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Abstract. We describe our use of the CoSMoS process to structure
an incremental change of a biological simulation. The domain is auxin
transport canalisation. An existing simulator is refactored to handle as-
pects of 2D and 3D space more efficiently, and enhanced to include more
realistically-shaped plant cells. The CoSMoS process supports clear sep-
aration of concerns, allowing us to concentrate on the biological model
and the implementation decisions separately. This gives a clear and well-
justified simulator design that can be validated by biologists, yet still
allows efficient implementation.

1 Introduction

Biological systems present many challenges to science, particularly due to the
complex nature of biology itself. Many biological processes are highly connected,
making it hard to study them in isolation. It is frequently difficult to get good
quantitative data; even good data might lack part of the larger picture. These
factors and many others make it difficult to form good assumptions about how
a biological process is being regulated; our solutions might reflect our lack of
knowledge, rather than offer insight into the real process.

Increasingly biology is looking to modelling to help progress understanding.
Developing a simulation of a biological process is a challenging task in itself, but
doing so can assist with some of the problems. The modelling process requires the
builders to go systematically through the information and data about a system,
ideally with experts in the field. Simply going through this modelling process
can highlight new areas of focus, or problems and gaps in understanding. The
resulting simulation and models can also be a tool for the generation and testing
of hypotheses, hiding some of the complexity of the real system but capturing
enough to allow the study of the process of interest.

The level of abstraction in a model is critical. Too high, and we risk ruling
out the possibility that simulations will produce interesting emergent behaviours
that are observed in the real system. Too low, and the simulations produced could
be difficult to work with, understand and validate. These factors make the design
decisions made when producing a simulation important, as they determine the
balance between these conflicting requirements.



A simulation must be developed using a rigorous process of design, implemen-
tation, and validation if it is to be scientifically respectable. Additionally, a useful
simulation will need to be upgraded and enhanced in a principled manner as its
requirements change to address new research questions. The CoSMoS (Complex
Systems Modelling and Simulation) process [1] provides a flexible approach de-
signed to support the modelling and analysis of complex systems, including the
design and validation of appropriate computer simulations.

We have previously used the CoSMoS process to guide the initial development
of a simulation of an abstract tissue level model of plant cells [14]. Here we
present work using the same process to guide modification and enhancement
of this existing system, by improving the model of space, and allowing more
naturally shaped cells. This work helps demonstrate how the CoSMoS process
can be used in an incremental manner.

In §2.1 we overview the CoSMoS process as used for modelling, designing, and
implementing biological system simulations. In §2.2 we discuss the use of UML as
a suitable modelling language to support this process. In §2.3 we give an overview
of the initial auxin model. We then use the CoSMoS process components to
structure the remaining sections. In §3 we introduce the Research Context. In §4
we summarise the biological Domain Model. In §5 we discuss the issues relating
to modelling space that we are addressing in this increment. In §6 we discuss
how the Platform Model has been updated using the CoSMoS process. In §7 we
conclude with a discussion of our experiences.

2 Background

2.1 CoSMoS Process: The modelling lifecycle

Described in detail by Andrews et al. [1], and used in our earlier work [14], the
CoSMoS process provides a systematic approach to building models and simu-
lations of complex systems, including the biological system of interest here. The
CoSMosS process does not include a defined end point: the process is incremental,
aimed at supporting a series of simulations. We [14] and others [34] have suc-
cessfully used this process to assist in the production of simulations of complex
biological systems. Summarised in figure 1, the process contains the following
components (summarised from [1, 14]):

Research Context : the overall scientific research context. This includes the
motivation for doing the research, the questions to be addressed, and the
requirements for success.

Domain Model : conceptual “top-down” model of the real world system to be
simulated. The domain model is developed in conjunction with the domain
experts, with its scope determined by the Research Context. The model may
explicitly include various emergent properties of the system.

Platform Model : (called the Software Model in [14]) a “bottom up” model of
how the real world system is to be cast into a simulation. This includes: the
system boundary, what parts of the the Domain Model are being simulated;
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Fig. 1. The components of the CoSMoS process [1, fig.2.1]. Arrows indicate the main
information flows during the development of the different components. There is no
prescribed route through the process.

simplifying assumptions or abstractions; assumptions made due to lack of
information from the domain experts; removal of emergent properties (prop-
erties that should be consequences of the simulation, rather than explicitly
implemented in it).

