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Abstract
One of the touted advantages of formal methods is the ability to do proof. But

examples of proofs as part of industrial formal methods projects are relatively

hard to find. I describe here two of the large Z proof projects I have been

involved in at Logica, one for the correctness of a High Integrity Compiler, one

for security properties of a smartcard-based electronic purse. I also show how

the entire specification and proof process is deeply affected by why something is

being proved, what is being proved, and how the finished proof is to be

presented. I finish off by describing, based on my experiences, what I believe to

be the requirements for an industrial-strength Z proof tool.

1. Introduction

Logica’s Formal Methods Team has been involved in several large industrial-strength

proof projects over the last few years. Two of these projects are the Z specification

and correctness proof of a safety-critical compiler, and the Z specification and security

proof of a smartcard-based electronic purse.

Formal specification ‘keeps you honest’, by making it that much more difficult to

get away with imprecision and woolly thinking. But it is still possible to fool yourself

with a specification that does not actually say what you think it does. Proof makes it

yet harder to do this.

Proof is not an ‘all-or-nothing’ feature to be added to a project: proof can be

performed at various levels of rigour, yielding various levels of benefits. As a

consequence, proof does not provide any absolute guarantee of correctness; it provides

an increased level of assurance in line with the degree of rigour used.

2. The two proof projects

2.1 Pasp-to-Asp Compiler, for AWE

In 1990 Logica’s Formal Methods Team performed a study for RSRE (now DERA

Malvern) into how to develop a compiler for high integrity applications that is itself of

high integrity. We developed a technique for specifying a compiler and proving it

correct, and built a small proof-of-concept prototype. The technique is described, and

a small case study is worked up in full, including all the proofs, in [Stepney 1993].

The technique involves writing a formal specification of the compiler in terms of

translation templates. The denotational semantics of the source and target language

are also formally specified. The proof shows that the compiler is ‘meaning preserving’,

that it always produces a target language program that has the same meaning as the

corresponding source language program. The compiler specification is implemented in

a high level language to give an executable compiler. (The source and target language

specifications can also be implemented, to provide interpreters for these languages.)



Engineers at AWE read about the study and asked us to use these techniques to

implement a compiler for their own high integrity processor, called the ASP (Arming

System Processor). We have developed for them a high integrity compiler, integrated

in a development and test environment, for a non-trivial subset of Pascal, including

functions and procedures, and modules for separate compilation [Stepney 1998].

The specification of their source language Pasp, a Pascal-like subset, runs to about

150 pages. This includes specification of the concrete syntax and three static semantics

(declaration before use, type correctness, and initialisation before use), as well as the

dynamic semantics that is the starting point for the compiler correctness proofs. The

Asp assembly language specification is rather shorter, at about 50 pages. The compiler

specification – Asp templates corresponding to each Pasp construct – is about 100

pages, with a further 20 pages for the linker. The proof, which is presented mainly in

outline, runs to about 50 pages.

The proof was performed chiefly to provide us, the implementers, with increased

assurance that the development was correct, and also to allow the client to

demonstrate that the development was of high integrity. Three highlights of the proof

effort were:

1. Correctness: while casting the proof obligation for the function call expression,
we realised that the evaluation stack as then specified would be overwritten

when a function call was embedded in an arithmetic expression. This error was

caught just by thinking about the proof obligation, not actually discharging it.

2. Clarity: when we came to add modules and linking to Pasp, we started by

determining the proof obligations for separate compilation, and then used these

to help us design the linking constructs themselves.

3. Partial coverage: The only flaw revealed in testing, beyond simple

transcription errors, was that 16-bit unsigned division/modulus did not work

for some arguments. But this was one of the few constructs that, due to the

incremental nature of the project, we were still waiting to perform the proofs

about. No errors were found in the constructs we had proved.

2.2 Electronic Purse, for NatWest Development Team

Over the past few years Logica’s Formal Methods Team has been working with the

NatWest Development Team proving the correctness of smartcard applications for

electronic commerce.

The particular product I describe here is an ‘electronic purse’ hosted on a

smartcard. Purses interact with each other, via a communication device, to exchange

value. Once released into the field, each purse is on its own, and has to ensure the

security of all its transactions without recourse to a central controller. All the security

measures have to be implemented on the card, with no real-time external audit logging

or monitoring.

