Proceedings of the 2011 Workshop on
Complex Systems Modelling and Simulation

CoSMoS 2011

Susan Stepney, Peter H. Welch,
Paul S. Andrews, Carl G. Ritson,
Editors

Luniver Press
2011

Published by Luniver Press
Frome BA11 6TT United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

CoSMoS 2011

Copyright (© Luniver Press 2011

All rights reserved. This book, or parts thereof, may not be reproduced
in any form or by any means, electronic or mechanical, including photo-
copying, recording or by any information storage and retrieval system,
without permission in writing from the copyright holder.

ISBN-10: 1-905986-32-7
ISBN-13: 978-1-905986-32-3

While every attempt is made to ensure that the information in this
publication is correct, no liability can be accepted by the authors or
publishers for loss, damage or injury caused by any errors in, or omission
from, the information given.

Preface

Building on the success of previous CoSMoS workshops, we are pleased
to be running the forth CoSMoS as a satellite event of the 2011 Euro-
pean Conference on Artificial Life (ECAL11) in Paris, France. ECAL11
is an especially good fit for the CoSMoS workshop, examining critical
properties of living and life-like systems and attracting a broad range of
interdisciplinary researchers. The systems examined by these researchers
are inherently complex, and various modelling and simulation techniques
have become key to exploring and understanding their properties.

The genesis of the CoSMoS workshop is the similarly-named CoSMoS
research project!, a four year EPSRC funded research project at the
Universities of York and Kent in the UK. The project aims are stated
as:

The project will build capacity in generic modelling tools and
simulation techniques for complex systems, to support the mod-
elling, analysis and prediction of complex systems, and to help
design and validate complex systems. Drawing on our state-of-
the-art expertise in many aspects of computer systems engineer-
ing, we will develop CoSMoS, a modelling and simulation process
and infrastructure specifically designed to allow complex systems
to be explored, analysed, and designed within a uniform frame-
work.

As part of the project, we are running annual workshops, to disseminate
best practice in complex systems modelling and simulation. To allow
authors the space to describe their systems in depth we put no stringent
page limit on the submissions.

The focus for the fourth CoSMoS workshop is on how complex sys-
tems simulations can begin to approach the scale of real-world complex
systems. To complement this theme, our invited keynote speaker was
Prof. Dirk Helbing from ETH Ziirich, Switzerland, who is the scien-
tific coordinator of FuturICT flagship, which aims “to understand and
manage complex, global, socially interactive systems, with a focus on
sustainability and resilience”?.

The main session of the workshop is based on six full paper submis-
sions:

Andrews et al. summarise the modelling concepts of the CoSMoS ap-
proach to complex systems simulations, and describe how these mod-

! The CoSMoS project, EPSRC grants EP/E053505/1 and EP/E049419/1,
http://www.cosmos-reseach.org
2 http://www.futurict.ethz.ch /FuturlCT

vi

els can be related via their common metamodel, and how CoSMoS
can be applied to engineering bio-inspired systems.

Evora et al. present a framework for simulating complex energy sys-
tems, and describe an agent-based model and simulation of house-
hold electricity demand which is used to investigate the load curve
of 1000 households composed of different social groups.

McEwan et al. show how complex mathematical models can be ex-
pressed using techniques for specifying finite state machines, and
how this enables a systems approach to be used at a coarser granu-
larity than typically seen in systems biology.

Guest et al. explore the benefits and pitfalls of visualisation as a tool
to aid understanding of complex systems, presenting a case-study
of agent communication on the intra-individual, inter-individual and
community scales.

Droop et al. describe a hybrid multiscale modelling approach based
on Petri net and object-oriented models, which is applied to a case-
study on prostate cell division and differentiation.

Polack et al. complement the paper by Droop et al. by investigating
the validity of the prostate cell simulation, and discussing more gen-
eral issues of validating complex systems simulation for scientific
research.

We also invited authors to submit abstracts, for presentation in a poster
session. Abstracts for the following posters are presented in the proceed-
ings:

Mancy et al. develop an alternative multiscale pairwise approximation
approach for ecological modelling, and compare to a spatially explicit
multiscale simulation.

Alden et al. present an agent-based simulation of Peyer’s Patch for-
mation developed following the CoSMoS approach, and explore how
the simulation results relate back to observation of the real system.

