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Abstract. We describe our use of a modelling and develop-
ment process to specify and implement biological simulations
that involves the development of several different UML models
to capture different perspectives on the system being modelled,
in particular the investigation of various emergent properties.
We use this process in the case of an auxin canalisation simula-
tion, investigating the processes of auxin transport as guided by
PIN proteins, in a developing plant. We discuss our preliminary
results of investigating one hypothesis of PIN protein placement
that fails to demonstrate canalisation in simulation.

1 Introduction

The simulation of biological systems presents a significant challenge re-
quiring knowledge from all branches of science to capture all the relevant
aspects of the biological, chemical and physical processes occurring. The
challenge is made more difficult by the complex nature of biology: it is
hard to make good assumptions about how a particular process is regu-
lated. The quality of information available is important: the best solution
based on the information at hand may not be the real solution, but more
a reflection of how insufficient the current data are. Or the data may be
excellent but missing a part of the picture altogether. Also the connec-
tivity of processes in biology is often very high, therefore the question of
the level of abstraction and simulation complexity is important. If the
abstraction level is too high we risk ruling out simulations producing
emergent behaviour; too low, and the simulations produced could be dif-
ficult to work with. So the decisions made when producing a simulation
are important, as a balance must be sought between complexity and the
all important emergent behaviours.
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Here we present how we are using the CoSMosS lifecycle [3] to develop
abstract models and executable simulations of a biological system, in
order to test different hypotheses of how certain biological processes
may work.

We are using this approach to investigate auxin canalisation in the
plant Arabidopsis. Auxin is a plant growth hormone. The process of auxin
canalisation occurs between auxin production sites and auxin sinks; in
the plant stem, it results in the development of vascular tissue between
new sites of auxin production and existing vascular tissue. We are in-
terested in understanding how this complex self-organising process is
regulated in the cells of the plant. Due to the complexity of canalisation,
and some gaps in the biological knowledge of how and what is causing
the canals to form, we are developing executable computer simulations in
order to test multiple hypotheses. We are using UML (Unified Modelling
Language) [25] to model the biology as we understand it, the simulated
biology, and the details of the implementation. The hope is that the hy-
potheses tested by the simulations might indicate experiments that can
then be tried in the lab to further our understanding, and to drive new
simulations.

We find that the combination of UML and object-oriented program-
ming maps naturally to the kind of biological processes that we are
modelling. Biological entities, such as proteins and cells, map directly to
objects in the UML models, which are then implemented as objects in
the program code. The interactions between these biological entities sim-
ilarly map directly to associations between objects in the UML models,
which are then implemented as communications between objects in the
program code. This allows us to build models containing the biological
entities that we believe to be involved in canalisation, and then produce
simulations that we can use test various hypotheses about the biological
processes of interest. If an hypothesis is correct we should see emergent
behaviour that is consistent with the real biological behaviour when the
simulation is run; if not we can then return to the UML models and
implement our next hypothesis. This provides a process to assist us in
determining if our simulated biology is consistent with the real biology.
Additionally, the UML diagrams are relatively accessible to biologists,
allowing them to provide input to the model of the simulation without
the need to understand the code.

This is a report of a work in progress on the modelling and simu-
lation of a biological system. In section 2 we discuss the use of UML
as a suitable modelling language. In section 3 we overview the process
we are using for modelling, designing, and implementing biological sys-
tem simulations. In sections 4, 5, and 6 we present our initial Domain,
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Software, and Refined Software Models of auxin canalisation, and in sec-
tion 7 we discuss some of the issues of building the resulting simulator.
In section 8 we present some preliminary results on the auxin canalisa-
tion hypotheses, and conclude with a discussion of our experiences in
section 9.

2 Modelling biology and simulations with UML

UML [25] is a modelling language comprising a suite of diagramming
notations. It was originally developed to provide a standard concrete
syntax for software modelling.

There are a large number of ways of developing software with UML.
For example, the process can start by looking at high level interactions
in the system being described [25]. This includes the ways that various
external actors interact with, or use, the system (where these external
actors include users and other systems). This is normally modelled in a
Use Case Diagram supported by textual usage scenarios. The high level
model is gradually refined by adding detail. Further diagrams are used
to drill down details of how the system is built, what the objects are,
what information they exchange and when those exchanges of informa-
tion need to take place. This eventually results in a code skeleton being
created for the objects with the attributes in place and the methods
waiting to be implemented.

The process of developing biological models with UML is similar to
the processes used for development using the Systems Biology Markup
Language (SBML) [15, 10, 14]. However, as we are implementing our pro-
grams in object-oriented (OO) programming language Java, the ability
to produce code skeletons from UML easily and flexibly with tools such
as Rational Rose[16] is an advantage. UML is considered to be platform
independent, as the diagrams can be transformed into a wide variety of
different outputs.

