
CSP / FDR2 to Handel-C translation

Susan Stepney

University of York Technical Report YCS-2003-357

June 2003

Crown Copyright 2003

PERMITTED USES. This material may be accessed as downloaded
onto electronic, magnetic, optical or similar storage media provided that
such activities are for private research, study or in-house use only.

RESTRICTED USES. This material must not be copied, distributed,
published or sold without the permission of the Controller of Her
Britannic Majesty’s Stationery Office.

CSP / FDR2 to Handel-C translation i

Contents

1. Introduction 1
1.1 Background 1
1.2 The languages of CSP, FDR2 and Handel-C 1
1.2.1 CSP and FDR2 1
1.2.2 Handel-C 2

2. Overview and scope 3
2.1 Development process structure 3
2.2 Scope of this study 4

3. Translator from CSP to Handel-C 5
3.1 Recursion 5
3.1.1 Tail recursion 5
3.1.2 Parameterised recursion 6
3.1.3 Exponential recursion 6
3.1.4 Summary 6
3.2 Channels 7
3.2.1 Channel communications 7
3.2.2 Hiding in CSP 8
3.2.3 Input and output channels 9
3.2.4 Indexed array of channels 9
3.2.5 Pure event channels 9
3.3 Expressions 10
3.3.1 Identifiers 10
3.3.2 Numbers 11
3.3.3 Sequences 11
3.3.4 Sets 11
3.3.5 Booleans 11
3.3.6 Tuples 12
3.3.7 Local definitions 12
3.3.8 Lambda terms 12
3.4 Pattern Matching 12
3.4.1 Functions 12
3.4.2 Processes 13
3.5 Types 13
3.5.1 Simple types 13
3.5.2 Named types 14
3.5.3 Data types 14
3.5.4 Subtypes 14
3.5.5 Closure operations 15

ii CSP / FDR2 to Handel-C translation

3.6 Processes 15
3.6.1 Primitive processes 15
3.6.2 Sequential composition 16
3.6.3 Choice 16
3.6.4 Parallel 18
3.6.5 Channel names and visibility 20
3.6.6 Interrupt 21
3.7 Others 21
3.7.1 Operator precedence 21
3.7.2 External 21
3.7.3 Transparent 22
3.7.4 Assert 22
3.7.5 Print 22
3.7.6 Comments 22
3.8 Summary 22

4. Translator from Handel-C to CSP 23

5. Dining Philosophers Example 24
5.1 Original specification 24
5.2 Introducing external channels 24
5.3 Left and right pickup channels 26
5.4 Proving first refinement 27
5.5 Unidirectional channels 28
5.6 Proving second refinement 29
5.7 Conversion to Handel-C 30

6. Pipeline processor example 33
6.1 Original specification 33
6.2 Hiding internal channels 38
6.3 Refining shared channels 39
6.4 Proving refinement 45
6.5 Conversion to Handel-C 46

7. References 53

CSP / FDR2 to Handel-C translation 1

1. Introduction

1.1 Background

This report is adapted from a study performed for AWE in 2001 by the author while at
Logica. It investigates the feasibility of using the CSP specification language and
FDR2 model-checking tool, and Handel-C programming language, in combination,
with FDR2 as a front-end specification and proof tool, then automatically translating
the formal designs into executable Handel-C. Such an approach could provide a
development path from an abstract specification to a correct executable
implementation running on an FPGA.

This report contains the following

• Identification of a subset of CSP that maps closely to Handel-C. That subset is
large enough to accommodate a large subset of CSP specifications.

• A sketch of a mapping from the identified CSP subset to Handel-C, suitable to be
performed automatically. As proof-of-concept, the identified mappings are hand-
applied to two example CSP specifications to produce Handel-C implementations.

1.2 The languages of CSP, FDR2 and Handel-C

1.2.1 CSP and FDR2

CSP (Communicating Sequential Processes) was first described in [Hoare78], then in
more detail in [Hoare85]. The version that forms the basis of the FDR2 tool is that
described in [Roscoe97], which differs only in a minor technical way, on the
treatment of alphabets (essentially, the events that can occur).1 Throughout the rest of
this report, “CSP” refers to the version in [Roscoe97].

The FDR2 tool model-checks a machine-processable subset of CSP. (When it is
important to distinguish the concrete form of the language supported by FDR2 from
full CSP, it is referred to as “CSP_M”.) FDR2 mechanically checks (proves) whether
a proposed implementation is a correct refinement of a more abstract specification.

CSP_M has a properly defined syntax, including ASCII versions of CSP’s large
collection of unusually-shaped operators. [Roscoe97] provides the link between the
CSP and CSP_M syntaxes.

1 [Hoare85] requires every process P to have a pre-defined alphabet αP, with the parallel operator

synchronising on the intersection of alphabets: P || Q synchronises on αP ∩ αQ. [Roscoe97] and
FDR define the alphabet of interest explicitly on the parallel operator: P X||Y Q synchronises on
X ∩ Y , and P ||A Q synchronises on the events in A.

2 CSP / FDR2 to Handel-C translation

A CSP_M program comprises definitions of processes and other objects, a declarative
style rather like that of a functional language program.

CSP_M supports multiway input and output channels (one event can simultaneously
comprise inputs and outputs, at multiple ends). For example, a.2?x!y is a
communication over channel a of three components: the first is the value 2, the
second is an input and will bind to x, and the third is the output y. It is equivalent to
a!2?x!y

1.2.2 Handel-C

Handel-C is an implementation language, targeting FPGAs, with a semantics based on
CSP. It is a procedural style language, rather like occam, but with a C-like concrete
syntax. It has a parallel construct PAR, channel communication, and an ALT
construct.

The language supports single input or single output point-to-point channels (one
communication event comprises an output from one end and an input at the other
end).

CSP / FDR2 to Handel-C translation 3

2. Overview and scope

2.1 Development process structure

The envisioned full development process, from abstract CSP safety specifications
down to their efficient Handel-C implementation, has the following components and
transformations.

FDR2 : abstract
system

specification

FDR2 : abstract
system

specification

FDR2 : concrete
system design

refinements proved correct
by FDR tool
(possibly multiple steps)

Handel-C : naive
system

implementation

Handel-C : efficient
system

implementation

automatic
translation of subset
of FDR2 to Handel-C

code optimisatons by
meaning-preserving transforms

(possibly multiple steps)

• Abstract system specification(s) – The high level CSP specification(s) of the
system, which state the desired properties of the system – probably relatively
abstractly as safety properties.

• Concrete system design – The concrete CSP design specification, close to an
executable implementation, is proved a correct refinement of the abstract
specification by using the model checking facilities of the FDR2 tool.

• There may need to be multiple refinement steps to move from specification
to design, each proved using the tool

• If the specification has gone through at least one proof step, assumptions can
be made about it that are stronger than merely “syntactically correct” – what
are these assumptions? are they helpful for translation?

• The design specification will need to be restricted to a subset of the CSP_M
language, to be translatable to Handel-C.

4 CSP / FDR2 to Handel-C translation

• Naive implementation – The concrete CSP design specification is translated
automatically into an abstract Handel-C implementation. This is runnable, but
may not be very efficient.

• Efficient implementation – The naive Handel-C implementation is optimised, by
meaning-preserving transforms, into a suitable efficient Handel-C
implementation.

• There is a trade-off between doing “optimisations” in FDR2 with existing
tool support, or as meaning-preserving Handel-C transformations, requiring
some tool support to be built.

2.2 Scope of this study

This study focuses on the translation step from the CSP concrete design specifciation
to the Handel-C naive implementation. It considers the following

• the constraints on the CSP_M language to make it translatable

• the feasibility of automatic translation – any need for “translation directives”

CSP / FDR2 to Handel-C translation 5

3. Translator from CSP to Handel-C

The approach taken is to identify a subset of CSP_M that can be translated directly to
Handel-C. The FDR2 tool should be used to refine the specification into this subset
language.

The translations described below follow the structure of the CSP_M syntax given in
[FDR2, Appendix A]. The syntax of CSP_M is described only informally in [FDR2].
CSP_M specification fragments are written in bold typewriter font. The BNF
syntax of Handel-C is given in [Handel-C]. Handel-C code fragments are written in
typewriter font.

The semantics of each language is described only sketchily. The translations
suggested below have been tested only to a limited degree: a more in-depth
exploration is needed before a translator can be built.

3.1 Recursion

The main point to note is that CSP definitions tend to be recursive. They are often
process definitions of the form “process P does this, then that, then behaves like P”.
Handel-C does not support recursion.

3.1.1 Tail recursion

Fortunately, most of the recursive definitions in actual use are tail recursive, and so
can easily be turned into loops.

For example, consider a typical CSP process definition like:

P = in ? x -> out ! sq -> P

If recursion were available in Handel-C, this could be naively translated as

void P() {
 in ? x;
 out ! sq;
 P();
}

This is not possible. However, because the definition is tail recursive, it can be
translated as

6 CSP / FDR2 to Handel-C translation

void P() {
 while (1) {
 in ? x;
 out ! sq
 }
}

3.1.2 Parameterised recursion

Recursive processes can be parameterised. For example (ignoring overflow for now)

COUNT(n) = in -> COUNT(n+1)

If recursion were available in Handel-C, this could be naively translated as

void COUNT(int n) {
 in ? null;
 COUNT(n+1);
}

Using tail recursion and a local variable, it can be translated as (ignoring where the
initial value comes from for now):

void COUNT() {
 int n = 0;
 while (1) {
 in ? null;
 n = n+1;
 }
}

3.1.3 Exponential recursion

Not all recursive processes are tail recursive. For example

P(n) = if n == 0 then a -> STOP else P(n-1) ||| P(n-1)

If recursion were available in Handel-C, this could be naively translated as

void P(int n) {
 if (n == 0) {
 a ? null;
 STOP();
 } else {
 par { P(n-1); P(n-1); }
 }
}

This could in principle be translated by unfolding the recursion and maybe using a
replicated par. But such a step is probably too large to do in a translation. Better
would be to do the unfolding within FDR2 and prove it correct, and then do a simple
translation.

3.1.4 Summary

Translation of tail recursive processes is straightforward and can be translated as the
equivalent loop. Non-tail recursive processes should be refined within FDR2, and
then translated.

CSP / FDR2 to Handel-C translation 7

3.2 Channels

3.2.1 Channel communications

3.2.1.1 Simple channels

Channels are key in both CSP and Handel-C. The mapping is straightforward for
single item communications

chan ? var ---> chan ? var
chan ! expr ---> chan ! expr

3.2.1.2 Structured channels

Where the CSP channels have dotted types, a Handel-C struct can be used to
capture the data structure passed across the channel. A data structure is defined. The
channel is declared to have this type. Local variables of this type might also be
needed, to assign values to the struct before outputting it.