Eleftherakis et al. propose a framework to enable the engineering of
emergent properties into artificial distributed networks, combining
classical software engineering practices with multi-agent systems.

Clayton et al. explore the Go programming language for developing
cellular automata type simulations, comparing Go to more estab-
lished CSP based concurrent languages.

Our thanks go to our keynote speaker and to all the contributors for
their hard work in getting these papers, abstracts and posters prepared
and revised. All submissions received multiple reviews, and we thank
the programme committee for their prompt, extensive and in-depth re-
views. We would also like to extend a special thanks to the organising

vii

committee of ECAL11 for enabling our workshop to be co-located with
this conference. We hope that readers will enjoy this set of papers, and
come away with insight on the state of the art, and some understanding
of current progress in complex systems modelling and simulation.

viii
Programme Committee

Rob Alexander, University of York, UK

Paul Andrews, University of York, UK

Fred Barnes, University of Kent, UK

James Dyke, Max Planck Institute for Biogeochemistry, Germany

George Eleftherakis, CITY College, International Faculty of the Univer-
sity of Sheffield, Greece

Teodor Ghetiu, University of York, UK
Tim Hoverd, University of York, UK
Colin Johnson, University of Kent, UK

Enrique Kremers, European Institute for Energy Research, Karlsruhe,
Germany

Nick Owens, National Institute for Medical Research, UK
Rebecca Mancy, University of Glasgow, UK

Fiona Polack, University of York, UK

Carl Ritson, University of Kent, UK

Adam Sampson, University of Abertay, Dundee, UK
Susan Stepney, University of York, UK

Jon Timmis, University of York, UK

Peter Welch, University of Kent, UK

Table of Contents

CoSMoS 2011

CoSMoS process, models, and metamodels
Paul S. Andrews, Susan Stepney, Tim Howverd, Fiona A. C.
Polack, Adam T. Sampson, and Jon Timmis

Agent-based modelling of electrical load at household level
Jose Fvora, Enrique Kremers, Susana Morales Cueva, Mario
Hernandez, Jose Juan Hernandez, and Pablo Viejo

A computational technique to scale mathematical models
towards complex heterogeneous systems.
C. H. McEwan, H. Bersini, D. Klatzmann, V. Thomas-Vaslin,
and A. Six

Plotting a catchy tune: tracing sound meme evolution through
visualization.

A. Guest, J. Bown, A. Sapeluk, A. Winfield, and M. Shovman

Multiple model simulation: modelling cell division and
differentiation in the prostate............
Alastair Droop, Philip Garnett, Fiona A. C. Polack, and Susan
Stepney

Simulation validation: exploring the suitability of a simulation
of cell division and differentiation in the prostate...............

Fiona A. C. Polack, Alastair Droop, Philip Garnett, Teodor
Ghetiu, and Susan Stepney

Multiscale pairwise approximations for ecological modelling
Rebecca Mancy, Simon Rogers, and Patrick Prosser

Developing an in silico tool to explore the mechanisms behind
mucosal lymphoid tissue formation
Kieran Alden, Paul S. Andrews, Jon Timmis, Henrique
Veiga-Fernandes, and Mark Coles

Xi

Harnessing emergent properties in artificial distributed

networks: an experimental framework......................... 141
George Eleftherakis, Ognen Paunovski, Konstantinos Rousis,

and Anthony J. Cowling

Simulating cellular automata using Go........................ 145

Sarah Clayton, Neil Urquhart, and Jon Kerridge

xii

CoSMoS process, models, and
metamodels

Paul S. Andrews!, Susan Stepney!, Tim Hoverd!,
Fiona A. C. Polack!, Adam T. Sampson?, and Jon Timmis'

L YCCSA, University of York, UK, YO10 5DD
2 Institute of Arts, Media and Computer Games,
University of Abertay Dundee, UK, DD1 1HG

Abstract. We summarise the existing CoSMoS approach to
modelling and simulating complex systems, then introduce how
the various CoSMoS models are related via their metamodel,
and demonstrate the generality of the process by discussing its
application to engineering bio-inspired systems.

1 Introduction

The CoSMoS project is developing tools and techniques that enable the
construction and exploration of simulations for the purpose of scientific
research. This is a necessarily interdisciplinary endeavour between scien-
tists who study a particular domain (the domain experts), and software
engineers who construct simulations to facilitate the study of that do-
main (the developers). Together, the domain experts and developers are
involved in open-ended scientific research: the simulations are used as a
tool to support theory exploration, hypothesis generation, and design of
real-world experimentation [10, 11].