As well as classic object-oriented technologies, UML is well suited
to agent-based modelling [24] (where an agent can be thought of as an
object with its own thread of control, allowing highly parallel systems
of multiple agents). Biological “agents”, such as cells and proteins, can
be modeled as UML agents. There are many processes in cells acting
in parallel. Some of these processes are individually sequential, such as
expression of proteins in response signals detected in the cell. The signals
might cause a number of events such as protein expression, which then
in turn causes more events to occur. This sequential behaviour is often
called a cell pathway. The parallel behaviour comes from this type of
process occurring in a number of different pathways in one cell of the
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plant at the same time, and in many cells at the same time throughout
the plant.

We are not the first to apply UML and related modelling notations
to the modelling of biology. There are a number of published cases where
these have been successfully used to produce biological models [8, 17, 35].

We have taken a simple iterative approach, where UML models are
developed, turned into the simulation code and tested. Then any neces-
sary alterations are fed back into the beginning of the process, to ensure
the models and code are consistent. We have not found it necessary to
use all of the multifarious diagrams available in UML; we describe only
the ones that we have found to be of greatest use.

3 Overview of the modelling lifecycle

In [8] we identify a conceptual framework for developing bio-inspired
algorithms that takes a principled approach of building models of the
biological system of interest, developing abstract computational mod-
els from this, then instantiating these computational models to produce
bio-inspired algorithms. This framework can be adapted to producing
simulations of complex (biological) systems, by implementing the ab-
stract computational models to produce simulators.

Fowler [12, p.5] identifies two perspectives that can be used when
building models: the conceptual perspective, representing “a description
of the concepts of a domain of study”, and the software perspective,
where “the elements of the UML map pretty directly to the elements in
a software system”.

The CoSMoS (Complex Systems Modelling and Simulation) project?
is developing a complex systems simulation development infrastructure
(preliminary work is reported in [2, 28]). The CoSMoS lifecycle [3] has
grown from the conceptual model and Fowler’s perspectives, and adds
the concept of an Analysis Model. It identifies the following components
(summarised in figure 1):

Domain Model: a “top down” conceptual model of the real world
system to be simulated, derived from the domain experts, from the liter-
ature, and (possibly) from further observations and experiments needed
to provide sufficient data for modelling. Some modelling decisions about
what to put in and what to leave out are made here. The model may
explicitly include various emergent properties, since from a top down
perspective it may not be obvious that these are emergent; or, if we are

3 http://www.cosmos-research.org/, EPSRC  grants EP/E053505/1,
EP/E049419/1
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Fig. 1. The components of the CoSMoS basic lifecycle (after [3]).

aware of the emergent properties, it may not be obvious what low level
processes produce them.

Software Model: a “bottom up” model of how the real world sys-
tem is cast as a simulation. This includes: a definition of the system
boundary (what parts of the Domain Model are being simulated); sim-
plifying assumptions and abstractions; removal of emergent properties
and replacement with the local interactions that are hypothesised to re-
sult in them; extra simulation-only concepts, such as “physics” engines
to implement real world processes in possibly unnatural ways, user inter-
faces to view and control the simulator, and “probes” to produce output
data for analysis.

Simulator: the executable implementation. The development of the
Simulator from the Software Model is a standard software engineering
process.

Analysis Model: a “top down” conceptual model of the simulated
world, derived from observations and experiments on the simulation.
The model may explicitly include various observed emergent properties.
This model is compared to the Domain Model in order to test various
hypotheses, such as the validity of the simplifications used to derive the
Software Model.

In a large simulation development this basic lifecycle can be aug-
mented with extra steps [3], such as the development of a Refined Soft-
ware Model, describing the detailed simulator design and platform-
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specific implementation details, which is a a refinement of the Software
Model used as the basis for producing code.

The CoSMoS lifecycle is neutral in its choice of modelling language(s).
For example, it could use a mix of text, biological “cartoons”, Soft Sys-
tems’ Rich Pictures [7], and mathematical equations to describe the Do-
main Model, and any standard software engineering technique to define
the Software Model. Here we use mostly UML supported with text.

This process allows us to separate implementation details from the
biology being simulated. This offers a number of advantages. It makes
the individual models and accompanying diagrams simpler, as they are
focussed on specific perspectives. As we are partly using UML as a com-
munication tool it is advantageous for the diagrams to be as simple as
possible. Different groups are more interested in certain perspectives: for
example, biologists are probably more interested in a clear representation
of the biology, rather than how the data I/O and GUI work.

4 Domain Model: auxin transport

4.1 Modelling

The process of auxin transport canalisation is complex, and is not fully
understood. This makes it a natural target for modelling, but also a
challenge. Our eventual goal is to produce models and simulations of
shoot branching, but in order to do this we first have to understand the
mechanism of auxin canalisation.

We have therefore started producing an executable model of the
canalisation process. We are using the CoSMoS approach, in UML, start-
ing from our background biology derived from the literature, and from
wet lab experiments by Leyser and her group (summarised below). We
use that to develop a UML Domain Model that includes all the necessary
biology for the model to function, but keeps the model as simple as pos-
sible. We then develop a UML Software Model, and refine it to develop
the simulator program itself, via the production of code skeletons. This
helps us to ensure that the reasons for how and what is in the various
models is carefully considered, and we are able to make comparisons
with how the model simulates biology compared with how we think the
biology works. Finally, we analyse the outputs of the simulator.