For example,

channel pipe1 : BYTE.BYTE.OPCODE.BYTE.REG
... pipe1!x.y.a.i.d ...
... pipe1?v.w.add.i.d ...

 --->

struct pipe1_DATA {
 BYTE byte1;
 BYTE byte2;
 enum OPCODE opcode1;
 BYTE byte3;
 REG reg1;
} ;
chan struct pipe1_DATA pipe1 ;

struct pipe1_DATA pipe11;
pipe11.byte1 = opcode_set1.byte1 ;
pipe11.byte2 = opcode_set1.byte2 ;
pipe11.opcode1 = opcode_set1.opcode1 ;
pipe11.byte3 = byte1 ;
pipe11.reg1 = reg2 ;
pipe1!pipe11 ;

pipe1?pipe11 ;

3.2.1.3 Constrained input

CSP also has constrained input, c?x:a. Before translation to Handel-C, the CSP
specification must be refined to one with only unconstrained inputs.

3.2.1.4 Combined input and output

CSP also allows mixed input and output, c?x!y. Before translation to Handel-C, the
CSP specification must be refined to one where each communication is purely input
or purely output.

8 CSP / FDR2 to Handel-C translation

3.2.2 Hiding in CSP

CSP declares all the channels used globally. The channels actually used by a process
are determined by examining the process. If a compound process composes two
subprocesses on a channel, then hides it, the compound process does not have that
channel visible. Consider

CHANNEL in, mid, out : INTEGER
LEFT = in ? x -> mid ! x -> LEFT
RIGHT = mid ? x -> out ! x -> RIGHT
BUFFER = (LEFT [| {|mid|} |] RIGHT) \ {| mid |}

The three channels are globally declared. Examining the processes, we see that LEFT
has in and mid visible; RIGHT has mid and out visible, and BUFFER had in and out
visible.

3.2.2.1 Parameterised and local Handel-C channels

If we want to replicate this behaviour in Handel-C, the channels visible to a process
could be passed as parameters, and the internal ones could be hidden by being
declared locally.

chan int in, out ;
void LEFT(chan int in, chan int mid) {
 int x ;
 while (1) { in ? x ; mid ! x ; }
}
void RIGHT(chan int mid, chan int out) {
 int x ;
 while (1) { mid ? x ; out ! x ; }
}
void BUFFER(chan int in, chan int out) {
 chan int mid ;
 par { LEFT(in, mid) ; RIGHT(mid, out) ; }
}

Although this seems to give good correspondence with the CSP, it is actually quite
hard to work out from the CSP specification which channels are truly global and
which are intended to be local. So we do not follow this approach.

3.2.2.2 Global Handel-C channels

Alternatively the channels could be left global, and the hiding ignored. (This is the
approach adopted.)

chan int in, mid, out ;
void LEFT() {
 int x ;
 while (1) { in ? x ; mid ! x ; }
}
void RIGHT() {
 int x ;
 while (1) { mid ? x ; out ! x ; }
}

CSP / FDR2 to Handel-C translation 9

void BUFFER() {
 par { LEFT() ; RIGHT() ; }
}

3.2.3 Input and output channels

In CSP the visible channels are all those that have not been hidden. In Handel-C they
are those that have only one end, and are explicitly declared to be input or output
channels. A translation directive is needed to mark the channels intended for input or
output.

--!! channel in Name
channel Name : Type

 --->

chanin Type Name ;

--!! channel out Name
channel Name : Type

 --->

chanout Type Name ;

3.2.4 Indexed array of channels

Consider the channels used in the Dining Philosopher example (later).

channel pickupleft:{0..4}.Bool

This appears to be communicating a structured value (comprising an integer and a
boolean) on the channel pickupleft, and with many processes communicating
separate values on this one channel.

struct pickupleft_struct {
 Int s1 ;
 Bool s2 ;
}
chan pickupleft_struct pickupleft;

But this is actually being used as an array of channels, indexed by the first value, with
an array of processes, also indexed, each communicating on separate elements of this
array. This instead translates to Handel-C as

chan Bool pickupleft[5];

A translation directive is needed to say when the first parameter of a channel should
be interpreted as an index, and the range of that index.

--!! channel array pickupleft index 5

3.2.5 Pure event channels

In CSP an event is the channel and any values communicated across it. There need be
no actual communicated value, the processes can merely synchronise on a bare event.

10 CSP / FDR2 to Handel-C translation

In Handel-C a communication always involves a value, and a direction.

The translation provides a dummy SYNC value for use in these cases. A translation
directive can be used to provide the (arbitrary) direction, if required.

For example

channel c

--!! sync in c
P = c -> P
--!! sync out c
Q = c -> Q

R = P |[c]| Q

 --->

typedef unsigned int 1 SYNC ;
const SYNC syncout = 0 ;
SYNC syncin ;

chan SYNC c ;

void P() { while (1) { c?syncin ; } }
void Q() { while (1) { c!syncout ; } }
void R() { par { P() ; Q() ; } }

3.3 Expressions

3.3.1 Identifiers

A CSP_M identifier starts with a letter, followed by any number of letters, digits and
underscore characters, followed by any number of prime characters. Identifiers with
trailing underscores are reserved for machine-generated code, and so will not occur in
user scripts. [Note: this assumes the “trailing underscores” occur before the primes,
and that addition of a prime does not affect the rule on trailing underscores.]

csp_id ::= letter [{ letter | digit | _ } (letter | digit)] { ‘ }

Identifiers in Handel-C may start and end with an underscore.

hc_id ::= (letter | _) [{ letter | digit | _ }]

Letters, digits and underscores are translated unchanged, and final primes are
translated as final underscores. Any resulting name that conflicts with a Handel-C
keyword gets an initial underscore.

CSP / FDR2 to Handel-C translation 11

letter | digit | _ ---> letter | digit | _

 ‘ ---> _

 <keyword> ---> _<keyword>

3.3.2 Numbers

CSP_M integer literals are written only in decimal format, so can be translated
directly.

number ---> number

All the CSP_M arithmetic operators have the same syntax, associativity and meaning
as C arithmetic integer operations, and so translate directly to the Handel-C
equivalents.

3.3.3 Sequences

CSP_M has a sequence data type. This includes sequence literals, sequence
comprehensions, and some elementary operations for manipulating sequences.

It would be possible to build in some support for sequence literals and the operations
as a library. Sequence comprehensions would be much more difficult. So, at least
initially, we require that before translation to Handel-C, the CSP specification must be
refined into one with no occurrences of sequences.

3.3.4 Sets

CSP_M has a set data type. This includes set literals, set comprehensions, and some
operations for manipulating sets.

It would be possible to build in some support for set literals and the operations as a
library. Set comprehensions would be much more difficult. So, at least initially, we
require that before translation to Handel-C, the CSP specification must be refined into
one with no occurrences of sets.

3.3.5 Booleans

CSP_M’s boolean corresponds to Handel-C’s int 1, with false represented as 0,
and true as 1.

false ---> 0
true ---> 1

The CSP_M boolean operators translate directly to their Handel-C counterparts:

and ---> &&
or ---> ||
not ---> !
== ---> ==
!= ---> !=

< ---> < and similarly for other comparisons

12 CSP / FDR2 to Handel-C translation

if b then e1 else e2 ---> if (b) { e1 } else { e2 }

3.3.6 Tuples

CSP_M has a tuple data type.

It would be possible to build in some support for tuples as structs. But, at least
initially, we require that before translation to Handel-C, the CSP specification must be
refined into one with no occurrences of tuples.

3.3.7 Local definitions

CSP_M supports local definitions with a let ... within clause.

In Handel-C, functions cannot be defined within other functions. It would be possible
to provide some support for local declarations, by making them global with a suitable
unique renaming. But, at least initially, we require that before translation to Handel-
C, the CSP specification must be refined into one with no occurrences of local
definitions.

3.3.8 Lambda terms

CSP_M supports lambda terms (anonymous functions).

In Handel-C, functions cannot be anonymous. It would be possible to provide some
support for lambda terms, by converting them to functions and providing a suitable
unique name. But, at least initially, we require that before translation to Handel-C,
the CSP specification must be refined into one with no occurrences of lambda terms.

3.4 Pattern Matching

CSP_M supports pattern matching in defining its functions like a full functional
programming language.

Handel-C is a declarative language, with no support for pattern matching. Supporting
pattern matching in a translator is a task equivalent to writing a functional language
compiler. So we require that before translation to Handel-C, the CSP specification
must be refined into one with no occurrences of pattern matching.

3.4.1 Functions

Once CSP_M function definitions have been refined to have no occurrence of pattern
matching, they can be translated into the obvious Handel-C equivalent function.
Translation directives communicate the parameter types and return type. The function
may need to be inlined if it is used in multiple processes (indicated by a translation
directive).

CSP / FDR2 to Handel-C translation 13

For example

--!! function inline int dec(int x)
dec(x) = (x - 1) % 5

 --->

inline int dec(int x) { return((x - 1) % 5); }

Parameterless functions are translated as constants.

3.4.2 Processes

Process definitions, with or without parameters, are translated as procedures, that is,
void functions (see later). Translation directives communicate the parameter types.

3.5 Types

3.5.1 Simple types

CSP_M has two simple types, Int and Bool.

Int is the set of 32 bit signed integers. This corresponds to Handel-C’s int 32, or,
equivalently, long. The translation to the explicit int 32 is to be preferred, as it
emphasises the possibility of reducing the variable’s width. To make the translation
more transparent, we define the Handel-C name Int.

typedef unsigned int 32 Int ;

Int ---> Int

Bool is the set of Boolean values true and false. This corresponds to Handel-C’s
int 1, with false represented as 0, and true as 1. To make the translation more
transparent, we define the Handel-C name Bool.

typedef unsigned int 1 Bool ;

Bool ---> Bool

CSP_M can use various expressions in type expressions. The only one not already
required to be refined away is the dot operation, which denotes a composite type.
This can be translated as a Handel-C struct.