Simulation Platform : the executable implementation. The development of
the Simulator from the Platform Model is a standard software engineering
process.

Results Model : a “top down” conceptual model of the simulated world. This
model is compared with the Domain Model in order to test various hypothe-
ses. (This part of our research is beyond the scope of this paper.)

2.2 Modelling biology and simulations with UML

UML (Unified Modelling Language) [27] is a suite of diagramming notations
designed to aid in the development of large object-oriented software engineering
projects by groups of developers working in teams.

Although UML is normally used in conjunction with an object-oriented pro-
gramming language, it is well suited to agent-based modelling [26], where an
agent can be thought of as an object with its own thread of control, allowing
highly parallel systems of multiple agents. Biological ‘agents’, such as cells and
proteins, can be modelled as UML agents. This relatively natural mapping be-
tween biological agents and their UML counterparts means that much of the
structure of a biological simulation can be well-represented by UML. There are
a number of published cases where UML has been successfully used to assist the
production of biological models [10, 14, 16, 34, 44].

We have found that UML diagrams (in conjunction with traditional biological
‘cartoons’) are relatively accessible to biologists, allowing these domain experts



to provide input to the model of the simulation without the need to understand
the implementation details.

2.3 Auxin transport canalisation model

Auxin was one of the first plant hormones to be discovered, 130 years ago by
Charles and Francis Darwin [9]. Understanding auxin’s functions still presents
many challenges to plant science as it is involved in diverse aspects of plant
patterning and development. Computational modelling plays an important role
in auxin transport research [13].

We are using a UML-based approach within the CoSMoS process to design
and build a simulation of auxin transport canalisation in the plant Arabidopsis.
Our initial model and simulation is described in [14]. This approach allows us
to build models containing the biological objects that we believe to be involved
in auxin canalisation, and then produce simulations to test various hypotheses
about the biological processes of interest. If an hypothesis is correct we should
see the correct emergent behaviour when the simulation is run; if not we can
then return to the UML models and implement our next hypothesis. If all our
hypotheses fail to produce the emergent behaviour of interest we might have to
return to a different part of the process.

In this paper we describe an enhancement to our initial model in [14]. The
most significant modifications are in the Platform Model and associated Simula-
tion Platform. We revisit significant assumptions about what should be removed
from the domain model. The main progress made in the design and implementa-
tion of our models has been with the handling of the simulation space, allowing
the cells of the tissue modelled to be more naturally shaped. The improved 2D
simulator has been adapted into 3D.

3 The Research Context

The auxin transport community studies many different aspects of auxin trans-
port. These include, but are not limited to: auxin transport canalisation [37,
38]; shoot branching regulation [21,22, 28]; leaf venation [41]; and phyllotactic
patterning [20, 35]. These processes are concerned with the developmental pat-
terning of a plant, at both the tissue level and that of the whole plant.

Our research sits within this wider community; it uses background biology
derived from the literature, and from wet-lab experiments carried out in the
Leyser group (for more information see §4). We primarily focus on modelling the
process of auxin transport canalisation, within the context of shoot branching
regulation.

There are many published mathematical models of auxin transport. We have
chosen to develop executable models as we believe this modelling technique lends
itself to biological systems, and can offer an alternative perspective [11, 13], par-
ticularly as we are modelling the PIN protein transporters at a reasonable level
of detail.



Our models focus on the question of PIN cycling and its role in canalisation,
and we aim to test different regulatory mechanisms of PIN cycling.

4 The Domain Model: auxin transport canalisation

The domain of our model remains auxin transport. §4.1 summarises the back-
ground biology used as input to the Domain Model. The full model is informed
by more detailed biological information than is summarised here; we direct in-
terested readers to reviews of auxin transport [4, 3, 7]. §4.2 summarises the way
this biology is captured in UML diagrams.

4.1 The Biological Domain

We are developing models to investigate the formation of auxin transport canals
in plant tissues. This process of canalisation and its regulation are not fully
understood.