We produce abstract UML models of cells assisted by UML-based
software development tool Rational Rose [16], and implement the simu-
lator in Java.
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4.2 Overview of biological domain

We summarise the background biology here to provide context; more
detailed information than given here informs out full model.

There are many mathematical models of nearly all aspects of plant
development [29], and many concerned with auxin transport [19]. We are
interested in producing executable models as we believe that this type
of modelling lends itself well to biological systems and might offer an
alternative perspective that yields results [11].

We are developing models of the formation of auxin transport canals,
particularly the transport canals that form in the stem of plants and
often go on to differentiate into vascular tissue. This process is known as
auxin transport canalisation and its regulation is not clearly understood.

We are looking at the regulation of shoot branching, where lateral
axillary buds on the main stem of a plant activate and start to grow. Our
eventual aim is to model the canals that form from a newly activated
bud and progress into the existing main vascular tissue of the stem.
Experiments indicate a correlation between the activation and growth of
a bud and its ability to transport auxin out into the stem vascular tissue
[5]. Therefore, the regulation of canalisation in the bud is linked to the
regulation of shoot branching.

Auxin transport canals form between sites of auxin production and
auxin removal: sources and sinks. In order for a canal to form between the
bud (the source) and the stem vasculature (the sink), the stem vascula-
ture must behave as a relatively strong sink compared to the surrounding
tissue. If the stem vasculature is already transporting large amounts of
auxin, it has no further capacity for auxin transport, so its sink strength
is relatively reduced, and the canal does not form. Therefore the bud
does not activate, and does not grow into a branch. However, if there
is spare capacity for auxin transport in the vasculature, then it is a rel-
atively stronger sink. This allows auxin canalisation to occur, so auxin
can be transported out of the bud, allowing the bud to develop into a
new branch [5, 26].

The formation of the canals between the sources and sinks is due
to aspects of the biology of auxin transport (figure 2). Auxin is a weak
acid and is able to enter cells passively from the more acidic apoplast
(intercellular space) by crossing the cell membrane. However once in the
pH-neutral cytoplasm of a cell it becomes deprotonated and therefore is
not able to recross the cell membrane passively. The auxin is able to leave
the cell only with the assistance of transport proteins. One particular
family of auxin transport proteins, PIN proteins, are polarly localised in
cells, often to only one face of the cell [23].
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Fig. 2. A “cartoon” (informal picture) of the biology of auxin transport into
cells. Auxin (IAA) can enter cells passively, or it can be actively transported
by AUX/LAX proteins. Once in the cell its only method of escape is active
transport by proteins like PIN [23].

In their capacity as auxin exporters, PIN proteins are important to
the process of canalisation. The exact details of how PIN localisation is
regulated are unknown, but increasing amounts of data and some prior
modelling work are providing possible mechanisms. One hypothesis, by
Sachs, suggests that auxin facilitates its own flow: both the ability of a
cell to transport auxin and the polarity of the auxin flow increase with
the amount of auxin being transported [31]. Therefore as the transport
capacity increases the cells in the canal become better sinks and draw
in more auxin. This process has been modelled by Mitchson and he
showed it to work [21, 22], but the model has a few problems. Firstly, it
predicts canals of high flow and low concentration, whereas experimental
evidence suggests that there is both high flux and high concentration
[34, 4]. Secondly, both Sachs’ and Mitchson’s models require the cells to
be able to measure the flux of auxin; as yet a mechanism to do this has
not been identified in the plant, although that does not mean that one
does not exist.
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More recent data on some aspects of the processes provides more
details of what should be in the models. Auxin is up-regulating its own
transport by increasing the amount of PIN protein available to transport
auxin [27]. If the negative regulators of PIN accumulation, such as the
MAX pathway, are removed, transport increases and the vasculature is
able to transport more auxin [5]. Thus the more auxin in a cell, the more
it can transport. In Arabidopsis the mutation of genes in the MAX path-
way results in a phenotype of increased branching [33], which supports
the theory that bud activation, and therefore branch number, is linked
to the stem auxin sink strength.

PIN proteins are important to the canalisation process as they export
auxin out of the cells, and their polar localisation patterns are responsible
for complex transport patterns in a number of plant tissues [30, 9, 13].
Improved knowledge of PIN has also enabled development of simulations
of auxin transport systems with high concentration and high flux [13, 18].
However, what directs the PIN in the cells into the polar patterns that
are seen remains an important problem: if PIN is positioned by detection
of auxin flux, as Sachs suggests [31], then what is the mechanism in cells
that is detecting auxin flux?

4.3 Domain Model Use Cases

We start building our UML Domain Model from the background biolog-
ical material. One approach to building UML models is to start with use
cases, that capture the user requirements or how they want to use the
system. That is not appropriate here, as we are not modelling what is
wanted, but what is. So instead, in the domain model, we take the view
that use cases capture a high level view of what the system “does”, such
as regulate proteins and transport auxin (figure 3).