T1.T2. ... Tn

 --->

struct <typename> {
 T1 s1 ;
 T2 s2 ;
 ...
 Tn sn ;
}

<typename>

14 CSP / FDR2 to Handel-C translation

3.5.2 Named types

CSP_M allows types to be named. A similar effect can be achieved in Handel-C
using a typedef

nametype Name = Type ---> typedef Type Name ;

For example (remember in this example that CSP integer ranges are uniformly
translated to Ints)

nametype Values = {0..199} ---> typedef Int Values ;

nametype Ranges = Values . Values

 --->

struct Ranges_struct {
 Values s1 ;
 Values s2 ;
}
typedef Ranges_struct Ranges ;

3.5.3 Data types

CSP_M’s simple datatypes can be translated to Handel-C enums.

datatype Name = t1 | t2 | ... | tn

 --->

enum Name { t1 , t2 , ... , tn } ;

For example

datatype SimpleColour = Red | Green | Blue

 --->

enum SimpleColour { Red , Green , Blue } ;

CSP_M datatypes may also have values associated with the tags. This would
correspond to a union type in C, but Handel-C does not support the union construct.
So we require that before translation to Handel-C, the CSP specification must be
refined into one with only simple datatypes.

3.5.4 Subtypes

CSP_M Integer variables restricted to subranges and subtypes could possibly, with
some calculation, be used to specify narrower Handel-C types. But the resulting
mixed width Handel-C variables would probably require considerable casting to be
usable together, and so this approach is not recommended. Rather, some form of
assertion mechanism, checking that the Handel-C variables stay within their CSP_M
ranges, might be tried.

CSP / FDR2 to Handel-C translation 15

3.5.5 Closure operations

The main use for CSP_M closure operations is in writing the communication sets for
parallel operators. Since these sets are refined away (usually to the full event set)
before translation into Handel-C, no specific translation of them is required.

3.6 Processes

3.6.1 Primitive processes

3.6.1.1 SKIP

The CSP process SKIP does nothing except terminate successfully.

The obvious way to implement this in Handel-C is for the process to do nothing
except return. delay is the Handel-C statement that takes one clock cycle to do
nothing. (For technical Handel-C reasons we want the process to take at least one
clock cycle.)

void SKIP() { delay; }

SKIP ---> SKIP();

3.6.1.2 STOP

The CSP process STOP does nothing. It never communicates, and never terminates. It
is deadlocked. Although the entire process should not deadlock, it is possible that
branches of it may, whilst other branches continue executing.

The obvious way to implement this in Handel-C is for the process to do nothing, not
even return.

void STOP() { while (1) { delay; } }

STOP ---> STOP();

In a true parallel implementation, the deadlocked branch sits in a loop doing nothing.
In a simulated environment, there is a danger that the entire process will get caught in
this busy loop, and livelock. We assume the Handel-C simulator does not behave this
way.

3.6.1.3 CHAOS

The CSP process CHAOS(a) non-deterministically either stops, or engages in any
event from the set a then behaves like CHAOS(a). So it can engage in any event in a,
any number of times, and just stop at any time. It never terminates.

If we choose to allow the translation into Handel-C to include refinement, there is a
particularly simple implementation of CHAOS, that, independently of a, resolves all the
non-determinism to STOP.

16 CSP / FDR2 to Handel-C translation

void CHAOS() { STOP(); }

CHAOS ---> CHAOS();

3.6.2 Sequential composition

3.6.2.1 Prefix

Channels are the basis of events – the values communicated over them form the rest
of the event.

3.6.2.2 Simple sequential

With sequential composition, P ; Q, the two processes proceed in sequence, first P
until it terminates, then Q.

Handel-C provides two syntaxes for sequential composition: the conventional C semi-
colon, and the seq keyword. To allow for nested block structure, and to highlight the
connection between the CSP and the Handel-C, the seq keyword is preferred.

P ; Q ... ; R ---> seq { P(); Q(); ...; R(); }

Multi-statement Handel-C translations of complex processes should be enclosed in
the usual braces. Such braces are elided here, for clarity.

3.6.2.3 Replicated sequential

Because Handel-C replicators require a numerical index, the CSP specification must
be refined to one using only “closed range” numerical replicators (using say an array
of events).

With numerical replicated sequential, ; n:{i..j} @ P(n), the processes indexed by
n proceed sequentially.

; n:{i..j} @ P(n) ---> seq (n=i; n<=j; ++n) { P(n); }

3.6.3 Choice

3.6.3.1 External choice

With external environmental choice, P [] Q, the process offers the environment the
choice of the first event of P and the first event of Q. If the first event chosen is that
from P, then P [] Q behaves like P; if the first event chosen is that from Q, then
P [] Q behaves like Q. If the first events from P and Q are the same, then P [] Q
nondeterministically behaves like P or like Q .

Handel-C’s PRIALT construct implements simple external choice on channels (input
or output channels, but no Boolean guards). The channels must all be different. The
first channel in the list whose other end is ready to communicate is chosen. If no

CSP / FDR2 to Handel-C translation 17

channel is ready to communicate and there is no default branch, the entire PRIALT
statement waits until a channel becomes ready.

Before translation to Handel-C, the CSP specification must be refined into one where
each process in an external choice is written as a prefix process (that is, must be
written as a -> P), and with no occurrences of repeated channels in the external
choices.

In particular, there must be no Boolean guards. These can be transformed away in
CSP as

(ba & a -> P) [] (b -> Q) ... [] (c -> R)

 --->

if ba then (a -> P) [] (b -> Q) ... [] (c -> R)
 else (b -> Q) ... [] (c -> R)

The suitably reduced CSP construct has the translation

(a -> P) [] (b -> Q) ... [] (c -> R)

 --->

prialt {
 case a : P(); break;
 case b : Q(); break;
 ...
 case c : R(); break;
}

3.6.3.2 Internal choice

With internal nondeterministic choice, P |~| Q, the system non-deterministically
behaves like either P or Q.

If we choose to allow the translation into Handel-C to include refinement, there is a
particularly simple implementation of nondeterministic choice that resolves the
determinism in favour of P, or maybe of the “easiest” process to translate (say STOP
or SKIP if they were present).

P |~| Q ... |~| R ---> P();

This suggests that a CSP specification containing non-deterministic choice may be at
too high a level of abstraction to be realistically translated into an implementation.
The translation could proceed as above, but with a warning.

3.6.3.3 Replicated choice

Handel-C has no replicated ALT. Before translation to Handel-C, the CSP
specification must be refined into one with all occurrences of replicated choice
unwound to an explicit list of choices.

18 CSP / FDR2 to Handel-C translation

3.6.3.4 Untimed timeout

The untimed time-out process, P [> Q, begins by offering the option of P before it
opts to behave like Q.

P [> Q == (P |~| STOP) [] Q

If we resolve the nondeterminism of the internal choice always to pick the STOP
branch (equivalent to always timing out before there is a chance to engage in P), and
then use the identity STOP [] Q == Q, this can be translated as Q.

P [> Q ---> Q();

This suggests that an CSP specification containing untimed timeout may be at too
high a level of abstraction to be realistically translated into an implementation. The
translation could proceed as above, but with a warning.

3.6.3.5 Conditional choice

The conditional choice process, if b then P else Q, behaves like P if b is true,
otherwise it behaves like Q.

if b then P else Q ---> if (b) then { P(); } else { Q(); }

CSP_M also has a shorthand form

b & P == if b then P else STOP

which can be used to guard external choice in CSP specifications. However, such a
guard cannot be reduced to the prefix form required before translation into Handel-C
(Handel-C does not allow Boolean guards in PRIALTs).

3.6.4 Parallel

In CSP, processes can communicate by synchronising on events. Multiple processes
in parallel can synchronise on a shared event. Processes can be combined in parallel
in several ways that specify whether they do, or do not, synchronise on a potentially
shared events.

In Handel-C, this synchronisation communication is implemented by channels. The
flexibility of the CSP events is greatly reduced. A Handel-C channel is a
unidirectional point-to-point (two ended) link from one process to one other process.
To use a channel there must be precisely two processes, running in parallel, one
inputting and one outputting. The following are illegal:

1. two processes in parallel, each inputting or each outputting on the same channel

2. one process both inputting and outputting on a channel

These constraints disallow more complex cases. For example, consider trying to
implement a CSP specification of three processes in parallel synchronising on an
event. Since in Handel-C every synchronisation event looks like either an input or an

CSP / FDR2 to Handel-C translation 19

output, at least two of these three processes must be either inputting or outputting.
But this is illegal in Handel-C.

There is one parallel construct in Handel-C, the par statement. Processes execute in
parallel, and synchronise on any shared channels. Hence processes within a par
block must obey the rules for shared channel usage.

3.6.4.1 Sharing parallel

With sharing, or synchronised, parallel, P [| a |] Q, the two processes proceed in
parallel, synchronising on the events in a. So if both P and Q share an event in a, they
synchronise. If both P and Q share an event not in a, they do not synchronise with
each other; they may synchronise with another parallel process, or with the
environment.

Provided that a is big enough to contain all the events common to P and Q,
synchronised parallel translates directly to the Handel-C par construct. Such a set of
events that is big enough is Σ (CSP) or Events (CSP_M), the set of all possible events
(the entire alphabet). Before translation to Handel-C, the CSP specification must be
refined into one with all occurrences of synchronised parallel referencing only the set
of all events.

P [| Events |] Q ... [| Events |] R

 --->

par { P(); Q(); ...; R(); }

3.6.4.2 Alphabetised parallel

With alphabetised parallel, P [a || b] Q, the two processes run in parallel, P
engaging only in events in a, Q engaging only in events in b, and synchronising on the
events in the intersection of a and b.

Provided P and Q never communicate outside a and b respectively, alphabetised
parallel reduces to synchronised parallel of the intersection:

P [a || b] Q == P [| a ∩ b |] Q

Before translation to Handel-C, the CSP specification must be refined into one with
all occurrences of (replicated) alphabetised parallel replaced by (replicated) sharing
parallel.

3.6.4.3 Interleaving parallel

With interleaving parallel, P ||| Q, the two processes run independently of each
other, with no synchronised communication. Any event in the parallel composition
arises in only one of P or Q. So if both P and Q can engage in an event in a, only one
of them does, synchronising with another parallel process, or with the environment.

20 CSP / FDR2 to Handel-C translation

So interleaving is equivalent a synchronised parallel composition synchronised on the
empty set.

P ||| Q == P [| {| |} |] Q

Since in Handel-C, all channels are unidirectional and point to point, an interleaving
composition where there are potentially shared events is illegal. An interleaving
where there are no potentially shared events reduces to a synchronised parallel
(because in this case the synchronisation set is already empty).

Before translation to Handel-C, the CSP specification must be refined into one with
all occurrences of (replicated) interleaving parallel replaced by (replicated) sharing
parallel.