Canalisation can be thought of as a self-organising process, where auxin in
cells promotes its own transport between cells through the tissue of the plant [37].
In canalisation the transport goes from a source, an area where auxin is accu-
mulating, to a sink elsewhere in the tissue. The link that forms between these
two sites is called an auxin canal, and the process by which it forms is canalisa-
tion [23, 24, 39]. The transport of auxin between cells is dependent on membrane
localised transport proteins, of which the ABCB and PIN transporters are two
prominent families [2,12,15,31,43,45]. We are primarily interested in the PIN
family of transporters. PIN proteins are often distributed asymmetrically around
the membrane of a cell. This asymmetry enables directional auxin transport,
which is central to canalisation.

We are particularly interested in canalisation within the context of shoot
branching regulation. Shoot branching is the process where lateral axillary buds
on the main stem of a plant activate and grow into branches [22]. Auxin produced
higher up the plant inhibits the growth of lateral axillary buds, a phenomena
known as apical dominance [8]. If the auxin sources inhibiting a bud are removed
by decapitating the plant the bud is released and is able to grow. This can be
reversed by application of auxin directly to the site of decapitation. We believe
that the bud is able to grow only when it can export its auxin into the main
stem.

The vascular link between an active growing bud and the main vascular tissue
in the stem requires auxin transport canalisation from the bud to the stem to
trigger its differentiation. It is this canalisation process we would ultimately like
to model, as understanding canalisation at this position in the plant could help
with the understanding of shoot branching. In order for an auxin transport canal
to form between the bud and the main stem, the stem vasculature must behave
as a relatively strong sink when compared with the surrounding tissue. If the
stem vasculature is already transporting large amounts of auxin from higher up
the plant, its sink strength is reduced, the canal does not form, and the bud does
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Fig. 2. Domain Model PIN Localisation: Auxin transport into and out of cells is central
to canalisation. Protonated auxin in the apoplast is able to enter the cell passively, or
to be actively influxed by AUX/LAX transporters. Once inside the cell the majority
of auxin is deprotonated and is therefore unable to leave the cell unaided. This is often
known as the Acid Trap hypotheses [36, 33]. PIN transports are important to the efflux
of auxin from cells. The regulated cycling of PINs on and off the cell membrane causes
them to become localised asymmetrically around the cell membrane. This process is
not fully understood, but is critical to the directional transport of auxin in tissues, and
the process of canalisation.

not activate and is unable grow into branch. However, if the the level of auxin
in the stem starts to fall, its sink strength increases; this allows canalisation to
occur and a canal is able to form. Auxin can be exported out of the bud, causing
it to activate and grow into a new branch.

This process of bud activation has been successfully modelled mathematically
on a tissue and whole plant scale [32]. However, there are processes occurring
at the cellular level that are not fully understood. Auxin has an interesting cell
biology that is responsible for some aspects of its behaviour (figure 2). Auxin is
a weak acid and therefore some auxin is able to enter cells passively from the
more acidic apoplast (intercellular space) by crossing the cell membrane. It can
also be actively transported into cells by AUX/LAX influx carrier proteins [30].
Once in the pH-neutral cytoplasm the majority of auxin is deprotonated, and
therefore unable to recross the membrane passively. It is essentially trapped, a
phenomena known as the Acid Trap hypothesis [33,36]. Auxin is only able to
leave the cell via efflux transport proteins. We are interested in the PIN family
of transporters, as they are found to be polarly localised in cells that form auxin
transport canals and are therefore very likely to be central to canalisation [40].



The process of canalisation has been the focus of much prior work over a long
period. Sachs suggested a model where auxin facilitates its own flow: both the
ability of a cell to transport auxin and the polarity of the auxin flow increase
with the amount of auxin being transported [39]. Therefore as the transport
capacity increases the cells in the canal become better sinks and draw in more
auxin from their neighbours. Mitchison modelled this process mathematically
and was able to show it to work [23,25]. Mitchison’s models predict canals of
high flow and low concentration, where as experimental evidence suggests that
there is both high flux and high concentration [5,42]. Kramer later produced
models that showed that the addition of the AUX/LAX auxin influx proteins
can allow for canals of both high flux and high concentration [17].

We now have more information about the biology of canalisation. Exper-
iments show that auxin is up-regulating its own transport by increasing the
amount of PIN protein available to transport auxin [29]. Thus the more auxin
in a cell, the more it can transport. This has been further confirmed by experi-
ments showing that if the negative regulators of PIN accumulation are removed,
auxin transport increases and the stem is able to transport more auxin [6]. The
other key part of the process is the localisation of PIN to provide the direc-
tional transport of auxin. However, the mechanism of PIN localisation is not
understood.