This approach maps well to the ways biologists describe their do-
mains. We have not found a need to develop this model further, by
developing the more detailed usage scenarios necessary in a traditional
system requirements elicitation process. Such scenarios might be found
necessary for capturing more detailed behaviours (“so, how does it reg-
ulate proteins?”), and would presumably need to be modified from their
traditional format.

4.4 Domain Model class diagram

We model the biological entities of interest as objects and classes. This
approach works well here, because much of cellular biology can be thought
of as interactions of discrete objects that result in complex behaviours.
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Fig. 3. The Domain Model Use Case diagram. This captures what the Plant
does.

However, it should be noted that the class diagram, although maybe the
most natural starting point for a object-oriented software developer, is
not the most natural way for biologists think about and describe their
domain, particularly in identifying associations between classes.

We consider the different parts of the cells, such as the cell membrane
and vacuoles (cellular compartments), and the proteins like PIN and
hormones like auxin, all as objects. One of the objects of interest at
this level of model is the auxin canal. This is an emergent property of
the lower level interactions. We model it explicitly here to capture its
biological properties so that later simulation outputs can be related to
it.

Figure 4 shows our Domain Model class diagram of the biologically
relevant parts of the system (deciding what is biologically relevant is also
part of the modelling process). In detail, it shows the following classes
(type of objects) and relationships between the objects?:

4 This detailed description is provided here to help biologists to interpret
the diagram; there is nothing in the explanatory text not included in the
diagram.
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Fig. 4. The Domain Model class diagram.

— A Plant has one Apoplast (the space between cells), one or more
Cells, and an optional Auxin Canal. (It also has other components,
but these are not being modelled, even at the system level.)

— An Apoplast is part of one Plant, and has zero or more Auxin molecules.

— An Auxin molecule is in the Apoplast or in a Cell. (The relationship
lines say that it may be in an Apoplast and it may be in a Cell; the
excludes condition says that it is one or the other).

— An Auxin Canal is part of one Plant, and has one or more Cells.

— A Cell may be part of an Auxin Canal; it is part of a Plant. It has
zero or more Auxin molecules, zero or more Efflux Proteins, and zero
or more Influx Proteins. It has one Membrane and one Vacuole.

— An Efflux Protein is in one Cell; an Influx Protein is in one Cell.

A Membrane is part of a Cell; a Vacuole is part of a Cell.

We impose an extra condition on the loop of relationships® containing

the Plant, Auxin Canal, and the Cells: Consider a Cell that is part of an
Auxin Canal that is part of a Plant, that Cell is also directly part of

the same Plant. (There is no loop of relationships containing the Plant,

Auxin Canal, Cells, Auxin, and Apoplast: the apparent loop is broken by
the excludes condition.

5 By “loop” we are referring to the two possible paths from Cell to Plant, one
via the Auxin Canal, and the other directly.
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Note that there is no use of inheritance in figure 4, despite the fact
that Efflux Protein and Influx Protein are both kinds of protein, for ex-
ample. We find that we make relatively little use of inheritance in our
Domain Models, because it is not necessary in order to understand and
capture the biological domain, which is more interested in detailed dif-
ferences than abstracted similarities. The Software model, on the other
hand, exploits inheritance to provide abstraction and code reuse.

4.5 Domain Model state diagrams

The use case diagram and class diagram help with the identification
and organisation of the different objects of the model, but provide little
information about how those objects behave and how they interact.

Interactions are often captured in UML using sequence diagrams,
and these show the passage of information between objects over time. In
biology the order and direction of interactions is less clearly defined: the
next step in the interaction sequence might not occur; the process might
back up to the previous step in the sequence. For example, there is no
guarantee of progression down a biochemical cell pathway. This makes
capturing timing of events difficult with sequence diagrams.

UML has another way to capture how objects change over time: state
diagrams. These diagrams show the different states an object can be in,
and how the object moves from one state to another in response to an
event. Such state diagrams also appeal to biologists, as they appear to
map closely to the way that biological processes are understood.

State diagrams for the state changes associated with a Cell are shown
in figure 5, for Auxin hormone in figure 6, and for PIN proteins (a kind
of EffluxProtein) in figure 7. The states of these objects are linked, and a
change in the state of one object is linked to that of the others. The state



Auxin Transport Canalisation 75

Diffuse

On Outside of Membrans
Apoplast/
Diffusing

AUX/LAX AUX/LAX
i }

[Notl\lext 10 }[ Next 10 ]

Diffuse

) Transport In
Passive Influx P

At Sink Transport|Out

Remove

®

On Insjde o 1 Membrane

Next to Not Next
PIN to PIN

Diffuse

Cytoplasm/
Diffusing

Degrade

Ditfuse
Creation

Fig. 6. State diagram for Auxin. Defining and expressing this type of compli-
cated behaviour is where state diagrams can prove useful. The figure shows
the different states auxin can progres through, and the events that can trigger
those state changess.

of a cell is defined by the what is happing in that cell, which is determined
by what the proteins and hormones are doing. At the moment, we are
performing this linking by textual annotations.