Our work is driven by a series of simulation case-studies from a broad
range of disciplines (immunology, ecology, and sociology), with a focus
on simulating complezr systems. Such systems are amenable to computer
simulations, displaying high-level system behaviours that emerge as a
consequence of many simple behaviours at a lower level, where the high-
level behaviour cannot be readily deduced as a simple combination of the
low-level behaviours. A classic example of a complex system behaviour is
bird flocking: the individual behaviour of birds flying together can result
in the emergence of a flock at the population level. Computer simulation
allows us to examine such systems from a holistic point of view.

To run computer simulations we need to engineer a simulation plat-
form. This requires us to explicitly represent some knowledge of the

2 Andrews et al.

system being studied in a form that can be implemented on a computer.
This representation, the source code, is either designed manually by the
developers or automatically generated from a higher-level description. In
many existing approaches the source code is the only explicit descrip-
tion of the aspects of the target domain that are being simulated. Source
code contains numerous implicit assumptions® concerning both the sci-
entific aspects of the work, and the engineering design of the simulation
platform.

To mitigate inappropriate assumptions in the design of simulation
platforms, and to have greater confidence that simulation results can
actually tell us something that relates to the real system being studied,
we use a series of related models to drive and describe the development
of the simulation platform and simulation results generated from its use.
Systematic development assists interaction between domain experts and
developers, and improves our confidence in, and interpretation of, the
results of simulations [12].

Here we summarise the existing CoSMoS modelling process?, and in-
troduce the CoSMoS metamodel. In §2 we describe the existing CoSMoS
modelling approach in terms of its various models. In §3 we introduce
a metamodel and explain how it relates these CoSMoS models. In §4
we demonstrate the generality of the CoSMoS process by discussing its
application to engineering bio-inspired systems.

2 The CoSMoS process

Our approach uses the following concepts [1]: domain, domain model,
platform model, simulation platform, and results model. The domain rep-
resents the real-world system (or part of a system) that is being investi-
gated. This is related to the models and simulation platform as shown in
figure 1, where the arrows denote a flow of information from one concept
to the next. Like all scientific work, the five development concepts are
shaped by the research context.

Research Context: identifies the overall scientific context and scope
of the simulation-based research being conducted. The scientific context
can be elucidated by recording high-level motivations or goals, research

3 An assumption is any kind of abstraction, simplification, axiom, idealisation
or approximation.

4 Project documentation of simulation, modelling and process descriptions
[1, 11, 12], of validation and argumentation [5, 6, 10], of various biologi-
cal system simulation case studies [2, 3, 4, 13], and of the CoSMoS work-
shop proceedings [15, 17, 18], is available from the CoSMoS project website
www.cosmos-research.org

CoSMoS process, models, and metamodels 3

domain platform
model model
results simulation
model platform

Fig. 1. Relationship between models, domain and simulation platform, where
arrows represent flows of information. These are all framed by the research
context.

questions, hypotheses, general definitions, and success criteria (how will
you know the simulation has been successful). It is important to identify
when, why and how these change throughout the course of developing
and using the simulation. The scope of the research determines how
the simulation results can be interpreted and applied. Importantly, it
captures any requirements for validation and evaluation of simulation
outputs. Consideration should be made of the intended criticality and
impact of the simulation-based research, and if these are judged to be
high, then an exploration of how the work can be validated and evaluated
should be carried out. In summary, the role of the research context is
to collate and track any contextual underpinnings of the simulation-
based research, including the scientific background, and the technical
and human limitations (resources) of the work.

Domain Model: explicitly captures understanding of the domain,
identifying and describing the structures, behaviours and interactions
present in the domain at a level of detail and abstraction suitable for
addressing any identified research questions to be posed of the simula-
tion platform. It is a model based on the science as presented by the
domain experts, and its design should be free from simulation platform
implementation bias; it separates the model of the science from the im-
plementation details of the simulation platform. Importantly, the do-
main model is developed with the domain experts, and is used as a tool
to exchange and discuss domain understanding between developers and
domain experts. The domain model forms the agreed scientific basis for
the eventual simulation platform.