PIN proteins are therefore of great interest to the canalisation process as they
export auxin out of the cells, and their polar localisation patterns are responsible
for complex transport patterns in a number of plant tissues [18,19]. However,
what directs the PIN in the cells into the observed polar patterns remains an
important question: if PIN is positioned by detection of auxin flux, as Sachs
suggests [39], what is it in cells that is detecting auxin flux? This is one problem
our simulations aim to address.

4.2 Domain Model UML

The UML used to capture the Domain Model has not changed significantly dur-
ing the development process. We briefly summarise it here, but direct interested
readers to our previous paper for more detailed discussion [14].

Domain Model use cases. These capture a high level view of what the system
does, such as the regulation of proteins and hormones.

Domain Model class diagram. This captures the biological entities of in-
terest as objects and classes. Objects map naturally to biological entities such
as proteins, hormones, and cells. Cells themselves are composed of a number
of objects such as membranes, cytoplasm and vacuoles, which are associated
with each other in space. We also need to regulate the production of agents like
proteins and hormones, which is done by cells. See figure 3.

Domain Model state diagrams. These are among the most useful of the
Domain Model diagrams for communicating with the Domain Experts, as they
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appear to map well to the way these biological processes are understood. State
diagrams capture how an object changes through time. They are able to show the
different possible states of the biological objects, and how an object moves from
one state to another. Some spatial information can also be captured by state
diagrams, as the changes can be associated with a location, within and outside
a cell. For example the possible state changes that the auxin object can undergo
are different depending on whether it is inside or outside a cell. State diagrams
map neatly to the traditional biological ‘cartoon’ showing process occurring in
cells (such as figure 2). The behaviour of auxin can be cross-referenced between
the ‘cartoon’ and the Domain Model auxin state diagram (figure 4).

5 Modelling Space

Here we discuss an important part of the model that was not explicitly dealt
with in the first increment [14]: space.

The simulation space is part of the biological domain that cannot easily
be captured using UML, and might be based on assumptions that could escape
recording. The space in which our biological entities exist is implied in the UML.
We can see from the domain class diagram (figure 3) that we are representing part
of a Plant built from a number of Cells (each with a CellMembrane and Vacuole),
surrounded by Apoplast. However the nature of the space is not captured, nor
is any information about how the objects such as CellMembranes or Vacuoles
are arranged into Cells, nor how the Cells and Apoplast are arranged into a
plant tissue. This information might seem obvious, since it is easy to imagine
(particularly if you work in the field of plant science) what a small 2D section of
plant tissue might look like. This aspect is easy to capture with a more traditional
‘cartoon’ and explanatory documentation.

In our initial simulation the assumption is made that a 2D rectangular ‘box’
is an adequate representation for a plant cell. Therefore the initial simulation is
limited to 2D cells of four straight sides. This is a reasonable simplification to
make; mature cells in the stem of a plant are often fairly block-like in shape.
However, auxin transport canals also form through tissues with cells of varying
size and shape, particularly at the interface of a bud and existing vascular tissue.
Therefore being able to test the behaviour of our hypothesised regulation of PIN
localisation in cells of more natural shapes would be interesting both from a
biological and simulation point of view.

Linked to this is the need to try to investigate the effect that 3D cells would
have on the behaviour of the hypotheses. There are a number of differences
between real 3D cells and simulated 2D cells that might have an effect on the
PIN localisation. Being able to simulate even a small number of 3D cells could
provide interesting insight into the effect of abstracting 3D cells into 2D. Early
simulations have been done in 3D, but it is not well implemented in the initial
simulation. We also want to allow for more naturally shaped 3D cells. The first of
these issues are linked to the way in which space (the environment of the agents)
in the model is handled. This impacts a number of key areas: the interaction



between the agents and the space, and how the space is split up into cells and
the other structures in the plant tissue.

These modifications are more about changes in the level of abstraction as-
sumed during the development of the Platform Model, about how the simulation
is to be constructed from the Domain Model. Sometimes it is possible to change
existing simulation code to allow for the change in abstraction. In our case the
changes are significant, and the development process of the first simulation high-
lights a number of areas where improvements could be made.