Figure 5 shows that a Cell can be producing Auxin, PIN protein (an
EffluxProtein), and AUX/LAX protein (an InfluxProtein). Not all cells
are capable of making auxin, but they are all capable of producing PIN,
which they do in response to the amount of auxin they have, so PIN
production might be on even if there is no auxin production.

Figure 6 shows the state diagram for Auxin. It can be in four main
states:
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— in the cytoplasm (the inside part of the cell that is not vacuole). It
is created here, and may degrade (be destroyed) here. It is in its
deprotonated form. It is diffusing around, which either leaves it in
the cytoplasm, or moves it to be:

— on the inside of the cell membrane, where it is in one of two substates,
next to PIN, or not next to PIN. If it is not next to PIN, it diffuses
back in the cytoplasm. If it is next to PIN, is transported out of the
cell to be:

— on the outside of the cell membrane, where it is in one of two substates,
next to AUX/LAX, or not next to AUX/LAX. If it is next to AUX/LAX,
is transported into the cell to be on the inside of the cell membrane.
If it is not next to AUX/LAX; is can passively influx into the cell to
be on the inside of the cell membrane, or it can start diffusing to be:

— in the apoplast. It is in its protonated form. It is diffusing around,
which either leaves it in the apoplast, or moves it to be on the outside
of the cell membrane, or moves it to be at auxin sink, where it is
removed from the system. Or it may degrade (be destroyed) here.

In reality, an auxin in the cytoplasm may be no different from an
auxin adjacent to a cell membrane: it has no “sense” of where it is.
Therefore the auxin may not have a different biological state when it is
in these different situations. But we can model the biology in terms of
such states.

State diagrams can be used to model alternative hypothesised be-
haviours. Simulations based on these different hypotheses can be com-
pared. For example, figure 7 shows a state diagram for one hypothesis of
PIN protein (an EffluxProtein) behaviour, and figure 8 shows the state
diagram for a slightly different hypothesis for its behaviour. In the latter
case, the PIN protein is allowed to move around on the cell membrane if
it is not transporting auxin. Therefore the moving state is different from
the transporting state when on the membrane of the cell. (Proteins are
able to move around on cell membranes [32] and it is theoretically pos-
sible that a conformational change in response to actively transporting
auxin might stop it from moving.)

When we are considering proteins, the different states in the Domain
Model of the biology correspond more closely to real biological states
than in the case of auxin. Proteins are active molecules, and can undergo
conformational and other changes in response to events. Auxin however
is a very simple molecule, and more of its behaviour is a passive response
to its environment.
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Fig. 7. State diagram for the PIN Efflux Protein. The PIN is associated with
the membrane. It can either be actively transporting auxin or sitting idle. If
it is not transporting auxin there is the possibility that it might disassociate
and return to the cytoplasm. If it is transporting then it remains attached to
the membrane.

5 Software Model

5.1 Overview of additional functionality

The Software Model includes the things that our simulation must do to
be able to run. These include the setup procedures required to get the
simulation to a starting point, including things like instantiating cells,
and detecting the internal environment in the cell in order to produce
proteins and hormones. This functionality can be considered from three
points of view: that of the biological plant (captured in the Domain
Model); the simulation of the biology that is required to be there but is
not simulated in a particularly biological way; and the things that need
to be there to produce a successful simulation but are not part of the
biological Domain Model.

As our UML and simulations have developed, the simulated biology
has come to represent the real biology, as currently understood, more
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Fig. 8. State diagram of an alternative hypothesis for the PIN Efflux Protein,
with different behaviour on the cell membrane: movement on the membrane
is allowed.

closely. However, there are still a few areas where this has not been pos-
sible, or desirable, to achieve. For example, when a cell is created in
the simulation it is necessary to create the cell and then create its mem-
branes, a vacuole and a starting amount of proteins. In reality membranes
partly define a cell: a cell cannot exist without a membrane. Therefore
our simulation is not doing cell creation, or growth, in a particularly
biologically realistic way. It would be more realistic for a cell be the out-
come of a particular arrangement of cell membrane, vacuole and other
cell elements. The increased flexibility of such an approach could in the
future allow for simulation of growth, the lack of which is currently a
limitation.
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Fig. 9. The Software Model Use Case diagram, with the Simulation user actor.

The Software Model also includes things like the graphical user in-
terface (GUI), and what I/O the simulation needs to do to provide the
user or external systems with results.

5.2 Software Model Use Cases

A use case diagram is used to capture the user requirements for using
the simulator, in the traditional way (figure 9).

5.3 Software Model Class diagram

The Software Model class diagram is produced from the Domain Model
class diagram (figure 4) and the Software Model use cases. Figure 10
shows only the biologically relevant parts of the Software Model class
diagram (to improve readability, it omits things like the data and visual
output objects).

Certain classes are removed: we decide at this stage not to model the
apoplast explicitly in the simulation. It appears as the gap between the
cells in the visualisation (later). We also remove the explicit Auxin Canal:
this is the emergent property that we desire the simulation to exhibit.