This product is deeply security critical, and the client decided to use formal

methods in their development process, in order to attain increased assurance. So we

developed formal models of the implemented system and the abstract security policy,

and proved that the system design possessed all the security properties [Stepney et al.

1998].

The specification of the abstract security policy is about 20 pages of Z. The

concrete system specification, including the n-step value transfer protocol, is about 60

pages. The proof, presented at a level of detail suitable for external evaluation,



comprises 200 pages of refinement proof, and another 100 pages of derivation of the

particular refinement rules we needed to use.

Highlights of this proof effort include:

1. Understanding: we made a key modelling discovery – of classifying certain

partially completed transactions as ‘definitely aborted’ or ‘maybe aborted’ –

which clarified our specification, and our understanding of the protocol. We

would probably not have seen this without doing the proof.

2. Backward rules: we discovered that the traditional Z data refinement proof

obligations [Spivey 1992, section 5.6] were not sufficient to prove our

refinement. In particular, these obligations assume the use of a ‘forward’ (or

‘downward’) simulation, and allow no input/output refinement. But our

models were linked by a ‘backward’ simulation, and needed i/o refinement. So

we had to go back to first principles and derive the required rules.

3. Clarification: The amount of value in a purse part-way through the transfer
protocol is not obvious. By having an abstract definition of the transfer, we

were able to state precisely what the balance was, and so show that the

protocol could not ‘create’ value, only transfer it.

4. Proof discovered a bug: our proof uncovered a bug in the proposed

implementation of a secondary protocol. We were able to use the failed proof,

plus the understanding that it gave us, to construct a scenario that was

obviously flawed, and to fix the design so that it no longer had the flaw.

5. Evaluation for yet more assurance: the third-party evaluators found an

unjustified assumption in one of our proofs; we were able to justify it fairly

easily.

3. The proof process

3.1 Depth

We often hear words to the effect that “proofs in mathematics are deep; proofs in

computer science are shallow”, with the accompanying sub-text that shallow proofs

are trivial and uninteresting.

It is certainly true that none of the individual proof steps in the two examples

above required use of any particularly deep mathematics. Most of the steps were no

more than applications of cut, one point, thin, Leibnitz, and Z toolkit laws. But just

because each individual step is simple, does not mean that the whole proof is shallow.

In our case, we have always needed to work out why we were proving something, just

what we had to prove, and then how to prove it. And some of that meta-work was

quite deep.

Agreed, the depth is not in the mathematical basis of the underlying formal

specification language – typed set theory in the case of Z. The depth lies in the

mathematics and context of the particular model. If that is deep, the proof can be deep

and interesting, too.



3.2 Why prove

There are several different reasons one may want to do a proof.

• Improve one’s own understanding: Just as for ‘why specify?’, proof can

help one to communicate, to clarify, to understand, and to discover implicit

properties of a specification.

• Clarify real-world connections: Sometimes the mapping between the

specification and the real world is not what is thought. A clearly understood

abstract concept might be refined to subtly different concrete concept, which is

then implemented. (In the purse example, the concrete and abstract values are

subtly different part way through the protocol. The security property is

expressed in terms of the abstract value. Proof helped expose this difference.)

• Increase one’s own assurance: Proof can increase one’s confidence in

something about the specification, such as the fact that a specification has some

desired property, or that one specification is a refinement of another, or that

two specifications both have the same property.

• Third party assurance: Proof can convince others that some property of the
specification holds. The development is ‘seen to be’ correct. (For an

interesting perspective on the role of proof, see [DeMillo et al. 1979].)

• Certification/accreditation: The most extreme achievement of third party

assurance is to gain some form of badge of correctness, such as ITSEC E6.

The reason for doing a proof needs to be understood, because it can influence what to

prove and how to prove it.

• Intermediate steps: A proof done to improve understanding needs to pass

through a brain. So it should not be just mindless ‘pushing the symbols

around’. Intermediate stages in a proof should have an intuitive meaning of

their own. (This can sometimes be difficult to achieve with a tool that

stubbornly proceeds along its own route to true.)

