCH  = fetch?s.o.i.d ->  
           source_reg!s.o -> opcode_set?x.y.a 
            -> pipe1!x.y.a.i.d -> LATCH 

Channel structure: 

LATCH

fetch?

source_reg!opcode_set?

pipe1!

 

We change READ_REGISTER  to use the separate start and finish channels. 
 
READ_REGISTERS = source_reg?s.o -> dest_reg?d ->  
                  if ( s == d ) then 
                    (opcode_set!0.0.nop -> READ_REGISTERS)  
                  else  
                    (read_reg_start!s -> 
                      req_read!s -> data_read?x -> 
                      req_read!((s+1)%2) -> data_read?y ->  
                        read_reg_finish!s -> 
                          opcode_set!x.y.o   -> READ_REGISTERS) 
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Channel structure: 

READ_REGISTERS

req_read!

source_reg?

dest_reg?
read_reg_start!

opcode_set!

data_read?
read_reg_finish!

 
 
SEQUENCER = ADD [] LDI [] NOP [] HLT 
 
ADD =  pipe1?v.w.add.i.d -> pipe2!d.((v+w)%2) -> SEQUENCER 
LDI =  pipe1?v.w.ldi.i.d -> pipe2!d.i         -> SEQUENCER 
NOP =  pipe1?v.w.nop.i.d -> pipe2!0.i         -> SEQUENCER 
HLT =  pipe1?v.w.hlt.i.d -> STOP 

Channel structure: 

SEQUENCER
pipe1? pipe2!

 

We change UPDATE  to use the separate start and finish channels. 
 
UPDATE  =  pipe2?d.i     ->  
             if (d != 0) 
             then  
                (dest_reg!d -> 
                   write_reg_start!d  -> req_write!d  ->  
                       data_write!i -> 
                            write_reg_finish!d -> UPDATE) 
             else 
                 UPDATE 

Channel structure: 

UPDATE
pipe2?

dest_reg!

req_write!

data_write!

write_reg_start!

write_reg_finish!

 
 
LCU = (LATCH [|{| source_reg, opcode_set |}|] READ_REGISTERS) 
             [|{| dest_reg  |}|] UPDATE 
      \  {|dest_reg, source_reg, opcode_set|} 
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Channel structure: 

LCU

LATCH
fetch?

source_regopcode_set

pipe1!

READ_REGISTERS

req_read!

read_reg_start!
data_read?

UPDATEpipe2?

dest_reg

req_write!

data_write!

write_reg_finish!

read_reg_finish!

write_reg_start!

 

We change LOC  to use the separate start and finish channels, and the indexed 
fail_loc channels. 

 
LOC_START(s) = 
      read_reg_start.s -> reg_start.s -> LOC_START(s) 
   [] write_reg_start.s -> reg_start.s -> LOC_START(s)  
 
LOC_FINISH(s) = 
      read_reg_finish.s -> reg_finish.s -> LOC_FINISH(s) 
   [] write_reg_finish.s -> reg_finish.s -> LOC_FINISH(s) 
 
LOC_MIDDLE(s) = 
      reg_start.s ->  
       (   reg_finish.s -> LOC_MIDDLE(s)  
        [] reg_start.s -> fail_loc.s -> STOP) 
 
LOC(s) = ((LOC_START(s) [|{|reg_start|}|] LOC_MIDDLE(s)) 
         [|{|reg_finish|}|] LOC_FINISH(s)) 
       \ {|reg_start,reg_finish|} 
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Channel structure: (Note: the read_reg and write_reg channels are shown as 
inputs, because that fits the way they are used later.) 

LOC(s)

LOC_START

reg_start.s

read_reg_start.s

LOC_MIDDLE
fail_loc.s

LOC_FINISH

reg_finish.s
read_reg_finish.s

write_reg_start.s

write_reg_finish.s

 
 
DETECT_REG_ACCESS_ERROR = LOC(0) ||| LOC(1)  

Channel structure: 

LOC(0)

read_reg_start.0

write_reg_start.0

DETECT_REG_ACCESS_
ERROR

LOC(1)read_reg_finish.1

write_reg_finish.1

fail_loc.0

read_reg_start.1

write_reg_start.1

read_reg_finish.0

write_reg_finish.0

fail_loc.1

 
 

We change REGISTER_ACCESS to use the separate fail_reg channel. 
 
REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) = 
 
(req_read?s ->   
    if s == 0  
    then data_read!s0 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) 
    else if s == 1  
    then data_read!s1 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) 
    else  unknown_reg -> fail_reg -> STOP) 
[] 
(req_write?s ->  
    if s == 0 
    then data_write?s0 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) 
    else if s == 1 
    then data_write?s1 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) 
    else unknown_reg -> fail_reg -> STOP) 
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Channel structure:  

REGISTER_ACCESS

fail_reg

req_read?

req_write? unknown_reg

data_read!

data_write?