Certain classes are added: we include some inheritance. Proteins and
Hormones share some common features, and we model them as subclasses
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Fig. 10. The Software Model class diagram, showing only the biological part
of the model.

of the RegElement (regulatory element) class. Classes that support user
interaction are also added (not shown here).

Certain relationships are removed: Auxin is no longer related to Cells.
This highlights a difference between the Software Model and the biology.
In the Software Model, the Auxin is related only to the Plant, as are the
Cells. For ease of implementation with regard to the diffusion of auxin
inside and outside cells, the model records the position of the auxin in
the simulation space (part of the Plant, and the Cells can query the Plant
to discover how much of that auxin is internal to them. This is a suitable
implementation strategy, even though it is not a good model of reality;
it shows how the “same” objects in the Software Model can be quite
different in structure from those in the Domain Model.

A future revision of the simulation will do this differently, by explic-
itly modelling the apoplast (the space between cells that the auxin is in
when not in a cell).

5.4 Software Model State diagrams

The Software Model state diagrams follow the Domain Model, except
that the production of AUX/LAX is left out, and expressed at a fixed
amount and not (currently) regulated.
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6 Refined Software Model

6.1 Refined Software Model class diagram

The Refined Software Model class diagram (figure 11) adds implemen-
tation detail to the Software Model class diagram (figure 10). It has all
the methods and attributes of the objects (not shown here) and it is use
to generate the code skeleton.

The Refined Software Model class diagram includes further details of
how some of the biological processes are implemented. For example, the
positions of components are held by Position objects and the singleton
Hashmap object. It may be advantageous to split things in even more
detail if the diagrams become overly complicated, as certain parts of
the implementation are more important than others. Things like the
implementation of diffusion and how positions of cells and hormones are
stored are of greater interest than how the visual output is achieved.

This separation will be even more worthwhile when things like growth
are implemented, as they are likely to be complicated and require de-
tailed diagrams. Also, the implementation of such things is much more
difficult than conceptualising them, and therefore should be open to more
detailed scrutiny to ensure that it is done in a valid way.

The full class model has all the methods and attributes of the classes
added, and it is this that is used to generate the code skeleton. Once
the biology has been produced in both the class diagram and the state
diagrams this is often enough to produce a code skeleton from the UML
for the model. It might be necessary to define more clearly the interac-
tions between the objects using sequence and collaboration diagrams if
the model is large and complicated.

6.2 Refined Software Model state diagrams

The Refined Software Model links the Software Model state diagrams of
different objects, particularly the overlapping parts of the auxin, PIN and
cell state diagrams. This shows how a cell producing auxin influences its
own state as it responds to the change in auxin concentration by making
more PIN protein, and how a cell that does not make auxin, but which
detects that there is auxin in its cytoplasm, responds by starting to
increase production of PIN.

State diagrams are linked by shared events. The Auxin event of en-
tering a cell, either passively or via a protein, is linked to the Cell event
of detecting a change in auxin concentration, which causes the cell to
enter into a PIN production state. At the moment, we are performing
this linking by textual annotations.
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Fig. 11. A simplified implementation class diagram showing more detail of the
underlying implementation of some of the biology in the model. It gives more
detail on how the positions of different objects are controlled in the model.
The full implementation class diagram shows the classes controlling diffusion
and how the threading of the program is controlled. Some classes have been
omitted for clarity.

This linking of states allows the interactions of the biological objects
to be modelled at a higher level than sequence or collaboration diagrams,
which are more useful for giving details of how the simulations are going
to run. Linking could also be useful to include a notion of space in UML
diagrams like state diagrams; for example, states of different objects may
influence each other in different ways inside or outside a cell.

7 Simulator: Auxin transporter

We have taken the code skeletons produced from the Refined Software
Model UML, and added the remaining code necessary to implement the
executing simulator. Some implementation details are discussed here.

7.1 Molecule diffusion

We have implemented two versions of diffusion for the auxin (the work
to compare the two has not yet been done).

The first to be implemented is the more simple, and will probably
prove to be slightly faster in execution. The method follows an agent



Auxin Transport Canalisation 83

based paradigm, modelling (collections of) auxin molecules as moving
agents.

We need to estimate how much auxin is in a cell; this is a difficult
estimate to make. The biological data for the amount of auxin in a
cell is determined by crushing a section of a plant and measuring how
much auxin there is in total, then dividing that value evenly amongst
the individual cells. This assumes an equal distribution among the cells,
which we believe not to be true, neither are the cells the same size. This
method of estimation results in values for the auxin concentration in one
cell that can vary by about two orders of magnitude.

In our Simulator, this auxin concentration is divided up into auzin
units, the amount that would occupy 1 unit of space in the model (which
is 1 square micron for the 2D model; one cubic micron for the 3D model).
From the biological data, this corresponds to 202000 auxin molecules
in each auxin unit [19, 20].

These auxin units diffuse around the model space. We are testing
different ways of implementing this diffusion; currently we are using a
random walk. In this approach, a “clump” of auxin molecules (all those
corresponding to an auxin unit) move about together as one agent.