• Presentation: whether a proof is for internal consumption or third party review
affects the presentation style, and the amount of explanation.

• Rigour: If the proof is to pass formal evaluation criteria, it may be necessary to
perform it to some minimum level of rigour.

• Tools: Whether to use a proof tool at all, and what kind of tool to use, again

depends on the reason the proof is being done. If understanding needs to pass

through someone’s brain, then use a proof assistant, or do the proof by hand.

If you need to know just that it is right, a more highly automated tool that says

‘yes’ or ‘no’ might be appropriate.

Our compiler proof was done mainly to help us know the development was correct,

and to help us clarify the meaning of separate compilation. It had to pass through a

brain, and so was done by hand. A secondary requirement was to give the client the

ability to demonstrate that the development was correct to their own customers and

quality department, which affected our style of presentation. The proof comprised a

statement of the proof obligations, details for a few constructs, and sketches, outlines,

and much use of ‘similarly’ arguments for the rest.

Our purse proof was done primarily to increase assurance, and also to be capable

of achieving certification. This affected our presentation – the proof had to be

understandable line-by-line by the third party evaluators – and the level of rigour had



to be much higher than in the compiler case. Also, we were using the proof to

understand the consequences of the specification and to debug the protocol, so it had

to pass through a brain. We did the proof by hand, with most of the detail present (no

use of ‘similarly’, and all branches done in full), with some intermediate steps

accompanied by an intuitive explanation. We discovered, somewhat to our dismay,

that we could not prove our refinement using the traditional Z refinement ‘forward’ or

‘downward simulation’ proof obligations given in [Spivey 1992, section 5.6]. So we

had to go back to first principles, and derive the Z form of the other ‘backward’ or

‘upward simulation’ proof obligations. We derived these rules with a very high degree

of rigour, since they provided the basis for our subsequent refinement proof.

3.3 What to prove

It is important to make sure all your valuable proof effort is being used to prove the

right thing. For example, if your key security property is not preserved by refinement,

then why are you doing a refinement proof? Or worse still, if your specification is

inconsistent, you can ‘prove’ anything.

The following can be worthwhile things to prove:

• Consistency checks: Prove that your specification is consistent, that it has a

model.

• Sanity checks: In a ‘State and Operations’ style specification, prove that the
state constraint can be satisfied, and that the precondition of each operation is

not false. More sophisticated sanity proofs include calculating the reachable

states.

• Emergent properties of a single specification: Make explicit as a theorem

some desired or suspected property or consequence of the specification, then

prove it holds. Such theorems can be posed as ‘challenges’, in order to gain a

deeper understanding of the specification. (Conjectures that turn out to be true

are not nearly as interesting as ones you believe to be true, but that turn out to

be false; with false ones you learn something – there is an error in your

specification, or an error in your understanding of the consequences of the

specification. Bold challenges are more likely to be false.)

• Required properties of a single specification: If some property is required to
hold of the specification, and the specification has captured it only implicitly, it

needs to be made explicit and shown to hold. (For example, it might be a

requirement that some critical state can be reached only by passing through

certain other states: if this is not captured in the state constraint, but is an

emergent property of the operations, it will need to be proved.)

• Properties across specifications: Prove that a certain relationship holds

between two specifications. The most common is the refinement relationship.

Also, it might be necessary to prove that they both have the same key property,

especially if this property is not preserved by refinement.

Our compiler proof is essentially a correctness proof: that any compiled program,

expressed as a sequence of Asp instructions, has the same semantics as the original

Pasp program. The specification is not in ‘State and Operations’ style, but rather is of

various functions (meaning functions from syntax to semantics, and compiler functions

from syntax to sequences of instructions). So the proof is that two functions are

equivalent, that



∀ prog • MPasp prog = (MAsp o Comp) prog

The purse specification is written in a more conventional ‘State and Operations’ style.

Some of the security properties required of the abstract specification are implicit, and

so needed to be proved to hold. Fortunately, all the required properties are preserved

by refinement, so we then had to perform just a refinement proof between our abstract

and concrete models.