Platform Model: an engineering derivation from the domain model,
and a step towards construction of the simulation platform. The model
is shaped by engineering design decisions, detailing the implementation
of the structures, behaviours and interactions identified in the domain

4 Andrews et al.

model in a way that naturally translates to simulation platform tech-
nologies. This might dictate that some concepts in the domain model are
abstracted or simplified, to allow efficient implementation. Some high-
level emergent behaviours identified in the domain model are removed
from the platform model, if the purpose of the research is to investigate
the emergence of these behaviours from other model components. In gen-
eral, given a hypothesis under consideration, components in the domain
model that are outcomes of hypothesised mechanisms should not appear
in the platform model: the answer should not be explicitly coded into
the simulation platform, but must appear in some model. The platform
model also adds instrumentation and interfaces to allow observation (vi-
sualisation), user interaction, and recording of the eventual results of
using the simulation platform.

Simulation Platform: encodes the platform model in software and
hardware platforms with which simulations can be performed. The sim-
ulation platform defines a set of parameters (variables) that allow the
encoded model to be manipulated. The parameters are derived from the
domain model and interpreted through the platform model, thus making
the simulation platform accessible to domain experts with knowledge of
the domain model.

Results Model captures understanding of the simulation platform
based on the output of simulation runs, and provides the basis for in-
terpretation of what the simulation results show. Its relationship to the
simulation platform is analogous to the relationship between the domain
and domain model. The results model is constructed by experimentation
and observation of simulations, and might record observations, screen-
shots, dynamic sequences, raw output data, result statistics, as well as
qualitative or subjective observations. The contents of the results model
are compared to the domain model to establish whether the simulation
platform provides a suitable representation of the real-world domain be-
ing investigated. The results model might also provide details to develop
new experimentation, either on the simulation platform or in the real
domain.

The domain, platform, and results models are generated and updated
throughout simulation-based research: establishing the scientific basis,
developing the simulation platform, and using the simulation platform
to explore the domain. The models are used as devices to capture, com-
municate and reason about different aspects of the construction and use
of the simulation platform, and how this relates to the domain. This
includes annotating the appropriate model with scientific or engineering
assumptions. By using a principled approach to simulation, the research

CoSMoS process, models, and metamodels 5

is ultimately open to review and challenge, and provides a basis for sci-
entific reproducibility.

3 Models and Metamodels

The CoSMoS process emphasises the need for separate domain, platform,
and results models. In this section we describe how these three models are
related, and how they differ, in terms of metamodelling. The discussion
here assumes that the modelling approach is agent-based, and that the
research context is investigating emergent properties. Other modelling
approaches and other research contexts are also possible: the specifics
change, but the overall approach remains the same.

A model such as used in CoSMoS provides the abstract language of
the relevant concepts; the platform model captures the concepts to be
implemented in the (simulation platform) code. A metamodel provides
the analogous language for writing a model: it defines the kinds of things
that can occur in the model (it is the model of the model) [8, ch.8].

A metamodel can provide a rigorous link between different yet re-
lated models. For example, in agent-based modelling of systems with
emergent properties, the metamodel includes concepts such as Agent,
Rule, and Emergent. For a different style of model, such as an ODE
model, the metamodel includes different concepts, such as Concentration
and RateOfChange. An agent-based model of ant pheromone trails would
include classes such as: Ant, an instance of Agent; and Trail, an instance
of Emergent. An agent-based model of bird flocking would include classes
such as: Bird, an instance of Agent; and Flock, an instance of Emergent.

The metamodel for the CoSMoS domain and results models must
be essentially the same: the results model is constructed in the same
language as the domain model, to enable direct comparison of the two,
and so that the results are presented in a domain-relevant language. The
platform metamodel differs in that it does not include the hypothesised
emergent properties, but it does include interface and instrumentation
concepts.

The components of an agent-based domain and results metamodel
could include:

— Agent: the types of the entities in the agent-based model (eg, birds)

— Environment: the environment within which they act (eg, obstacles,
gravity, wind)

— Rule: the agents’ behavioural rules, including how they interact with
each other (eg, flocking rules), and with their environment (eg, ob-
stacle avoidance rules)

6 Andrews et al.

' domain ’
model current | future
data data
:ﬁ;ggls calibration | | validation prediction unobservable
data data data data

Fig. 2. The relationship between data in the domain and results models.