To test if this “clumping” is a problem, and whether it might be
affecting the results of the simulation, we are currently implementing
a second system of diffusion. This is a more continuous style model:
every unit of space in the simulation has a number of auxin molecules
associated with it. This representation allows a portion of the auxin to
move into a neighbouring space, and also allows different areas of the
simulation space to have different rules, allowing the rate of diffusion
to be altered in different parts of the simulation. This is much more
flexible, but is expected to be more costly in computing power. Having
both systems is useful as it allows us to see if the more flexible but costly
system is necessary, or if we can get enough information out of the simpler
faster system, to determine if our hypotheses for auxin canalisation are
correct.

We are interested to see if some of the features of the simpler system,
that have been tested more, like intra-cellular gradients of auxin, are
present in the newer system; and, if they are, can we see any differences.

We are implementing only one diffusion method for the proteins. This
is the same as the simple agent based auxin diffusion system. Proteins are
much larger than small molecules like auxin, and therefore each protein
unit contains fewer protein molecules, and thus the approximation is less
problematic.
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7.2 2D and 3D simulations

The simulation has been designed to use much of the same code to model
either 2D or 3D space. This means that we have 2D and 3D simulations
and we know that the underlying algorithms and code is essentially the
same. This is important because if we see significant differences in the
behaviour of the different simulations for a given hypothesis or set of
parameters we can be fairly sure that difference it due to the extra
dimension, as opposed to differences in code.

We want a 2D simulator for performance reasons. A 3D simulation
of 500 cells in an arrangement of 5 x 5 x 20 cells high (representative of
a section of plant stem exhibiting canalisation) might take a few days to
run to a point where it can be considered finished (our simulations do not
have end points unless some sort of target state is defined, otherwise the
existence of a source and a sink allow the simulation to run forever). A
2D simulation of a similar arrangement of 5x 20 cells high (representative
of a longitudinal cross section) might be finished in less than an hour
and require two orders of magnitude less memory (10s instead of 1000s
of Megabytes: not only does the 3D simulation have more cells, but each
3D cell is bigger: 50 x 50 x h voxels, rather than 50 x h pixels), and
is comparatively very slow. If we find that a 3D model is necessary for
realistic results, we will then investigate more efficient implementation
approaches.

An important factor in the 2D simulation is the sizes of intercellular
structures like vacuoles. A vacuole in a plant cells takes up a large amount
of the space, squashing the cytoplasm to the inside of the cell membrane.
Plant cells are 3D, so in our 3D simulation the ratio of cell size to vacuole
size can be similar to what we measure in plant cells. What about 2D
cells? Should a 2D cell look like a 2D cross section of a 3D cell? If so,
should it be a slice through the centre, including the vacuole, or a slice
near the membrane, missing the vacuole? Or should the ratio of 2D areas
be the same as the ratio of the 3D volumes? Also, in a 3D cell, auxin
can go round the vacuole along two axis, but in 2D it is limited to one.
Should, therefore, the 2D vacuole have greater permeability to auxin
than a 3D cell to account for the loss of a whole route to the other side
of the cell?

We are investigating these questions in terms of the various timescales
and scaling factors. However, having comparable 2D and 3D simulations
based on the same implementation will allow us to validate our answers
to these questions.
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7.3 User interface

Biologists interact with the simulator through its user interface. In the
current version of our simulator, altering model parameters and setting
initial conditions can be a difficult process, particularly when defining
the spatial arrangement of cells that the simulator uses.

Therefore we have started to develop a Little Language [6] (domain-
specific language) to provide an easier interface to setting up the models
via an interpreted language. This language provides an interface to two
parts of the simulation. Firstly it can be used to set starting parameters
for things such as the relationship between auxin and the expression of
PIN protein, and the size of cells. Secondly, it allows the user to define
what the layout of the cells in the model is, by defining cellular subunits
(groups of similar cells) and then defining how the different subunits are
arranged in the cell space.

8 Analysis Model: preliminary results

Eventually, will will build an analysis model of the simulator output that
is analogous to the domain model. For now we conduct our analysis more
informally.

The visual output from the simulation is shown in figure 12. The
space between the cell membrane and the vacuole is the cytoplasm where
the auxin (black dots) and proteins (gray dots) are synthesised. To avoid
questions of sites of synthesis for now there is simply a certain probability
that any position in the lattice produces a protein or auxin molecule
when required. As the size and space of cells that canalisation occurs in
varies quite widely, it is therefore important that a working hypothesis
for canalisation in the simulation is not too dependent on size and shape.
Therefore it is simple to vary the cell size and the size of the apoplast. It
is also possible to have different sizes of cells in the same model, so long
as care is taken to ensure that the cells align in a sensible way, without
large gaps.