3.4 How to prove it

You cannot just write two large specifications, and only then decide to do a refinement

proof between them, except in the most trivial of cases. The fact that you are to prove

something affects how you write the specifications. It is not a ‘waterfall’ process of

specification, then proof, then implementation; it is very iterative, with things you learn

in doing the proof feeding back into the specification. And there is a balancing act

between the needs of proof, the needs of specification clarity, and the needs of

implementation.

If the development itself is going to be incremental, with more functionality to be

added later, it can be worthwhile spending time up-front getting a good structure for

the proof that will ease later rework.

If you are using a particular tool, you may decide to write your specification with

its limitations in mind. For example, if the tool is particularly lacking in support for

some part of Z, such as free types or the more exotic schema calculus operators, you

might decide to minimise the use of them. (Or you may decide to use a better tool.)

Our compiler development turned out to be incremental, but unfortunately we did not

know that from the start. So we spent rather more time reworking the specification

and proof structure than we might have. Also, the implementation step requires a clear

translation between the Z specification and the Prolog implementation, which affected

the way we wrote the Z: we used a rather more constructive style than a Z purist might

like.

For the purse, in order to express some of the abstract security properties, we

wanted a single schema that captured the entire operation of the device, which we got

by disjoining all the individual operation schemas. In order for this disjunction to make

sense, we had to make all the different operations’ inputs the same type, and similarly

for the outputs. We achieved this by using free types, which in turn made some of the

proofs slightly trickier. The whole specification and proof task fell into two phases,

with some functionality peripheral to the security being added in the second phase. We

used this opportunity to structure our proof better, by extracting some of the

commonality into lemmas (ensuring that these lemmas also made sense at an intuitive

level). This allowed us to simplify the presentation of all the proofs, and to

considerably simplify the two most complicated cases.

3.5 Structuring a large proof

When a proof runs to several hundred pages, it cannot be presented as an unstructured

whole if it is to be understood (either by a third party, or by the original proof team a

while later). It must be given a structure, broken down into manageable,

comprehensible chunks. But once it has been broken down into parts, there is a

danger that things will be missed, lemmas applied but not proved, branches forgotten.



So an overview that describes the structure, and makes it clear that everything that

needs to be proved has been proved, is essential.

The compiler proof has an obvious structure that follows the specification: structural

induction over the abstract syntax.

The largest part of the purse proof is the refinement proof, which naturally breaks

up into proofs for each individual sub-operation. The various lemmas extracted in the

second phase were proved separately, some in an Appendix, then invoked as

appropriate. We also provided a two-page overview, which summarised as a

structured tree all that needed to be proved, and cross referenced where each particular

proof could be found in the document.

4. Experience with proof tools

Although all our proofs were originally done by hand, we have recently been

experimenting with proof tools.

Stringer-Calvert has pushed the compiler case study from [Stepney 1993] through

the PVS tool [Stringer-Calvert et al. 1997]. PVS does not understand Z as a native

language, so a fair bit of conversion effort was needed, in particular the need to totalise

all the partial functions. The conclusion was that the hand proof was essentially sound,

but with some hand waving in the induction glue.

I have been pushing one small branch of the purse proof through CADiZ, a Z

proof assistant [Toyn 1996] that performs the proof under close human guidance.

CADiZ currently understands ISO Standard Z [Toyn 1998], not the ‘Spivey Z’ [Spivey

1992] that we used for our work, so a small amount of editing of our original LaTeX

source was needed. No errors were found in the hand proof, but using the tool did

suggest some clearer ways of presenting some details of the proof. Also, many of our

correct but unstated assumptions about Z toolkit operators were exposed.

Another member of our team has been evaluating Z/Eves [Meisels & Saaltink

1997] by looking at another small branch of the purse proof. Again, no errors were

found in the hand proof. In order to guide the proof, each of our intermediate hand

proof steps was used as a lemma to prove the next: the tool managed to prove each of

these steps quite straightforwardly. Interestingly, although the authors of Z/Eves say

that they have yet to find a Z specification that passes all of their tool’s precondition

checks, we found that our specification did. We are not aware of having done

anything special to ensure this, but it may be that the need to do proof made us much

more careful in writing our specification in the first place.

One thing was apparent about all these investigations: a lot of time was spent

‘fighting’ the various tools, in different ways. Proof tools still have a long way to go

before they provide the transparent support to the development process that, say,

compilers or word processors give other users now.