3.6.4.4 Replicated sharing parallel

The only replicated parallel we consider here is replicated sharing parallel, since the
other replicated parallels must be refined to this before translation. In addition,
because Handel-C replicators require a numerical index, the CSP specification must
be refined to one using only “closed range” numerical replicators (using say an array
of events).

With numerical replicated synchronised parallel, [| a |] n : {i..j} @ P(n), the
processes indexed by n proceed in parallel, synchronising on the events in a.

Before translation to Handel-C, the CSP specification must be refined into one with
all occurrences of replicated synchronised parallel referencing only the set of all
events.

[| Events |] n : {i..j} @ P(n)

 --->

par (n=i; n<=j; ++n) { P(n); }

3.6.5 Channel names and visibility

3.6.5.1 Hiding

In CSP, channels can be hidden, to make them unavailable to participate in further
events. In Handel-C, channels are unidirectional and point to point. Any channel
engaged in a communication is unavailable for further communication, and so is
implicitly hidden.

Once the CSP specification has been refined to one in which all channels are used in
this Handel-C manner, there is no need to translate the hidings explicitly.

3.6.5.2 Renaming

In CSP a process’s channels can be renamed.

CSP / FDR2 to Handel-C translation 21

The translation of channels into Handel-C does not explicitly link them with a
process. Processes are not parameterised by thier channels. Hence there is no simple
way to translate renaming.

Before translation to Handel-C, the CSP specification must be refined into one with
all occurrences of renaming removed.

3.6.5.3 Linked parallel

With linked parallel P [a1 <-> b1, ..., an <-> bn] Q, the two processes are in
parallel. Channel ai of P and channel bi of Q are joined together, and hidden. This
provides a more sophisticated form of “chaining”. It can be defined in terms of
renaming and hiding.

P [a1 <-> b1, ..., an <-> bn] Q ==
 (P [[a1 <- temp1, ..., an <- tempn]]
 |[{| temp1, ..., tempn |} |]
 Q [[b1 <- temp1, ..., bn <- tempn]]
)
 \ {| temp1, ..., tempn |}

Before translation to Handel-C, the CSP specification must be refined into one with
all occurrences of linked parallel replaced by sharing parallel.

3.6.6 Interrupt

The interrupt process, P /\ Q, begins by behaving like P and then behaves like Q.

There is no support for interrupts in Handel-C. Before translation to Handel-C, the
CSP specification must be refined into one without any interrupted processes.

3.7 Others

3.7.1 Operator precedence

In a translation, the module that parses the CSP_M and the module that outputs the
Handel-C must be aware of their respective languages’ precedences. The translation
module operates at the syntax tree level (manipulating already-parsed forms), and so
it does not need to worry about precedences. Any necessary bracketing will be the
concern of the Handel-C output.

3.7.2 External

The external keyword is provided by CSP_M to allow the use of functions defined
by other tools. Handel-C does not use such functions, and so no translation support is
required.

22 CSP / FDR2 to Handel-C translation

3.7.3 Transparent

The transparent keyword is provided by CSP_M to allow the use of certain
semantically neutral optimisations. The functions introduced have the semantics of
the identity function. Hence the translator should translate any transparent names to
the identity function (that is, remove them) wherever they occur.

transparent Name
T1 Name T2

 --->

T1 T2

For example

transparent diamond, normalise
squidge(P) = normalise(diamond(P))

 --->

squidge(P) = P

3.7.4 Assert

The assert keyword is provided by CSP_M to state properties to be proved by the
model checker. There is no need to translate these assert statements.

3.7.5 Print

The print keyword is provided by CSP_M to enable certain expressions to be
evaluated and examined with the tool. There is no need to translate these print
statements.

3.7.6 Comments

CSP_M end of line comments start with -- and continue to the end of the line. Block
comments start with {- and continue to the matching -} (that is, they can be nested).

Handel-C end of line comments start with // and continue to the end of the line.
Block comments start with /* and continue to the first */ (that is, they may not be
nested).

So CSP_M comments can be translated directly to Handel-C comments (to help
document the generated code), provided any nested closing block comment markers
are stripped.

3.8 Summary

Quite a large subset of CSP_M can be mapped to Handel-C. Of the remaining
language, much of it can readily be refined into a translatable form.

CSP / FDR2 to Handel-C translation 23

4. Translator from Handel-C to CSP

The translations mentioned in the previous section can often be applied in reverse, to
map Handel-C into CSP_M, to allow it to be analysed.

Handel-C that has been written in the style of the target of the translator can be
translated back into CSP_M. There are some features of Handel C that need care.

• Procedures need to be written as infinite while loops, to be translated into tail
recursive processes.

• No translation for signals has been determined.

• Hardware specific features (ram, rom, etc) should be ignored.

More work is needed to determine the appropriate sub-language and style for
translation.

24 CSP / FDR2 to Handel-C translation

5. Dining Philosophers Example

5.1 Original specification

This example is taken from
http://www.cs.bris.ac.uk/Teaching/Resources/COMS40204/Exercise/Files/dphil_butler.fdr2

-- The dining philosophers with a butler.
--
-- Simon Gay, Royal Holloway, January 1999
--
channel pickup:{0..4}.{0..4}
channel putdown:{0..4}.{0..4}
channel sitdown:{0..4}
channel getup:{0..4}

inc(x) = (x + 1) % 5
dec(x) = (x - 1) % 5

PHIL(i) = sitdown.i -> pickup.i.inc(i) -> pickup.i.i ->
 putdown.i.inc(i) -> putdown.i.i -> getup.i -> PHIL(i)

FORK(i) = pickup.i.i -> putdown.i.i -> FORK(i)
 [] pickup.dec(i).i -> putdown.dec(i).i -> FORK(i)

PHILS = || i:{0..4} @ [{|pickup.i.i, pickup.i.inc(i),
 putdown.i.i, putdown.i.inc(i),
 sitdown.i, getup.i|}]
 PHIL(i)

FORKS = || i:{0..4} @ [{|pickup.i.i, putdown.i.i,
 pickup.dec(i).i, putdown.dec(i).i|}]
 FORK(i)

DINNER = PHILS [{|pickup,putdown,sitdown,getup|} ||
 {|pickup,putdown|}] FORKS

BUTLER(i) = if i == 0
 then sitdown?x -> BUTLER(1)
 else if i == 4
 then getup?y -> BUTLER(3)
 else (sitdown?x -> BUTLER(i+1)
 [] getup?y -> BUTLER(i-1))

NEWDINNER = DINNER [{|pickup,putdown,sitdown,getup|} ||
 {|sitdown,getup|}] BUTLER(0)

5.2 Introducing external channels

This has all the events “visible”. In a Handel-C implementation, all channels are
point-to-point, and the only visible communications are those that take place with the
outside world. So we modify this specification by adding a new channel, world, that
the BUTLER process uses to communicate with the world whenever a PHIL sits down
or gets up. All the other channels are hidden in the NEWDINNER process.

CSP / FDR2 to Handel-C translation 25

-- (0) explicit external channel

channel pickup:{0..4}.{0..4}
channel putdown:{0..4}.{0..4}
channel sitdown:{0..4}
channel getup:{0..4}
channel world_sit:{0..4}
channel world_up:{0..4}

inc(x) = (x + 1) % 5
dec(x) = (x - 1) % 5

PHIL(i) = sitdown.i -> pickup.i.inc(i) -> pickup.i.i ->
 putdown.i.inc(i) -> putdown.i.i -> getup.i -> PHIL(i)

FORK(i) = pickup.i.i -> putdown.i.i -> FORK(i)
 [] pickup.dec(i).i -> putdown.dec(i).i -> FORK(i)

PHILS = || i:{0..4} @ [{|pickup.i.i, pickup.i.inc(i),
 putdown.i.i, putdown.i.inc(i),
 sitdown.i, getup.i|}]
 PHIL(i)

FORKS = || i:{0..4} @ [{|pickup.i.i, putdown.i.i,
 pickup.dec(i).i, putdown.dec(i).i|}]
 FORK(i)

DINNER = PHILS [{|pickup,putdown,sitdown,getup|} ||
 {|pickup,putdown|}] FORKS

BUTLER(i) = if i == 0
 then sitdown?x -> world_sit!x -> BUTLER(1)
 else if i == 4
 then getup?y -> world_up!y -> BUTLER(3)
 else (sitdown?x -> world_sit!x -> BUTLER(i+1)
 [] getup?y -> world_up!y -> BUTLER(i-1))

NEWDINNER = (DINNER [{|pickup,putdown,sitdown,getup|} ||
 {|sitdown,getup|}] BUTLER(0))
 \ {|pickup,putdown,sitdown,getup |}

A diagram of the processes and channels helps shows how these are arranged.

PHIL(i) FORK(j)BUTLER(k)

pickup.i.jsitdown.i

putdown.i.jgetup.i

world.i.b

The pickup channels and putdown channels communicate two values: the
philosopher doing the picking up, and the fork being picked up. Many values
possible from the type are not actually communicated, such as pickup.3.0. A naïve
implementation as a 2-D array of channels would result in 5×5 = 25 channels, rather
than the 10 that are ever used.

The sitdown channels and getup channels communicate one value: the philosopher
doing the sitting down and getting up.

The world_sit channel and the world_up channel communicate one value: the
philosopher involved in sitting down and getting up respectively.

26 CSP / FDR2 to Handel-C translation

Expanding the arrays, we see the processes have the following communication
structure. (The pickup channels have similar putdown channels; the sitdown
channels have similar getup channels.)

PHIL(0)

FORK(1)FORK(0)

PHIL(1)PHIL(4)

PHIL(2)PHIL(3)

FORK(4) FORK(2)

FORK(3)

BUTLER

pickup.0.1

pickup.1.1

pickup.1.2

pickup.2.2

pickup.2.3pickup.3.3

pickup.3.4

pickup.4.4

pickup.4.0

pickup.0.0

s
i
t
d
o
w
n
.
0

sitdown.1

s
i
t
d
o
w
n
.
2

s
i
t
d
o
w
n
.
3

sitdown.4

world

5.3 Left and right pickup channels

Let us simplify the example to use the 10 pickup channels explicitly. These channels
are labelled with the philosopher, and indicate whether the fork on the left (higher
index) or on the right (same index) is being picked up. (Note that from the fork’s
point of view, the pickupleft channel communicates that it has been picked up by
the left hand of the philosopher, who is on the fork’s right.)