We have tested our first hypothesis for the regulation of auxin canal-
isation (figure 7) with the model as described here. The first hypothesis
is simple and unlikely to be the full story, but it is based on ideas that
might form part of the final hypothesis. The hypothesis tested concerns
the positioning of the PIN proteins. PIN proteins can diffuse in the cy-
toplasm. When they associate with the cell membrane they are fixed in
one position, unable to move. If the PIN protein exported some auxin on
the timestep, it cannot disassociate from the membrane. If it did not do
any transport, there is a certain probability that it can disassociate from
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|

Fig. 12. Screen shot from a running simulation. The darker lines are the cell
membranes, and the light lines are the vacuoles. The black dots are auxin units
and the grey dots are either PIN or AUX/LAX proteins (darkest are the PIN).
The middle cell on the top row is the only one producing auxin. The light gray
line in the centre at the bottom of the figure is the auxin sink. This is where
auxin leaves the model. One dot, such as an auxin unit, is 1 micron in size.
To produce a clear figure, the apoplast is increased to 6 microns, from a usual
2 or 3. The cells are 147 microns high and 50 microns wide. For convenience
only a few rows of cells are shown: the full simulation currently uses a 5 x 20
array of cells.

the membrane. The idea is that the PIN would naturally congregate on
a membrane where they were able to export auxin.

Simulation of this hypothesis did not produce canals in the experi-
ments carried out so far. This could be due to there being no feedback
between the extra cellular auxin concentration and the PINs pumping
auxin into that space. Therefore only the internal cell conditions stop
the PINs from moving around randomly, as the PINs can respond only
to the internal auxin concentrations of the cytoplasm, and not to the
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auxin in the apoplast. Uneven distribution of auxin suggest that PINs
could be responding to these internal conditions.

We intend to experiment further with this idea. We will also carry
out more testing with the current hypothesis, as there maybe parameters
that allow for the internal gradients of auxin to be enough to position
PIN to produce canals.

Next, we will develop our model of auxin canalisation into a more
complete model of shoot branching, to inform new models, and to form
part of a multilayered approach to modelling shoot branching. Each layer
can use an approach to modelling at the level of abstraction most suited
to build a more complete picture.

9 Discussion

Our UML assisted development process has provided a number of ad-
vantages to our simulations.

The diagrammatic nature of UML as tool for producing various levels
of models, including descriptions of program code, has helped produce
simulations that not only work in an intuitive way, but that are built in-
tuitively. Biology maps to UML objects in a way that can be understood
by developers and biologists alike.

The resulting simulations are flexible. By concentrating on building
the biological components and their interactions into the simulations we
are able to test various hypotheses for the regulation of auxin transport.
The results should be reflections of truly emergent behaviours, rather
than due to those behaviours having being hard-coded into the simula-
tion.

The use of different models to capture domain, software, and imple-
mentation details has helped produce conceptually cleaner models.

The Domain Model looks purely at the biology. Here class diagrams
and state diagrams are of greatest use. The class diagrams allow us to
look at the static structure of the model, and how the different parts
are connected together. They can include the emergent properties of
interest, so that we have these properties captured rigorously in a model.
State diagrams provide detailed information of how the objects change
in response to events. They are normally produced by thinking about
the known biology of the different biological elements.

The Software Model does not explicitly include the emergent prop-
erties of the Domain Model: these should emerge from the interactions
of the lower level simulated components, and can be compared against
the Software Model for plausibility. At this stage inheritance is added
to class diagrams, to indicate classifications and generalisations, and to
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be used in implementation to reuse code and reduce duplication. The
Software Model can also transform biological components to behave in
non-biological ways that are more readily simulatable. For example, we
may require more states to capture events than are provided in the Do-
main Model. The existence of the two models highlights areas where the
simulation is breaking with the biology.

The biological literature gives details of how the experiments that
produced the data were carried out in a lab. It should also be the case
that how a simulation works and produces its data should be equally
well explained, in order to allow independent validation of results and
the sharing of methods and techniques among the modelling community.
The increased use of modelling and the complexity of the simulations
produced make this a more pressing need. UML can provide an effective
way of developing and communicating simulations.

In the long term, UML could be used as an interface into models for
biologists to use directly, to extend and develop models themselves. Our
current work on the use of a Little Language to provide easier access
to some of the deeper parts of the simulations could be extended, for
example, to allow the addition of new proteins and their behaviours
without the need to delve into Java code. (Of course, there is always the
danger that the Little Language itself grows until it is of the complexity
of Java. However, the intention is that it should be couched in biological
domain specific terms, not generic programming terms.)

Eventually, biologists should be able to draw UML diagrams of these
new proteins (or other objects), associate them to other biological ob-
jects, and link them to implementation objects that allow them to func-
tion. The links with the biology would confer the biological behaviour,
and the links with implementation would handle diffusion, positioning,
I/0O etc. Or alternatively UML could be used as a simulation code nav-
igational aid to allow direct access important parts of a simulation to
allow biologists to tailor it to their own needs or add new functionality.
UML could allow them to visually locate the part of the simulation that
requires editing without looking though large amounts of code and need-
ing to be able to decypher the way the simulation is constructed. The
models produced would be more general in the capabilities and allow for
more hypotheses to be explored.
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