5. My ideal Z proof assistant

Based on my experience of doing proofs by hand, and using a few tools, I have some

requirements for my ideal proof assistant. Firstly, correctness is a given – I do not

need a tool to help me make mistakes! Secondly, I do not want a fully automated tool



into which I feed conjectures and get the response ‘true’ or ‘not true, because…’; I

need these proofs to pass through my brain somehow.

So, I want an assistant that can help me do my proofs more quickly, less tediously,

and more accurately than by hand, but still involve me deeply in the process.

5.1 User interface

My number one priority is the user interface. When I am doing a proof, I need to be

immersed in the mathematics. I want to see Z symbols on the screen, not some mark-

up language.

The tool should be transparent. I want to be aware only of the Z I am

manipulating, not the way the tool works behind the scenes. For example, I never

want, when looking at a predicate like P ∨ Q ∨ R, to be told that I can manipulate the

P ∨ Q, but not the Q ∨ R, just because the tool internally holds this construct as a left-
associative tree.

I want to be able to manipulate the Z directly, much the way I directly manipulate

characters, words and sentences with a word processor, but here with the underlying

tool also understanding the mathematical manipulations [Bertot 1997]. For example,

in a predicate like ∃ S • P ∨ Q, I want to be able to grab hold of the disjunction and

‘pull’ it outside the existential quantifier, and have the tool automatically distribute it:

(∃ S • P) ∨ (∃ S • Q).

5.2 Z-based

The tool should be Z based. It should understand Z on the surface; there should be no

need to translate the specification into another language. And it should understand Z

underneath – it should talk to me in Z, about the Z I can see, not in another underlying

language, or about some transformed variant of my Z. I do not care if it achieves this

by being a special purpose Z tool, or a general purpose proof tool with the Z layer

completely hiding the underlying generic tool.

The interesting parts of the purse refinement proof, in particular, involve

manipulations of large nested schemas. The key parts of the proof involve extracting

just the right parts from the schemas, and showing they have the right properties. By

the time the expressions have been reduced to ‘toolkit properties’ [Spivey 1992,

chapter 4], I want to be able to stop. I don’t want to spend my life proving

uninteresting low-level things, such as (these are all derived from real ‘leaves’ in my

proof tool experiments)

( r ⊕ { (x, y) } ) x = y

〈 〉 ∈ F (N × X )

a ∈ (X↔ Y ) \ { ∅ } ⇒ a ≠ ∅

 〈 a 〉  

x = a ⇒ x ≠ b where F ::= a | b | …

So the tool should know more than just core Z – in particular it should have a very rich

set of laws to reason about Toolkit operators, and about free types. It should be able

to do all the above, and more, automatically, telling me only about any subtle side

conditions that I might have forgotten.



5.3 Navigation, structure, and presentation

One of the problems with a large proof is getting lost in the detail, being unable to find

other parts, being unable to see the structure. Some kind of navigation aid is needed –

both for constructing the proof, and for understanding its structure and evaluating it

later. Some kind of ‘zoomed out’ view of a proof is needed.

The tool should also provide intelligent support for building the structure in the

first place, in particular, help in forming useful lemmas.

There should also be some support for presenting a printed overview of the proof,

with the key stages, and the key manipulations that were used to get between those

stages.

5.4 Replay and ‘Similarly’

Reworking is one of the most frustrating things about hand proof. The proof is passed

through a brain and understood, then some small change is made to the specification,

and the proof has to be reworked. So my ideal assistant would be able to abstract the

structure of the proof from my detailed mouse clicks, and replay it to do the ‘same’

proof on a different specification.

And similarly, if I have a proof with several branches, each only slightly different

from the others (the same key manipulations parametrised by the Z operation, say), I

would like to be able to say ‘look at that branch – now do the analogous thing to this

branch’.

Of course, I realise that deciding what the similarity or analogy is, is an interesting,

highly non-trivial problem [Hofstadter et al. 1995].

6. Summary

Specification keeps you honest, proof more so, and proof tools even more so. The

more effort applied to proof, the higher the assurance that can be achieved. But the

current generation of proof tools is not yet up to performing industrial-scale proofs.

The user interface is the most important area in need of improvement.
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