6 Platform Model

The Platform Model includes all the extra components that allow the simulation
to run. This includes all the processes required to get the simulation to a point
where it is able to start, such as generating the space and populating it with
cells.

The Platform Model has three kinds of information: biological processes cap-
tured directly from the Domain Model; biological processes required for the
proper functioning of the simulation, but not of explicit interest to the Research
Context, implemented with regard to efficiency rather than biological fidelity;
instrumentation and other such aspects of a simulation that are not part of the
Domain, but are needed to observe and document the simulation results.

Throughout the continued developmental process it is the Platform Model
that has seen the most change. Not only have we made efforts to make the simu-
lated space more realistic with respect to the real plant, but huge improvements
have been made in the data output from the simulations and the organisation
of the code.

6.1 Platform Model UML

Platform Model use cases: these capture the user requirements for using the
simulator, the traditional use for use cases in software engineering. These are
unchanged from the original version [14].

Platform Model class diagram. This is produced from the Domain Model
class diagram, with all emergent properties (such as the Auxin Canal) removed.
This high level diagram shows mainly the biologically relevant parts of the model,
and is unchanged in this iteration (figure 5).

Platform Model class diagram, implementation level. As we move to-
wards code, implementation level data structures are added to the class diagram.
86.2 discusses the changes to the implementation level Platform Model class di-
agram.
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Platform Model state diagrams. These follow the Domain Model state di-
agrams and remain largely unchanged from the original version [14].

As the simulator increases in complexity, keeping the high level and im-
plementation level Platform Models distinct becomes increasingly important.
Things that are not biologically relevant, but are needed in a simulator, such as
the ability to easily checkpoint to allow restarting, add complexity to the model
that biologists do not need to see. We therefore omit such detail from the high
level Platform Model diagrams discussed with the biologists, and retain it in
implementation level Platform Model diagrams used by the developer.

6.2 The Division of Space

The main changes we made in moving from the initial to the enhanced version
were to the way the space is handled in the Platform Model and simulation.

The initial version treats the space as a largely homogeneous area, a grid
of pixels, on which cell membranes and vacuoles are drawn, dividing the space
into separate areas. Some areas are associated with objects like Vacuole and
CellMembrane; other areas are essentially null.

A CellMembrane is a continuous line enclosing the cell (figure 6A). It is
straightforward to define a cell membrane if it is built from straight line seg-
ments. However it is more difficult to define realistic-shaped cells with curved
membranes (figure 6B) using this approach. The membranes would need to be
drawn correctly somehow, and then read into the simulation. It would be eas-
ier to place the cells into the space as continuous areas of cytoplasm, and then
determine the position of the membranes around the edge (which is how it is
implemented in the enhanced version). A new method of handling the space



Fig. 6. (A): Section of visual output from the initial simulator. The thin line of the
cell membrane (outer grey line) is drawn into the space to define the cell. The vacuole
is defined by drawing another membrane (darker grey line). This is a simple task for
boxes, but more difficult for natural shapes. (B): Section of visual output from the

enhanced simulator, showing a continuous curved membrane (black line).
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needs to be able to address such issues. We also want it to be easier to extend
the range of different types of space that could exist in the simulation.

In the initial version of the model, all space is described by a single object.
Figure 7 shows the relevant part of the implementation level Platform Model
class diagram. A single class, SpaceHashMapContainer, has different attributes
that allow it to represent all of the different types of space in the simulation,
depending on the values the attributes are given. However, the complexity and
size of this class increases each time we add a new kind of area of space in the
simulation.

Another significant issue with having all the kinds of space specified in a
single class is that some of the methods in the class need to behave differently
depending on what the kind of space is. This increases the complexity of the
individual methods in the class. The organisation of the code also suffers from
having added the space to the model, rather than it having been designed with
space in mind.

For the enhanced version, we refactor the code to handle the space in a more
area-specific manner, to improve its structure and extensibility, and to allow
more natural-shaped cells.