-- The dining philosophers with a butler.
--
-- (1) simpler channel structure

channel pickupleft:{0..4}
channel pickupright:{0..4}
channel putdownleft:{0..4}
channel putdownright:{0..4}
channel world_sit:{0..4}
channel world_up:{0..4}

PHIL_1(i) = sitdown.i -> pickupleft.i -> pickupright.i ->
 putdownleft.i -> putdownright.i -> getup.i -> PHIL_1(i)

FORK_1(i) = pickupright.i -> putdownright.i -> FORK_1(i)
 [] pickupleft.dec(i) -> putdownleft.dec(i) -> FORK_1(i)

PHILS_1 = || i:{0..4} @ [{|pickupleft.i, pickupright.i,
 putdownleft.i, putdownright.i,
 sitdown.i, getup.i|}]
 PHIL_1(i)

CSP / FDR2 to Handel-C translation 27

FORKS_1 = || i:{0..4} @ [{|pickupright.i, putdownright.i,
 pickupleft.dec(i), putdownleft.dec(i)|}]
 FORK_1(i)

DINNER_1 = PHILS_1 [{|pickupleft,pickupright,
 putdownleft,putdownright,sitdown,getup|}
 || {|pickupleft,pickupright,
 putdownleft,putdownright|}]
 FORKS_1

BUTLER_1(i) = if i == 0
 then sitdown?x -> world_sit!x -> BUTLER_1(1)
 else if i == 4
 then getup?y -> world_up!y -> BUTLER_1(3)
 else (sitdown?x -> world_sit!x -> BUTLER_1(i+1)
 [] getup?y -> world_up!y -> BUTLER_1(i-1))

NEWDINNER_1 = (DINNER_1 [{|pickupleft,pickupright,
 putdownleft,putdownright,sitdown,getup|}
 || {|sitdown,getup|}]
 BUTLER_1(0))
 \ {|pickupleft,pickupright,
 putdownleft,putdownright,sitdown,getup|}

Now a diagram of the processes and channels looks like:

PHIL(0)

FORK(1)FORK(0)

PHIL(1)PHIL(4)

PHIL(2)PHIL(3)

FORK(4) FORK(2)

FORK(3)

BUTLER

pickupleft.0

pickupright.1

pickupleft.1

pickupright.2

pickupleft.2pickupright.3

pickupleft.3

pickupright.4

pickupleft.4

pickupright.0

s
i
t
d
o
w
n
.
0

sitdown.1

s
i
t
d
o
w
n
.
2

s
i
t
d
o
w
n
.
3

sitdown.4

world

5.4 Proving first refinement

This modified specification is proved a refinement of the original. (See later for
FDR2 screen shot.)

assert NEWDINNER [FD= NEWDINNER_1

28 CSP / FDR2 to Handel-C translation

5.5 Unidirectional channels

Now we need to make the channels unidirectional, one end outputting, one end
inputting.

The sitdown and getup channels are inputs at the butler process (the input value is
the index of the relevant philosopher), so it seems sensible to make them outputs at
the philosopher process. Also we have the identity sitdown.i = sitdown!i.
However, we also want these channels to be an array, with i as the array index. We
also note that the value transmitted is not used by the butler process. So we keep i as
the index in the philosopher process, and make it into an index in the butler process,
using a replicated external choice. We also add a dummy boolean value (which can be
implemented in Handel-C as a one-bit channel) to be communicated, from
philosopher to butler.

We similarly add a dummy value to the pickup and putdown channels, and arbitrarily
choose the communication direction to be from philosopher to fork.

-- The dining philosophers with a butler.
--
-- (2) point-to-point channel structure

channel pickupleft_2:{0..4}.Bool
channel pickupright_2:{0..4}.Bool
channel putdownleft_2:{0..4}.Bool
channel putdownright_2:{0..4}.Bool
channel sitdown_2:{0..4}.Bool
channel getup_2:{0..4}.Bool
channel world_sit:{0..4}
channel world_up:{0..4}

PHIL_2(i) = sitdown_2.i!true ->
 pickupleft_2.i!true -> pickupright_2.i!true ->
 putdownleft_2.i!true -> putdownright_2.i!true ->
 getup_2.i!true -> PHIL_2(i)

FORK_2(i) = pickupright_2.i?b -> putdownright_2.i?b -> FORK_2(i)
 [] pickupleft_2.dec(i)?b -> putdownleft_2.dec(i)?b -> FORK_2(i)

PHILS_2 = || i:{0..4} @ [{|pickupleft_2.i, pickupright_2.i,
 putdownleft_2.i, putdownright_2.i,
 sitdown_2.i, getup_2.i|}]
 PHIL_2(i)

FORKS_2 = || i:{0..4} @ [{|pickupright_2.i, putdownright_2.i,
 pickupleft_2.dec(i), putdownleft_2.dec(i)|}]
 FORK_2(i)

DINNER_2 = PHILS_2 [{|pickupleft_2, pickupright_2,
 putdownleft_2, putdownright_2,
 sitdown_2, getup_2|}
 || {|pickupleft_2,pickupright_2,
 putdownleft_2,putdownright_2|}]
 FORKS_2

CSP / FDR2 to Handel-C translation 29

BUTLER_2(i) = if i == 0
 then [] x:{0..4} @ sitdown_2.x?b ->
 world_sit!x -> BUTLER_2(1)
 else if i == 4
 then [] y:{0..4} @ getup_2.y?b ->
 world_up!y -> BUTLER_2(3)
 else ([] x:{0..4} @ sitdown_2.x?b ->
 world_sit!x ->
 BUTLER_2(i+1)
 [] [] y:{0..4} @ getup_2.y?b ->
 world_up!y ->
 BUTLER_2(i-1))

NEWDINNER_2 = (DINNER_2 [{|pickupleft_2,pickupright_2,
 putdownleft_2,putdownright_2,sitdown_2,getup_2|}
 || {|sitdown_2,getup_2|}]
 BUTLER_2(0))
 \ {|pickupleft_2,pickupright_2,
 putdownleft_2,putdownright_2,sitdown_2,getup_2|}

Now a diagram of the processes and point-to-point channels looks like:

PHIL(0)

FORK(1)FORK(0)

PHIL(1)PHIL(4)

PHIL(2)PHIL(3)

FORK(4) FORK(2)

FORK(3)

BUTLER

pickupleft[0]

pickupright[1]

pickupleft[1]

pickupright[2]

pickupleft[2]pickupright[3]

pickupleft[3]

pickupright[4]

pickupleft[4]

pickupright[0]

s
i
t
d
o
w
n
[
0
]

sitdown[1]

s
i
t
d
o
w
n
[
2
]

s
i
t
d
o
w
n
[
3
]

sitdown[4]

world

5.6 Proving second refinement

This modified specification is proved a refinement of the original.

assert NEWDINNER_1 [FD= NEWDINNER_2

30 CSP / FDR2 to Handel-C translation

5.7 Conversion to Handel-C

The CSP specification has been refined to a point where it is suitable for translation
into Handel-C, on addition of certain translation directives.

The index on the philosopher and fork process represents replication, of process and
channels. The index on the butler process represents internal state.

The initial {0..4} type is taken as an array index.

//--!! channel pickupleft array 5 (etc)
chan Bool pickupleft[5] ;
chan Bool pickupright[5] ;
chan Bool putdownleft[5] ;
chan Bool putdownright[5] ;
chan Bool sitdown[5] ;
chan Bool getup[5] ;

//--!! channel out world_sit
chanout int world_sit ;
//--!! channel out world_up
chanout int world_up ;

We inline the decrement function to ensure that the parallel philosophers get one each

//--!! function inline int dec(int x)
inline int dec(int x) { return((x - 1) % 5); }

CSP / FDR2 to Handel-C translation 31

The parameter to the philosopher process is used internally as a channel index. The
tail recursive process is translated to a while loop.

void PHIL(int i) {
 while (1) {
 sitdown[0 @ i]!true ;
 pickupleft[0 @ i]!1 ;
 pickupright[0 @ i]!1 ;
 putdownleft[0 @ i]!1 ;
 putdownright[0 @ i]!1 ;
 getup[0 @ i]!true ;
 }
}

The parameter to the fork process is used internally as a channel index. The tail
recursive process is translated to a while loop. The external choice is translated to a
prialt. The dummy variable b has to be declared in the Handel-C.

void FORK(int i) {
 unsigned int 1 b ;
 while (1) {
 prialt {
 case pickupright[0 @ i]?b :
 putdownright[0 @ i]?b ;
 break ;
 case pickupleft[0 @ dec(i)]?b :
 putdownleft[0 @ dec(i)]?b ;
 break;
 }
 }
}

The replicated parallel is translated to a replicated par. The list of synchronised
channels disappears.

void PHILS() {
 par (i = 0; i < 5,; ++i) {
 PHIL(i) ;
 }
}

void FORKS() {
 par (i = 0; i < 5,; ++i) {
 FORK(i) ;
 }
}

void DINNER() {
 par {
 PHILS ;
 FORKS ;
 }
}

The parameter to the butler process is used internally as state, so an internal variable
is declared, and initialised to the actual parameter. The tail recursive process is
translate to a while loop. The replicated external choice is expanded out (there being
no replicated prialt in Handel-C) and translated to a prialt. The dummy variable b
has to be declared in the Handel-C.

32 CSP / FDR2 to Handel-C translation

void BUTLER(int iparam) {
 int i = iparam ;
 unsigned int b;

 while (1) {
 if (i == 0) {
 s.s2 = 1;
 prialt {
 case sitdown[0]?b : world_sit!0 ; i = 1 ; break ;
 case sitdown[1]?b : world_sit!1 ; i = 1 ; break ;
 case sitdown[2]?b : world_sit!2 ; i = 1 ; break ;
 case sitdown[3]?b : world_sit!3 ; i = 1 ; break ;
 case sitdown[4]?b : world_sit!4 ; i = 1 ; break ;
 }
 }
 else if (i == 4) {
 s.s2 = 0;
 prialt (y = 0; y < 5,; ++y) {
 case getup[0]?b : world_up!0 ; i = 3 ; break ;
 case getup[1]?b : world_up!1 ; i = 3 ; break ;
 case getup[2]?b : world_up!2 ; i = 3 ; break ;
 case getup[3]?b : world_up!3 ; i = 3 ; break ;
 case getup[4]?b : world_up!4 ; i = 3 ; break ;
 }
 }
 else prialt {
 case sitdown[0]?b : world_sit!0 ; i = i+1 ; break ;
 case sitdown[1]?b : world_sit!1 ; i = i+1 ; break ;
 case sitdown[2]?b : world_sit!2 ; i = i+1 ; break ;
 case sitdown[3]?b : world_sit!3 ; i = i+1 ; break ;
 case sitdown[4]?b : world_sit!4 ; i = i+1 ; break ;
 case getup[0]?b : world_up!0 ; i = i-1 ; break ;
 case getup[1]?b : world_up!1 ; i = i-1 ; break ;
 case getup[2]?b : world_up!2 ; i = i-1 ; break ;
 case getup[3]?b : world_up!3 ; i = i-1 ; break ;
 case getup[4]?b : world_up!4 ; i = i-1 ; break ;
 }
 }

 }

void NEWDINNER() {
 par {
 DINNER ;
 BUTLER(0) ;
 }
}

CSP / FDR2 to Handel-C translation 33

6. Pipeline processor example

This example is provided by AWE, augmented with some diagrams showing the
channel structure.