 
 
LR(s0,s1,s2,s3,s4,s5,s6,s7) = 
     REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) 

Channel structure:  

LR

fail_reg

req_read?

req_write? unknown_reg

data_read!

data_write?

 
 
P1 = {| pipe1 |} 
 
P2 = {| pipe2, req_read, req_write, data_read, data_write |} 
 
LE(s0,s1,s2,s3,s4,s5,s6,s7) = 
    LR(s0,s1,s2,s3,s4,s5,s6,s7) ||| SEQUENCER 

Channel structure:  

LR

fail_reg

req_read?

req_write? unknown_reg

data_read!

data_write?

SEQUENCER
pipe1? pipe2!

LE

 
 
LEU(s0,s1,s2,s3,s4,s5,s6,s7) = 
     LE(s0,s1,s2,s3,s4,s5,s6,s7) [|P2|] LCU 
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Channel structure:  

LE fail_reg

req_read

req_write

unknown_reg

data_write

LCU

pipe1

LEU

fetch?

read_reg_start!

data_read

pipe2

write_reg_start!

read_reg_finish!

write_reg_finish!

 

We change AEP2 to use the separate start and finish channels. 
 
AEP2(s0,s1,s2,s3,s4,s5,s6,s7) = 
     LEU(s0,s1,s2,s3,s4,s5,s6,s7)  
   [|{| read_reg_start, write_reg_start, 
         read_reg_finish, write_reg_finish |}|]  
     DETECT_REG_ACCESS_ERROR 

Channel structure: 

LEU fail_reg

unknown_reg

DETECT_REG_ACCESS_
ERROR

AEP2

fetch?

read_reg_start

write_reg_start

read_reg_finish

write_reg_finish

fail_loc.0

fail_loc.1

 

We add a multiplexing process for the fail channels. 
 
FAIL_MUX = 
    [] s:{0..1} @ fail_loc?s -> fail -> FAIL_MUX 
    [] fail_reg -> fail -> FAIL_MUX 

 



CSP / FDR2 to Handel-C translation  45 

Channel structure: 

FAIL_MUX

fail_loc.0

failfail_loc.1

fail_reg

 

We put this in parallel with AEP, and hide the internal comms. 
 
P3_1 = {| pipe1, pipe2, req_read, req_write,  
         data_read, data_write, 
         read_reg_start, write_reg_start, 
         read_reg_finish, write_reg_finish, 
         fail_loc, fail_reg |} 
 
AEP_1(s0,s1,s2,s3,s4,s5,s6,s7) = 
        ( AEP2_1(s0,s1,s2,s3,s4,s5,s6,s7) 
        [| {| fail_loc, fail_reg |} |] FAIL_MUX ) 
    \  P3_1 

Channel structure: 

AEP2

fail_reg

unknown_reg

FAIL_MUX

AEP_1

fetch?

fail_loc.0

fail_loc.1

fail

 

6.4 Proving refinement 

We show that this new version is a refinement of the original. 
 
assert AEP_0(0,1,0,0,0,0,0,0) 
  [FD=  AEP_1(0,1,0,0,0,0,0,0)  
 
assert AEP_0(255,1,0,0,0,0,0,0) 
  [FD=  AEP_1(255,1,0,0,0,0,0,0) 
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6.5 Conversion to Handel-C 

Now we convert the final specification into Handel-C, including addition of certain 
translation directives. 

The nametypes translate to typedefs.  (The specification as it stands defined a BYTE 
and a REG to be a bit, but we assume a full byte here.) 

 
typedef unsigned int 8 BYTE ; 
typedef unsigned int 8 REG ; 

The datatype OPCODE translates to an enum. 
 
enum OPCODE { ldi , nop , hlt , add } ; 

The channels that talk to the registers use REG as an index (here we use the actual 
maximum value of REG), and communicate that the event has occurred. 

 
//--!! channel array read_reg_start index 8  (etc) 
chan SYNC read_reg_start[8] ; 
chan SYNC write_reg_start[8] ; 
chan SYNC reg_start[8] ; 
chan SYNC read_reg_finish[8] ; 
chan SYNC write_reg_finish[8] ; 
chan SYNC reg_finish[8] ; 
 
chan SYNC fail_loc[8] ; 

The fail_reg channel also communicates that the event has occurred. 
 
chan SYNC fail_reg ; 
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Other channels communicate a simple REG, or BYTE. 
 
chan REG req_read ; 
chan REG req_write ; 
chan REG dest_reg ; 
 
chan BYTE data_read ; 
chan BYTE data_write ; 

Other channels communicate structured types. 
 
struct pipe1_DATA { 
  BYTE byte1; 
  BYTE byte2; 
  enum OPCODE opcode1; 
  BYTE byte3; 
  REG reg1; 
} ; 
chan struct pipe1_DATA pipe1 ; 
 
struct pipe2_DATA { 
  REG reg1; 
  BYTE byte1; 
} ; 
chan struct pipe2_DATA pipe2 ; 
 
struct source_reg_DATA { 
  REG reg1; 
  enum OPCODE opcode1; 
} ; 
chan struct source_reg_DATA source_reg ; 
 
struct opcode_set_DATA { 
  BYTE byte1; 
  BYTE byte2; 
  enum OPCODE opcode1; 
} ; 
chan struct opcode_set_DATA opcode_set ; 

The input channel communicates a structured type.  This is not possible in Handel-C, 
so a sequence of inputs is used. 