— Emergent: emergent properties exhibited by the dynamics of the
model (eg, flocking)

— Data: scientific data used to quantify the model (eg, bird positions
and velocities)

— Measure: a quantitative measure calculated from the data (eg, an
entropy-based flocking statistic)

The domain and results models share a common metamodel. This
does not mean that the two models are identical; it means that they are
cast in the same language. The domain model has instances of metamodel
concepts that capture specific domain concepts; the results model has
instances of simulation analogues of those domain concepts. So where
the domain model has Bird, the results model has Boid, the simulation
analogue of Bird; both are instances of the metamodel concept Agent. The
results model has Data instances, which stand in the same relation to its
Agent instances as they do in the domain model (so if the domain model
has bird positions and velocities, the results model has the corresponding
boid positions and velocities). This means that the Measure instances
can be essentially identical, allowing a direct comparison of the models
in domain terms, see figure 2. The results model needs data so that it can
be calibrated suitably; it needs further data so that it can be validated
against the domain model (this is analogous to training and test data in
machine learning [7]). At this stage it can be used to analyse data from
novel scenarios, to make predictions; the domain can be augmented with
new experimental data to test those predictions. Data in the results
model that is not observable (even indirectly, through surrogates, or
by investigating predictions) in the domain model is of little use. The
necessity for suitable data in the results model implies requirements on
the platform model.

The platform metamodel is different from that of the domain and
results metamodel. In particular, it has no Emergent concept; it is im-

CoSMoS process, models, and metamodels 7

,r/"',aomain, / platform °
results Env - ,,:
—
Rule Interface
| /
Emergent Agent —
—
Measure \ Data Instrument ,’

Fig. 3. A metamodel for agent-based simulation of emergent properties. The
dashed boxes indicate the components of the metamodel that are used to
describe the domain and results models, and the platform model.

portant that there is no way to program the desired answer into the sim-
ulation: it must emerge. (If the research context is not concerned with
emergent properties, but some other kind of property, it is equally impor-
tant to ensure that this does not get programmed in to the simulation.)
The platform model adds Interface concepts, to allow user interaction
with the simulation, and Instrumentation concepts, to allow extraction
of the Data. The Data instances are common to the platform model and
results model: that are extracted from the simulation, and analysed in
the results model.

Although it is important that the domain and platform metamodels
are different, it is also important that they share many concepts, allowing
a common language. We define a single metamodel sufficient for all the
individual models, and indicate which parts of it are specific to particular
models, and which parts are common across the models. A schematic
view of this metamodel is shown in figure 3.

A schematic view of part of a possible model is shown in figure 4. Not
all the concepts in the metamodel need be instantiated as classes in the
model. For example, Rule might be instantiated as rules of interaction,

Andrews et al.

Agent Data Measure
r I 0
i i i metamodel
A A A
70 A 70 models
/ \ / \ / \
i \ i \ i \
{ domain i \ ! \ ! Y
i 1 - ! - ! -
I \\ \\ \\
Bird 4 BirdPosn \ Flockness it
| \ \/
\ \)
\ | A
1 | 1
T 1 Il
A ! f] 1
1 1 1 i 1
! |
g Boid BoidPosn | | Flogness
i ;
! platform |

results ;

Fig. 4. The domain, platform, and results models for agent-based simulation
of emergent flocking properties. The dashed arrows represent instance rela-
tionships between model concepts and their metamodel concepts. The dashed

boxes show the components of the models: the domain has different concepts
from those shared by the platform and results models.

as behaviours of boids; Env might be instantiated as a system, of several
classes and methods.

4 CoSMoS process applications

The CoSMoS process described in §2 is a minimal process, suitable for
building scientific simulations of real world domains. The underlying
concepts of different models, and of a common metamodel, are generic,
however, and can be used in a wider range of applications. Here we
illustrate this by discussing their use for designing a class of bio-inspired
algorithms (where the real-world domain is not being investigated for

its own reasons, but is being used for inspiration), and for engineering

CoSMoS process, models, and metamodels 9

a bio-inspired domain (where the engineered domain is not pre-existing,
but is being built as part of the process).