6.1 Original specification

-- AEP Analysis by W. Ifill, AWE
-- v1.6

nametype BYTE = {0..1} -- 7
datatype OPCODE = ldi | nop | hlt | add
nametype REG = {0..1} -- 8
datatype ACCESS = start | finish
datatype MODE = read | write

channel read_reg : REG.ACCESS
channel write_reg : REG.ACCESS
channel reg : REG.ACCESS

channel fetch : REG.OPCODE.BYTE.REG
channel pipe1 : BYTE.BYTE.OPCODE.BYTE.REG
channel pipe2 : REG.BYTE
channel fail
channel unknown_reg

channel req_read : REG
channel req_write : REG
channel data_read : BYTE
channel data_write : BYTE
channel source_reg : REG.OPCODE
channel dest_reg : REG
channel opcode_set : BYTE.BYTE.OPCODE

STAGE 0 of pipeline is the fetching of s.o.i.d (Source_register, Opcode,
Immediate_data, Destination_register) from program memory. No specification for
this stage as yet.

STAGE 1 of the pipeline: Fetch gets the contents of the next instruction from the
instruction reg. Access to the register bank is signalled as started (like register bank
enable). A read is made (data on reg databus). Two consecutive regs are read. The
reg. bank is disabled (finish). The fetch data and reg data is communicated to the
next pipeline stage.

LATCH = fetch?s.o.i.d ->
 source_reg!s.o -> opcode_set?x.y.a
 -> pipe1!x.y.a.i.d -> LATCH

Channel structure:

LATCH

fetch?

source_reg!opcode_set?

pipe1!

34 CSP / FDR2 to Handel-C translation

To prevent a data hazard we define READ_REGISTERS. The incoming opcode will be
changed to a nop to prevent simultaneous access of the same register location (loc).

READ_REGISTERS = source_reg?s.o -> dest_reg?d ->
 if (s == d) then
 (opcode_set!0.0.nop -> READ_REGISTERS)
 else
 (read_reg!s.start ->
 req_read!s -> data_read?x ->
 req_read!((s+1)%2) -> data_read?y ->
 read_reg!s.finish ->
 opcode_set!x.y.o -> READ_REGISTERS)

Channel structure:

READ_REGISTERS

req_read!

source_reg?

dest_reg? read_reg!

opcode_set!

data_read?

STAGE 2: These are the actions of the individual commands.
• ADD: retrieved register values are added.
• LDI: new value passes for loading in destination register.
• NOP: to prevent the setting of the destination register on NOP the

destination register is set to r0.
• HLT: stops processor.

SEQUENCER = ADD [] LDI [] NOP [] HLT

ADD = pipe1?v.w.add.i.d -> pipe2!d.((v+w)%2) -> SEQUENCER
LDI = pipe1?v.w.ldi.i.d -> pipe2!d.i -> SEQUENCER
NOP = pipe1?v.w.nop.i.d -> pipe2!0.i -> SEQUENCER
HLT = pipe1?v.w.hlt.i.d -> STOP

Channel structure:

SEQUENCER
pipe1? pipe2!

STAGE 3: The update performs a write if the two zero'ed registers are not requested.
UPDATE works with READ_REGISTERS to prevent a data hazard as does LATCH. LATCH
and READ_REGISTERS together latch a safe instruction.

UPDATE = pipe2?d.i ->
 if (d != 0)
 then
 (dest_reg!d ->
 write_reg!d.start -> req_write!d ->
 data_write!i ->
 write_reg!d.finish -> UPDATE)
 else
 UPDATE

CSP / FDR2 to Handel-C translation 35

Channel structure:

UPDATE
pipe2?

dest_reg!

req_write!

data_write!

write_reg!

LCU = (LATCH [|{| source_reg, opcode_set |}|] READ_REGISTERS)
 [|{| dest_reg |}|] UPDATE
 \ {|dest_reg, source_reg, opcode_set|}

Channel structure:

LCU

LATCH
fetch?

source_regopcode_set

pipe1!

READ_REGISTERS req_read!

read_reg!
data_read?

UPDATE
pipe2?

dest_reg

req_write!

data_write!

write_reg!

THE REGISTER BANK: If access to the same register (loc) is required
simultaneously then the second request should have been delay. If not fail will be
signalled. To speed up analysis only two reg from reg bank are used: 0 and 1.

LOC_START(s) =
 read_reg.s.start -> reg.s.start -> LOC_START(s)
 [] write_reg.s.start -> reg.s.start -> LOC_START(s)

LOC_FINISH(s) =
 read_reg.s.finish -> reg.s.finish -> LOC_FINISH(s)
 [] write_reg.s.finish -> reg.s.finish -> LOC_FINISH(s)

LOC_MIDDLE(s) =
 reg.s.start ->
 (reg.s.finish -> LOC_MIDDLE(s)
 [] reg.s.start -> fail -> STOP)

LOC(s) = ((LOC_START(s) [|{|reg|}|] LOC_MIDDLE(s))
 [|{|reg|}|] LOC_FINISH(s))
 \ {|reg|}

36 CSP / FDR2 to Handel-C translation

Channel structure: (Note: the read_reg and write_reg channels are shown as
inputs, because that fits the way they are used later. Also, these channels, and the
reg channel, are used by parallel processes.)

LOC(s)

LOC_START

reg.s.start

read_reg.s.start

LOC_MIDDLE
fail

LOC_FINISH

reg.s.finish
read_reg.s.finish

write_reg.s.start

write_reg.s.finish

DETECT_REG_ACCESS_ERROR = LOC(0) ||| LOC(1)

Channel structure: (Note: the fail channel is used by two parallel processes.)

LOC(0)

read_reg.0

write_reg.0

DETECT_REG_ACCESS_
ERROR

LOC(1)

read_reg.1

write_reg.1

fail

READING AN INDIVIDUAL REGISTER IN THE REGISTER BANK. This process
outputs/inputs values of registers. To speed up analysis only two reg from reg bank
are used: 0 and 1.

REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) =

(req_read?s ->
 if s == 0
 then data_read!s0 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7)
 else if s == 1
 then data_read!s1 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7)
 else unknown_reg -> fail -> STOP)
[]
(req_write?s ->
 if s == 0
 then data_write?s0 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7)
 else if s == 1
 then data_write?s1 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7)
 else unknown_reg -> fail -> STOP)

CSP / FDR2 to Handel-C translation 37

Channel structure:

REGISTER_ACCESS

fail

req_read?

req_write? unknown_reg

data_read!

data_write?

INTERFACING WITH REGISTER BANK

LR(s0,s1,s2,s3,s4,s5,s6,s7) =
 REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7)

Channel structure:

LR

fail

req_read?

req_write? unknown_reg

data_read!

data_write?

PUTTING THE PIPELINE TOGETHER: when latch does a read it reads a value
from the REGISTER_ACCESS process. Initial values are fixed (No write as yet. Similar
structure but read?...)

pipeline stages interfaces.

P1 = {| pipe1 |}

P2 = {| pipe2, req_read, req_write, data_read, data_write |}

Build up pipe line: interfacing stage 1 and 2. The output of one stage is the input of
the next

LE(s0,s1,s2,s3,s4,s5,s6,s7) =
 LR(s0,s1,s2,s3,s4,s5,s6,s7) ||| SEQUENCER

Channel structure:

LR

fail

req_read?

req_write? unknown_reg

data_read!

data_write?

SEQUENCER
pipe1? pipe2!

LE

Interfacing stages 2 and 3.

LEU(s0,s1,s2,s3,s4,s5,s6,s7) =
 LE(s0,s1,s2,s3,s4,s5,s6,s7) [|P2|] LCU

38 CSP / FDR2 to Handel-C translation

Channel structure: (Note: this assumes pipe2 is in the communication set. Note: the
“internal” channels are not hidden, so are visible to the FDR2 analysis.)

LE fail

req_read

req_write

unknown_reg

data_write

LCU

pipe1

LEU

fetch?

read_reg!

data_read

pipe2

write_reg!

Reg bank access action is synchronised with the pipeline. Faults in the pipeline may
force the reg bank to STOP

AEP2(s0,s1,s2,s3,s4,s5,s6,s7) =
 LEU(s0,s1,s2,s3,s4,s5,s6,s7)
 [|{| read_reg, write_reg |}|]
 DETECT_REG_ACCESS_ERROR

Channel structure: (Note: the fail channel is used by two parallel processes. Note:
the “internal” channels are not hidden, so are visible to the FDR2 analysis.)

LEU fail

unknown_reg

DETECT_REG_ACCESS_
ERROR

AEP2

fetch?

read_reg

write_reg

6.2 Hiding internal channels

For the purposes of refining to Handel-C, we take this final specification, and hide all
the interior channels, to find our starting point.

P3_0 = {| pipe1, pipe2, req_read, req_write,
 data_read, data_write,
 read_reg, write_reg |}

AEP_0(s0,s1,s2,s3,s4,s5,s6,s7) =
 AEP2(s0,s1,s2,s3,s4,s5,s6,s7) \ P3_0

CSP / FDR2 to Handel-C translation 39

6.3 Refining shared channels

Now we need to remove the shared channels read_reg, write_reg, reg, and fail.
The first three cases can be achieved by having separate start and finish channels
in each case, as these are used by separate processes. The last case can be achieved
by using a multiplexor.