 
//--!! channel in fetch 
struct fetch_DATA { 
  REG reg1; 
  enum OPCODE opcode1; 
  BYTE byte1; 
  REG reg2; 
} ; 
chanin REG fetch_reg1 ; 
chanin enum OPCODE fetch_opcode1 ; 
chanin BYTE fetch_byte1 ; 
chanin REG fetch_reg2 ; 

The output channels communicate that the event has occurred. 
 
//--!! channel out unknown_reg 
chanout SYNC unknown_reg ; 
//--!! channel out fail 
chanout SYNC fail ; 

LATCH is a tail recursive process.  Structures need to be declared for the various inputs 
and outputs. 
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void LATCH() { 
  REG reg1; 
  enum OPCODE opcode1; 
  BYTE byte1; 
  REG reg2; 
  struct source_reg_DATA source_reg1; 
  struct opcode_set_DATA opcode_set1; 
  struct pipe1_DATA pipe11; 
 
  while (1) { 
    fetch_reg1?reg1 ; 
    fetch_opcode1?opcode1 ; 
    fetch_byte1?byte1 ; 
    fetch_reg2?reg2 ; 
 
    source_reg1.reg1 = reg1 ; 
    source_reg1.opcode1 = opcode1 ; 
    source_reg!source_reg1 ; 
 
    opcode_set?opcode_set1 ; 
 
    pipe11.byte1 = opcode_set1.byte1 ; 
    pipe11.byte2 = opcode_set1.byte2 ; 
    pipe11.opcode1 = opcode_set1.opcode1 ; 
    pipe11.byte3 = byte1 ; 
    pipe11.reg1 = reg2 ; 
    pipe1!pipe11 ; 
  } 
} 

READ_REGISTERS is a tail recursive process.  Structures need to be declared for the 
various inputs and outputs. 

 
void READ_REGISTERS() { 
  struct source_reg_DATA source_reg1; 
  REG s, d ; 
  BYTE x, y ; 
  struct opcode_set_DATA opcode_set1; 
 
  while(1) { 
    source_reg?source_reg1 ; 
    s = source_reg1.reg1 ; 
 
    dest_reg?d; 
    if ( s == d ) { 
 
      opcode_set1.byte1 = 0 ; 
      opcode_set1.byte1 = 0 ; 
      opcode_set1.opcode1 = nop ; 
      opcode_set!opcode_set1 ; 
 
    } else { 
 
      read_reg_start[0 @ s]!syncout ; 
      req_read!s ; 
      data_read?x ; 
      req_read!(s+1)%2 ; 
      data_read?y ;  
      read_reg_finish[0 @ s]!syncout ; 
 
      opcode_set1.byte1 = x ; 
      opcode_set1.byte1 = y ; 
      opcode_set1.opcode1 = source_reg1.opcode1 ; 
      opcode_set!opcode_set1 ; 
    } 
  } 
} 
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SEQUENCER is a tail recursive process (one branch is STOP, but the process would have 
the same semantics if it were STOP ; SEQUENCER).  It is an ALT on CSP events, but it 
is not an ALT on Handel-C channels, it is a case statement on one of the values 
communicated on a single channel. 

 
void SEQUENCER() { 
  struct pipe1_DATA pipe11; 
  struct pipe2_DATA pipe21; 
 
  while(1) { 
    pipe1?pipe11 ; 
 
    switch ( pipe11.opcode1 ) { 
      case add: 
        pipe21.reg1 = pipe11.reg1 ; 
        pipe21.byte1 = (pipe11.byte1+pipe11.byte2)%2 ; 
        pipe2!pipe21 ; 
        break ; 
      case ldi: 
        pipe21.reg1 = pipe11.reg1 ; 
        pipe21.byte1 = pipe11.byte3 ; 
        pipe2!pipe21 ; 
        break ; 
      case nop: 
        pipe21.reg1 = 0 ; 
        pipe21.byte1 = pipe11.byte3 ; 
        pipe2!pipe21 ; 
        break ; 
      case hlt: 
        STOP() ; 
        break ; 
      default: 
        STOP() ; 
        break ; 
    } 
  } 
} 