In the initial model, space is general unless it is given a particular type. In the
enhanced model, all the space is given an area type. An abstract class Area has
attributes common to all the different types of area in the simulation. Sub-classes
extend the abstract Area class into more specific kinds of space. Currently there
are five types of area. Cells have Cytoplasm, Membrane, and Vacuole. Outside the
cells there is Apoplast: the cell walls. Finally there is EmptySpace; this is used
to allow more elaborate shapes of space to be used in the models, and is not
processed. Apoplast areas separate all the cells from each other, and also separate
cells from EmptySpace. See figure 8.

The abstract Area class contains many attributes and methods common to all
the different types of area. These attributes and methods tend to be the system
aspects of the class, such as accessing the colour of the object or its position
in the space. The specific area type then adds extra methods that give that
space more biologically specific behaviour, and if necessary overload particular
methods. This has many advantages, including simplicity of code maintenance
reducing the likelihood of introducing errors. When a new type of space is added
to the model much of the code is already in place.

6.3 Agents in Space

In the initial version, the code that determines how the agents move around
in the simulation space is held in the agents themselves. This results in the
classes describing the agents becoming more complicated each time a new kind
of space is added to the simulation. The agent requests information about its
current environment from the environment directly. It then uses this to make
an appropriate decision about what it would do. There is also an inconsistency
in where the agents are stored. Figure 7 shows that auxin (Hormone objects)
are held in the Plant class, but the proteins are in the Cell class. This makes
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biological sense, since the PIN and AUX/LAX proteins do not leave the cell, but
auxin does. However it makes better implementation sense to think as all three
as being held in the Space, and whether or not this is in a Cell is determined
by what the space is. This is the case for the enhanced simulator, as shown in
figure 8.

The movement of agents is also the responsibility of the Space in the en-
hanced simulator. Each Area sub-class that can have agents contains an Agen-
tHolder with methods for storing the agents that are contained within it. The
different AgentHolder sub-classes (such as AuxinHolder) for each agent inherit
properties from the parent AgentHolder, but are also given specific behaviours.
The AgentHolder classes accept incoming agents to their area. The movement of
the agents is controlled by the Area sub-class, which has methods for moving any
agents in the relevant AgentHolder. This puts the responsibility of moving agents
onto the Area class. Therefore when a new kind of space is added, the areas are
updated to allow agents to move into this new kind of space. These changes are
reflected in figure 8 (the inheritance from the abstract AgentHolder class and the
Molecule class are not shown, to improve the readability of the diagram.)



Fig. 9. Processing sections of plants into the model. If the section photos are of high
enough quality the processing can be done automatically. (A) Photographic section
from a real plant, tided up to allow it to be processed. (B) Image processed for reading
into the model: black areas will become Cytoplasm, white areas Apoplast. (C) Image
modified by hand to isolate a patch of cells: light grey areas will become EmptySpace.
Vacuole areas are then added automatically (dark grey). (D) Template as it finally
appears in the simulation visualisation. CellMembrane areas are added automatically
at the interface between Cytoplasm (here light grey) and Apoplast (here dark grey).

6.4 Space from Templates

The more natural-shaped cells are defined using templates derived from images
of real plants.

Figure 9 shows the lifecycle of a template: it starts as an image of a section
of a plant, and ends as a representation of the simulation space. Templates can
either be generated automatically (normally with a little manual processing),
or fully by hand. They need to contain only three pieces of information: the
areas of the space that are empty (not active as simulation space but required
to be spatially present); the areas that are apoplast; and the the areas that
are cells. The template is then processed to add vacuoles into the cells. These
are not added directly from the image being used, because simulated 2D cells
need smaller vacuoles than are shown in sections of real 3D cells. Instead they
are added automatically by filling the centre of the cell a certain amount (see
86.5 for discussion of this). Cell membranes are also added automatically around
the cytoplasm. Once the vacuoles and cell membranes have been added into
the space we essentially have areas presenting cell cytoplasm, cell membranes,
vacuoles, apoplast and any empty areas. All are displayed as different colours in
the image (shown as different shades of grey in the figure).