-- AEP Analysis
-- separate start and finish channels, multiplexed fail channel

nametype BYTE = {0..1} -- 7
datatype OPCODE = ldi | nop | hlt | add
nametype REG = {0..1} -- 8

channel read_reg_start : REG
channel write_reg_start : REG
channel reg_start : REG
channel read_reg_finish : REG
channel write_reg_finish : REG
channel reg_finish : REG

channel fetch : REG.OPCODE.BYTE.REG
channel pipe1 : BYTE.BYTE.OPCODE.BYTE.REG
channel pipe2 : REG.BYTE
channel fail_loc : REG
channel fail_reg
channel unknown_reg
channel fail

channel req_read : REG
channel req_write : REG
channel data_read : BYTE
channel data_write : BYTE
channel source_reg : REG.OPCODE
channel dest_reg : REG
channel opcode_set : BYTE.BYTE.OPCODE

LATCH = fetch?s.o.i.d ->
 source_reg!s.o -> opcode_set?x.y.a
 -> pipe1!x.y.a.i.d -> LATCH

Channel structure:

LATCH

fetch?

source_reg!opcode_set?

pipe1!

We change READ_REGISTER to use the separate start and finish channels.

READ_REGISTERS = source_reg?s.o -> dest_reg?d ->
 if (s == d) then
 (opcode_set!0.0.nop -> READ_REGISTERS)
 else
 (read_reg_start!s ->
 req_read!s -> data_read?x ->
 req_read!((s+1)%2) -> data_read?y ->
 read_reg_finish!s ->
 opcode_set!x.y.o -> READ_REGISTERS)

40 CSP / FDR2 to Handel-C translation

Channel structure:

READ_REGISTERS

req_read!

source_reg?

dest_reg?
read_reg_start!

opcode_set!

data_read?
read_reg_finish!

SEQUENCER = ADD [] LDI [] NOP [] HLT

ADD = pipe1?v.w.add.i.d -> pipe2!d.((v+w)%2) -> SEQUENCER
LDI = pipe1?v.w.ldi.i.d -> pipe2!d.i -> SEQUENCER
NOP = pipe1?v.w.nop.i.d -> pipe2!0.i -> SEQUENCER
HLT = pipe1?v.w.hlt.i.d -> STOP

Channel structure:

SEQUENCER
pipe1? pipe2!

We change UPDATE to use the separate start and finish channels.

UPDATE = pipe2?d.i ->
 if (d != 0)
 then
 (dest_reg!d ->
 write_reg_start!d -> req_write!d ->
 data_write!i ->
 write_reg_finish!d -> UPDATE)
 else
 UPDATE

Channel structure:

UPDATE
pipe2?

dest_reg!

req_write!

data_write!

write_reg_start!

write_reg_finish!

LCU = (LATCH [|{| source_reg, opcode_set |}|] READ_REGISTERS)
 [|{| dest_reg |}|] UPDATE
 \ {|dest_reg, source_reg, opcode_set|}

CSP / FDR2 to Handel-C translation 41

Channel structure:

LCU

LATCH
fetch?

source_regopcode_set

pipe1!

READ_REGISTERS

req_read!

read_reg_start!
data_read?

UPDATEpipe2?

dest_reg

req_write!

data_write!

write_reg_finish!

read_reg_finish!

write_reg_start!

We change LOC to use the separate start and finish channels, and the indexed
fail_loc channels.

LOC_START(s) =
 read_reg_start.s -> reg_start.s -> LOC_START(s)
 [] write_reg_start.s -> reg_start.s -> LOC_START(s)

LOC_FINISH(s) =
 read_reg_finish.s -> reg_finish.s -> LOC_FINISH(s)
 [] write_reg_finish.s -> reg_finish.s -> LOC_FINISH(s)

LOC_MIDDLE(s) =
 reg_start.s ->
 (reg_finish.s -> LOC_MIDDLE(s)
 [] reg_start.s -> fail_loc.s -> STOP)

LOC(s) = ((LOC_START(s) [|{|reg_start|}|] LOC_MIDDLE(s))
 [|{|reg_finish|}|] LOC_FINISH(s))
 \ {|reg_start,reg_finish|}

42 CSP / FDR2 to Handel-C translation

Channel structure: (Note: the read_reg and write_reg channels are shown as
inputs, because that fits the way they are used later.)

LOC(s)

LOC_START

reg_start.s

read_reg_start.s

LOC_MIDDLE
fail_loc.s

LOC_FINISH

reg_finish.s
read_reg_finish.s

write_reg_start.s

write_reg_finish.s

DETECT_REG_ACCESS_ERROR = LOC(0) ||| LOC(1)

Channel structure:

LOC(0)

read_reg_start.0

write_reg_start.0

DETECT_REG_ACCESS_
ERROR

LOC(1)read_reg_finish.1

write_reg_finish.1

fail_loc.0

read_reg_start.1

write_reg_start.1

read_reg_finish.0

write_reg_finish.0

fail_loc.1

We change REGISTER_ACCESS to use the separate fail_reg channel.

REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7) =

(req_read?s ->
 if s == 0
 then data_read!s0 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7)
 else if s == 1
 then data_read!s1 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7)
 else unknown_reg -> fail_reg -> STOP)
[]
(req_write?s ->
 if s == 0
 then data_write?s0 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7)
 else if s == 1
 then data_write?s1 -> REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7)
 else unknown_reg -> fail_reg -> STOP)

CSP / FDR2 to Handel-C translation 43

Channel structure:

REGISTER_ACCESS

fail_reg

req_read?

req_write? unknown_reg

data_read!

data_write?

LR(s0,s1,s2,s3,s4,s5,s6,s7) =
 REGISTER_ACCESS(s0,s1,s2,s3,s4,s5,s6,s7)

Channel structure:

LR

fail_reg

req_read?

req_write? unknown_reg

data_read!

data_write?

P1 = {| pipe1 |}

P2 = {| pipe2, req_read, req_write, data_read, data_write |}

LE(s0,s1,s2,s3,s4,s5,s6,s7) =
 LR(s0,s1,s2,s3,s4,s5,s6,s7) ||| SEQUENCER

Channel structure:

LR

fail_reg

req_read?

req_write? unknown_reg

data_read!

data_write?

SEQUENCER
pipe1? pipe2!

LE

LEU(s0,s1,s2,s3,s4,s5,s6,s7) =
 LE(s0,s1,s2,s3,s4,s5,s6,s7) [|P2|] LCU

44 CSP / FDR2 to Handel-C translation

Channel structure:

LE fail_reg

req_read

req_write

unknown_reg

data_write

LCU

pipe1

LEU

fetch?

read_reg_start!

data_read

pipe2

write_reg_start!

read_reg_finish!

write_reg_finish!

We change AEP2 to use the separate start and finish channels.

AEP2(s0,s1,s2,s3,s4,s5,s6,s7) =
 LEU(s0,s1,s2,s3,s4,s5,s6,s7)
 [|{| read_reg_start, write_reg_start,
 read_reg_finish, write_reg_finish |}|]
 DETECT_REG_ACCESS_ERROR

Channel structure:

LEU fail_reg

unknown_reg

DETECT_REG_ACCESS_
ERROR

AEP2

fetch?

read_reg_start

write_reg_start

read_reg_finish

write_reg_finish

fail_loc.0

fail_loc.1

We add a multiplexing process for the fail channels.

FAIL_MUX =
 [] s:{0..1} @ fail_loc?s -> fail -> FAIL_MUX
 [] fail_reg -> fail -> FAIL_MUX

CSP / FDR2 to Handel-C translation 45

Channel structure:

FAIL_MUX

fail_loc.0

failfail_loc.1

fail_reg

We put this in parallel with AEP, and hide the internal comms.

P3_1 = {| pipe1, pipe2, req_read, req_write,
 data_read, data_write,
 read_reg_start, write_reg_start,
 read_reg_finish, write_reg_finish,
 fail_loc, fail_reg |}

AEP_1(s0,s1,s2,s3,s4,s5,s6,s7) =
 (AEP2_1(s0,s1,s2,s3,s4,s5,s6,s7)
 [| {| fail_loc, fail_reg |} |] FAIL_MUX)
 \ P3_1

Channel structure:

AEP2

fail_reg

unknown_reg

FAIL_MUX

AEP_1

fetch?

fail_loc.0

fail_loc.1

fail

6.4 Proving refinement

We show that this new version is a refinement of the original.

assert AEP_0(0,1,0,0,0,0,0,0)
 [FD= AEP_1(0,1,0,0,0,0,0,0)

assert AEP_0(255,1,0,0,0,0,0,0)
 [FD= AEP_1(255,1,0,0,0,0,0,0)

46 CSP / FDR2 to Handel-C translation

6.5 Conversion to Handel-C

Now we convert the final specification into Handel-C, including addition of certain
translation directives.

The nametypes translate to typedefs. (The specification as it stands defined a BYTE
and a REG to be a bit, but we assume a full byte here.)

typedef unsigned int 8 BYTE ;
typedef unsigned int 8 REG ;

The datatype OPCODE translates to an enum.

enum OPCODE { ldi , nop , hlt , add } ;

The channels that talk to the registers use REG as an index (here we use the actual
maximum value of REG), and communicate that the event has occurred.

//--!! channel array read_reg_start index 8 (etc)
chan SYNC read_reg_start[8] ;
chan SYNC write_reg_start[8] ;
chan SYNC reg_start[8] ;
chan SYNC read_reg_finish[8] ;
chan SYNC write_reg_finish[8] ;
chan SYNC reg_finish[8] ;

chan SYNC fail_loc[8] ;

The fail_reg channel also communicates that the event has occurred.

chan SYNC fail_reg ;

CSP / FDR2 to Handel-C translation 47

Other channels communicate a simple REG, or BYTE.

chan REG req_read ;
chan REG req_write ;
chan REG dest_reg ;

chan BYTE data_read ;
chan BYTE data_write ;

Other channels communicate structured types.

struct pipe1_DATA {
 BYTE byte1;
 BYTE byte2;
 enum OPCODE opcode1;
 BYTE byte3;
 REG reg1;
} ;
chan struct pipe1_DATA pipe1 ;

struct pipe2_DATA {
 REG reg1;
 BYTE byte1;
} ;
chan struct pipe2_DATA pipe2 ;

struct source_reg_DATA {
 REG reg1;
 enum OPCODE opcode1;
} ;
chan struct source_reg_DATA source_reg ;

struct opcode_set_DATA {
 BYTE byte1;
 BYTE byte2;
 enum OPCODE opcode1;
} ;
chan struct opcode_set_DATA opcode_set ;

The input channel communicates a structured type. This is not possible in Handel-C,
so a sequence of inputs is used.