UPDATE is a tail recursive process. 
 
void UPDATE() { 
  struct pipe2_DATA pipe21; 
  REG d ; 
 
  while (1) { 
    pipe2?pipe21 ;  
    d = pipe21.reg1 ; 
    if (d != 0) { 
      dest_reg!d ; 
      write_reg_start[0 @ d]!syncout ; 
      req_write!d  ;  
      data_write!pipe21.byte1 ; 
      write_reg_finish[0 @ d]!syncout ;  
    } else { 
      SKIP() ; 
    } 
  } 
} 

LCU is a parallel composition of three processes. 
 
void LCU() { 
  par { 
    LATCH() ; 
    READ_REGISTERS() ; 
    UPDATE() ; 
  } 
} 
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LOC_START, LOC_MIDDLE, and LOC_FINISH are all tail recursive processes 
parameterised by a channel index. 

 
void LOC_START(unsigned int s) { 
  SYNC syncin ; 
  while (1) { 
    prialt { 
      case read_reg_start[0 @ s]?syncin : 
        reg_start[0 @ s]!syncout ; 
        break ; 
      case write_reg_start[0 @ s]?syncin : 
        reg_start[0 @ s]!syncout ; 
        break ; 
    } 
  } 
} 
 
void LOC_FINISH(unsigned int s) { 
  SYNC syncin ; 
  while (1) { 
    prialt { 
      case read_reg_finish[0 @ s]?syncin : 
        reg_finish[0 @ s]!syncout ; 
        break ; 
      case write_reg_finish[0 @ s]?syncin : 
        reg_finish[0 @ s]!syncout ; 
        break ; 
    } 
  } 
} 
 
void LOC_MIDDLE(unsigned int s) { 
  SYNC syncin ; 
  while (1) { 
    read_reg_start[0 @ s]?syncin ; 
    prialt { 
      case reg_finish[0 @ s]?syncin : 
        break ; 
      case reg_start[0 @ s]?syncin : 
        fail_loc[0 @ s]!syncout ; 
        STOP() ; 
        break ; 
    } 
  } 
} 

LOC is a parallel composition of these three processes. 
 
void LOC(unsigned int s) { 
  par { 
    LOC_START(s) ; 
    LOC_MIDDLE(s) ; 
    LOC_FINISH(s) ; 
  } 
} 

DETECT_REG_ACCESS_ERROR is a parallel composition of two particular LOC  
processes. 

 
void DETECT_REG_ACCESS_ERROR() { 
  par { 
    LOC(0) ; 
    LOC(1) ; 
  } 
} 
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REGISTER_ACCESS is a tail recursive process containing an ALT. 
 
void REGISTER_ACCESS(BYTE s0, BYTE s1) { 
  REG s ; 
  while (1) { 
    prialt { 
      case req_read?s : 
        if (s == 0) {  
          data_read!s0 ; 
        } else if (s == 1) {  
          data_read!s1 ; 
        } else { 
          unknown_reg!syncout ; 
          fail_reg!syncout ; 
          STOP() ; 
       } 
        break ; 
      case req_write?s : 
        if (s == 0) { 
          data_write?s0 ; 
        } else if (s == 1) { 
          data_write?s1 ; 
        } else { 
          unknown_reg!syncout ; 
          fail_reg!syncout ; 
          STOP() ; 
        } 
        break ; 
    } 
  } 
} 

LR is a trivial process. 
 
void LR(BYTE s0, BYTE s1) { 
  REGISTER_ACCESS(s0, s1) ; 
} 

LE is a parallel composition of two processes. 
 
void LE(BYTE s0, BYTE s1) { 
  par { 
    LR(s0, s1) ; 
    SEQUENCER() ; 
  } 
} 

LEU is a parallel composition of two processes. 
 
void LEU(BYTE s0, BYTE s1) { 
  par { 
    LE(s0, s1) ; 
    LCU() ; 
  } 
} 

AEP2 is a parallel composition of two processes. 
 
void AEP2(BYTE s0, BYTE s1) { 
  par { 
    LEU(s0, s1) ; 
    DETECT_REG_ACCESS_ERROR() ; 
  } 
} 
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FAIL_MUX is a tail recursive process containing an ALT. 
 
//--!! sync in fail_reg 
void FAIL_MUX() { 
  SYNC syncin ; 
  while (1) { 
    prialt { 
      case fail_loc[0]?syncin : 
        fail!syncout ; 
        break ; 
      case fail_loc[1]?syncin : 
        fail!syncout ; 
        break ; 
      case fail_reg?syncin : 
        fail!syncout ; 
        break ; 
    } 
  } 
} 

AEP_1 is a parallel composition of two processes. 
 
void AEP_1(BYTE s0, BYTE s1) { 
  par { 
    AEP2(s0, s1) ; 
    FAIL_MUX() ; 
  } 
} 
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