In the simulation the space is created to match the pixel size of the template,
and the entire space starts off as apoplast. Each pixel of the template is then
read and its colour determines what it is in the space. The next task is to
group areas of continuous cytoplasm and the vacuole inside them into the more
abstract notion of a cell. In a plant, a cell is essentially a container of elements
that need to be held together. The elements have no concept of togetherness,
they are just associated in space. The way the different elements interact is
through the common environment. In the simulation a cell is more abstract.
It is similar in that it contains lists of all of its spatial contents but it also
needs methods to create more proteins or hormones when they are required.
Essentially the nucleus of a real cell, which regulates what is expressed, is part
of the more abstract Cell class in the simulation. The Cell class provides access
to the common environment, to allow cell regulation.

6.5 3D Space

Our initial simulator version can handle 3D models, but not very efficiently.
The enhanced simulator space is implemented by ensuring that all Areas know
who their neighbours are, and therefore the move to 3D is much simpler as it
mainly involves giving the Areas more neighbours. The code for the 2D and 3D
versions of the simulator are therefore very similar, which makes it much easier
to maintain.

We can either generate block-shaped 3D cells from algorithms, or naturally
shaped cells by stacking prepared 2D templates together in a careful order to cre-
ate a 3D space. This requires three kinds of templates, containing: only Apoplast;
Apoplast and Cytoplasm; Apoplast, Cytoplasm and Vacuole.

We are interested in 3D simulations to investigate how our hypotheses be-
have in 3D, and the effect of using 2D simulation, particularly on the effects
of vacuoles. Compare the possible paths an auxin molecule can take in a 3D
cell with a large vacuole to that of a 2D cell with a large vacuole. We can see
from figure 10 that in a 3D cell taking the path through the vertical section is
much longer than taking a path through the horizontal section at roughly the
position of the dashed line. In the 2D cell there is only the vertical path. All
other diffusing agents will have the same problem. This could have an effect on
auxin transport in a 2D tissue. We can use the 3D simulation to help calibrate
the required size of the 2D vacuole.

7 Discussion

We have used the CoSMoS process to produce an incremental change to a pre-
existing CoSMoS-based model and simulator. The enhanced simulator has im-
proved performance, allowing us to run simulations of canalisation over larger
arrays of cells, and over more naturally-shaped cells. Canals still form in the lat-
ter case, indicating that the observed process is not an artefact of the rectangular
cells. The biologically-relevant results from this enhanced simulator version will
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Fig. 10. Comparison of possible paths of auxin molecules (or other agents) in 2D or
3D cells. In the 3D cell the auxin has the possibility of taking a short path to the same
position. This is not possible in a 2D cell with only one path.

be presented elsewhere; here we discuss the impact of the CoSMoS process on
the development.

Continuing to develop our simulations with the CoSMoS process assisted by
UML has allowed us to progress in an efficient and systematic way. Using this
approach helps us to identify which of the assumptions we made when making
the transition to the Platform Model from the Domain Model might need to
be reassessed. Both the CoSMoS process and UML have allowed us to see how
progressing down a particular development path was increasing the gap between
the biology we were trying simulate and how we were implementing it.

The CoSMoS process ensures that at each stage of modelling and simulator
development effort is made to understand and acknowledge what decisions have
been made and why. It is also flexible enough to work with software engineering
tools like UML. UML is able to produce detailed information about the structure
of a biological system. It is then possible to extend these UML descriptions of the
biology into code skeletons of a simulator, even though the final UML and code
include much more than just the underlying biology. That underlying structure
should be visible (visibility can be improved by maintaining a separate Platform
Model and Refined Platform Model), and areas where it has had to change
or has been deliberately changed (such as the removal of emergent properties)
can be highlighted and the reasons made clear. UML diagrams, particularly state
diagrams, can be compared with more traditional biological ‘cartoons’ to enhance
cross-disciplinary communication of model structure and included biology. This
can help increase information flow between modellers and domain experts.

Going through the CoSMoS process has allowed us to see that we needed
to return to the Platform Model of our simulator to include more natural cell



shapes derived from the biology. Both the CoSMoS process and UML allowed us
to identify parts of the simulator code that were becoming over complicated and
could be improved. From this we were able to improve how the biology of the
Domain Model is captured in the Platform Model, and simultaneously improve
the simulator code itself.

In the future we may wish to include more aspects of the Domain in the
Models and simulation. One important example is growth. Introducing growth
into the current simulation architecture would be very difficult to do. Therefore
the CoSMoS process could be used to make the transition between the current
simulator to a new one in a way that allows us to fully understand the differences
between the two simulators produced.
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