//--!! channel in fetch
struct fetch_DATA {
 REG reg1;
 enum OPCODE opcode1;
 BYTE byte1;
 REG reg2;
} ;
chanin REG fetch_reg1 ;
chanin enum OPCODE fetch_opcode1 ;
chanin BYTE fetch_byte1 ;
chanin REG fetch_reg2 ;

The output channels communicate that the event has occurred.

//--!! channel out unknown_reg
chanout SYNC unknown_reg ;
//--!! channel out fail
chanout SYNC fail ;

LATCH is a tail recursive process. Structures need to be declared for the various inputs
and outputs.

48 CSP / FDR2 to Handel-C translation

void LATCH() {
 REG reg1;
 enum OPCODE opcode1;
 BYTE byte1;
 REG reg2;
 struct source_reg_DATA source_reg1;
 struct opcode_set_DATA opcode_set1;
 struct pipe1_DATA pipe11;

 while (1) {
 fetch_reg1?reg1 ;
 fetch_opcode1?opcode1 ;
 fetch_byte1?byte1 ;
 fetch_reg2?reg2 ;

 source_reg1.reg1 = reg1 ;
 source_reg1.opcode1 = opcode1 ;
 source_reg!source_reg1 ;

 opcode_set?opcode_set1 ;

 pipe11.byte1 = opcode_set1.byte1 ;
 pipe11.byte2 = opcode_set1.byte2 ;
 pipe11.opcode1 = opcode_set1.opcode1 ;
 pipe11.byte3 = byte1 ;
 pipe11.reg1 = reg2 ;
 pipe1!pipe11 ;
 }
}

READ_REGISTERS is a tail recursive process. Structures need to be declared for the
various inputs and outputs.

void READ_REGISTERS() {
 struct source_reg_DATA source_reg1;
 REG s, d ;
 BYTE x, y ;
 struct opcode_set_DATA opcode_set1;

 while(1) {
 source_reg?source_reg1 ;
 s = source_reg1.reg1 ;

 dest_reg?d;
 if (s == d) {

 opcode_set1.byte1 = 0 ;
 opcode_set1.byte1 = 0 ;
 opcode_set1.opcode1 = nop ;
 opcode_set!opcode_set1 ;

 } else {

 read_reg_start[0 @ s]!syncout ;
 req_read!s ;
 data_read?x ;
 req_read!(s+1)%2 ;
 data_read?y ;
 read_reg_finish[0 @ s]!syncout ;

 opcode_set1.byte1 = x ;
 opcode_set1.byte1 = y ;
 opcode_set1.opcode1 = source_reg1.opcode1 ;
 opcode_set!opcode_set1 ;
 }
 }
}

CSP / FDR2 to Handel-C translation 49

SEQUENCER is a tail recursive process (one branch is STOP, but the process would have
the same semantics if it were STOP ; SEQUENCER). It is an ALT on CSP events, but it
is not an ALT on Handel-C channels, it is a case statement on one of the values
communicated on a single channel.

void SEQUENCER() {
 struct pipe1_DATA pipe11;
 struct pipe2_DATA pipe21;

 while(1) {
 pipe1?pipe11 ;

 switch (pipe11.opcode1) {
 case add:
 pipe21.reg1 = pipe11.reg1 ;
 pipe21.byte1 = (pipe11.byte1+pipe11.byte2)%2 ;
 pipe2!pipe21 ;
 break ;
 case ldi:
 pipe21.reg1 = pipe11.reg1 ;
 pipe21.byte1 = pipe11.byte3 ;
 pipe2!pipe21 ;
 break ;
 case nop:
 pipe21.reg1 = 0 ;
 pipe21.byte1 = pipe11.byte3 ;
 pipe2!pipe21 ;
 break ;
 case hlt:
 STOP() ;
 break ;
 default:
 STOP() ;
 break ;
 }
 }
}

UPDATE is a tail recursive process.

void UPDATE() {
 struct pipe2_DATA pipe21;
 REG d ;

 while (1) {
 pipe2?pipe21 ;
 d = pipe21.reg1 ;
 if (d != 0) {
 dest_reg!d ;
 write_reg_start[0 @ d]!syncout ;
 req_write!d ;
 data_write!pipe21.byte1 ;
 write_reg_finish[0 @ d]!syncout ;
 } else {
 SKIP() ;
 }
 }
}

LCU is a parallel composition of three processes.

void LCU() {
 par {
 LATCH() ;
 READ_REGISTERS() ;
 UPDATE() ;
 }
}

50 CSP / FDR2 to Handel-C translation

LOC_START, LOC_MIDDLE, and LOC_FINISH are all tail recursive processes
parameterised by a channel index.

void LOC_START(unsigned int s) {
 SYNC syncin ;
 while (1) {
 prialt {
 case read_reg_start[0 @ s]?syncin :
 reg_start[0 @ s]!syncout ;
 break ;
 case write_reg_start[0 @ s]?syncin :
 reg_start[0 @ s]!syncout ;
 break ;
 }
 }
}

void LOC_FINISH(unsigned int s) {
 SYNC syncin ;
 while (1) {
 prialt {
 case read_reg_finish[0 @ s]?syncin :
 reg_finish[0 @ s]!syncout ;
 break ;
 case write_reg_finish[0 @ s]?syncin :
 reg_finish[0 @ s]!syncout ;
 break ;
 }
 }
}

void LOC_MIDDLE(unsigned int s) {
 SYNC syncin ;
 while (1) {
 read_reg_start[0 @ s]?syncin ;
 prialt {
 case reg_finish[0 @ s]?syncin :
 break ;
 case reg_start[0 @ s]?syncin :
 fail_loc[0 @ s]!syncout ;
 STOP() ;
 break ;
 }
 }
}

LOC is a parallel composition of these three processes.

void LOC(unsigned int s) {
 par {
 LOC_START(s) ;
 LOC_MIDDLE(s) ;
 LOC_FINISH(s) ;
 }
}

DETECT_REG_ACCESS_ERROR is a parallel composition of two particular LOC
processes.

void DETECT_REG_ACCESS_ERROR() {
 par {
 LOC(0) ;
 LOC(1) ;
 }
}

CSP / FDR2 to Handel-C translation 51

REGISTER_ACCESS is a tail recursive process containing an ALT.

void REGISTER_ACCESS(BYTE s0, BYTE s1) {
 REG s ;
 while (1) {
 prialt {
 case req_read?s :
 if (s == 0) {
 data_read!s0 ;
 } else if (s == 1) {
 data_read!s1 ;
 } else {
 unknown_reg!syncout ;
 fail_reg!syncout ;
 STOP() ;
 }
 break ;
 case req_write?s :
 if (s == 0) {
 data_write?s0 ;
 } else if (s == 1) {
 data_write?s1 ;
 } else {
 unknown_reg!syncout ;
 fail_reg!syncout ;
 STOP() ;
 }
 break ;
 }
 }
}

LR is a trivial process.

void LR(BYTE s0, BYTE s1) {
 REGISTER_ACCESS(s0, s1) ;
}

LE is a parallel composition of two processes.

void LE(BYTE s0, BYTE s1) {
 par {
 LR(s0, s1) ;
 SEQUENCER() ;
 }
}

LEU is a parallel composition of two processes.

void LEU(BYTE s0, BYTE s1) {
 par {
 LE(s0, s1) ;
 LCU() ;
 }
}

AEP2 is a parallel composition of two processes.

void AEP2(BYTE s0, BYTE s1) {
 par {
 LEU(s0, s1) ;
 DETECT_REG_ACCESS_ERROR() ;
 }
}

52 CSP / FDR2 to Handel-C translation

FAIL_MUX is a tail recursive process containing an ALT.

//--!! sync in fail_reg
void FAIL_MUX() {
 SYNC syncin ;
 while (1) {
 prialt {
 case fail_loc[0]?syncin :
 fail!syncout ;
 break ;
 case fail_loc[1]?syncin :
 fail!syncout ;
 break ;
 case fail_reg?syncin :
 fail!syncout ;
 break ;
 }
 }
}

AEP_1 is a parallel composition of two processes.

void AEP_1(BYTE s0, BYTE s1) {
 par {
 AEP2(s0, s1) ;
 FAIL_MUX() ;
 }
}

CSP / FDR2 to Handel-C translation 53

7. References

[FDR2] Failures-Divergence Refinement: FDR2 User Manual, version 2.67. Formal
Systems (Europe) Ltd. 3 May 2000.

[HandelC] Handel-C: Language Reference Manual, version 3.0 beta 2. Embedded
Solutions Ltd.

[Hoare78] C. A. R. Hoare. “Communicating Sequential Processes.” CACM 21(8), 666–
77. 1978.

[Hoare85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall. 1985.

[Roscoe94] A. W. Roscoe. “Model checking CSP”. In A Classical Mind, essays in
honour of C.A.R. Hoare. Prentice-Hall. 1994.

[Roscoe97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall.
1997.

	Introduction
	Background
	The languages of CSP, FDR2 and Handel-C
	CSP and FDR2
	Handel-C

	Overview and scope
	Development process structure
	Scope of this study

	Translator from CSP to Handel-C
	Recursion
	Tail recursion
	Parameterised recursion
	Exponential recursion
	Summary

	Channels
	Channel communications
	Simple channels
	Structured channels
	Constrained input
	Combined input and output

	Hiding in CSP
	Parameterised and local Handel-C channels
	Global Handel-C channels

	Input and output channels
	Indexed array of channels
	Pure event channels

	Expressions
	Identifiers
	Numbers
	Sequences
	Sets
	Booleans
	Tuples
	Local definitions
	Lambda terms

	Pattern Matching
	Functions
	Processes

	Types
	Simple types
	Named types
	Data types
	Subtypes
	Closure operations

	Processes
	Primitive processes
	SKIP
	STOP
	CHAOS

	Sequential composition
	Prefix
	Simple sequential
	Replicated sequential

	Choice
	External choice
	Internal choice
	Replicated choice
	Untimed timeout
	Conditional choice

	Parallel
	Sharing parallel
	Alphabetised parallel
	Interleaving parallel
	Replicated sharing parallel

	Channel names and visibility
	Hiding
	Renaming
	Linked parallel

	Interrupt

	Others
	Operator precedence
	External
	Transparent
	Assert
	Print
	Comments

	Summary

	Translator from Handel-C to CSP
	Dining Philosophers Example
	Original specification
	Introducing external channels
	Left and right pickup channels
	Proving first refinement
	Unidirectional channels
	Proving second refinement
	Conversion to Handel-C

	Pipeline processor example
	Original specification
	Hiding internal channels
	Refining shared channels
	Proving refinement
	Conversion to Handel-C

	References