4.1 The conceptual framework for bio-inspired algorithms

Some of us have previously described a conceptual framework [16] for
the principled development of bio-inspired algorithms. This conceptual
framework (figure 5) describes a process of modelling the biology, ab-
stracting out principles, and instantiating those principles as computa-
tional concepts (rather than building a direct, and naive, analogue of the
biology). Probes (observations and experiments) are used to provide a
partial view of the complex biological system. From this we build and
validate simplified abstract representations of the biology. From these
biological models we build analytical computational frameworks. These
frameworks provide principles for designing and analysing bio-inspired
algorithms applicable to non-biological problems, possibly tailored to a
range of problem domains, and contain as much or as little biological
realism as appropriate.

The conceptual framework is consistent with the CoSMoS modelling
approach, with the identification of the components as shown in fig-
ure 6. The domain is the biological system from which we wish to draw
our inspiration. The domain model is a suitable model of this biological
system, that will form the basis for the bio-inspired algorithm design.
We then abstract this model into a metamodel, capturing the relevant
concepts and relationships of the biological model. At this meta-level,
we can abstract away contingent details of the biology that are of no
relevance to an algorithm. We then develop a separate instantiation of
this same metamodel in the computational domain: the platform model.
Thus the bio-inspired model is related to the biological model via the
metalevel abstraction, rather than by a direct naive mapping.

There is nothing in the conceptual framework [16] that explicitly
corresponds to the CoSMoS results model. The purpose of the results
model in simulation experiments is to compare the simulation with the
real-world domain being investigated. Here the real-world domain (bio-
logical system) is not being investigated; it is being used as inspiration
for the algorithm development. The domain model and platform model
might be very far removed from each other. However, the reason that
the biological system is being used as inspiration is that it has (usu-
ally emergent) properties that are wanted in the algorithm, for example,
robustness. The results model could therefore be used to capture the al-
gorithm’s properties, and to validate that the algorithm as implemented
has indeed captured these desired bio-inspired properties (as defined at
some suitable level of abstraction, in the metamodel). Additionally, an

10 Andrews et al.

modelling
probes, y ————1

observations, |, simplifying §
experiments)¢] abstract f;ﬁg\}vlg?li/
L representation U principle

A A

Y VY
biological system bio-inspired
algorithms

Fig.5. A conceptual framework for bio-inspired algorithm design [16, fig.1].

metamodel
(analytical
framework)

7
/

abstraction

/

/
/
/
/

domain model
(simplifying
representation)

domain
(biological
system)

observation

results model

instantiation

platform model
(bio-inspired
algorithm)

implementation

simulation platform

(22?)

Fig. 6. The conceptual framework in terms of
metamodels. The framework components fit int

(implemented
algorithm instance)

CoSMoS process models and
o the CoSMoS process. There

is nothing in the framework explicitly corresponding to the CoSMoS results

model.

CoSMoS process, models, and metamodels 11
. |
abstraction -~ metamodel
7 i .
biological : T
h ! N
observation.7| ~ domain ! S
s model | ~
1. P ~ . . .
N I instantiation ~_ instantiation
biological \ : N

domain \ —Y - -
\ engineering engineering

\ domain platform

obseW'\/7 model model

\\
i i \ design
engineering \ >1gn
domain property validation
validation \
\ implementation
implementation \

engineering engineering
results - simulation

model observation platform

Fig. 7. A bio-inspired engineered domain.

explicit focus on these properties helps guide the initial domain mod-
elling and abstraction process.

The description of the conceptual framework [16] does mention vali-
dation, but it is only a point-to-point process between consecutive mod-
els, and is not explicit about the purpose or means of the validation.
Here we have an explicit place and approach to include validation of
algorithm properties within the process.

4.2 Two domains

Bio-inspired algorithms are often developed for a particular purpose,
for example, to engineer a particular bio-inspired system. The CoSMoS
process for bio-inspired algorithm development described in §4.1 can be
combined with the base simulation process of §2, as shown in figure 7.
For example, this could describe the process of engineering a bio-inspired
swarm robotics system.

The lower five boxes in figure 7, those joined by solid lines, represent
a small modification of the base CoSMoS process. The main difference is
that the domain is engineered, and so does not exist initially; the domain
model is the engineering specification: the domain is engineered to re-
spect the model (not the other way round, as when modelling a natural

12 Andrews et al.

domain). The ‘design validation’ demonstrates whether the simulation
is an adequate simulation of the engineered domain.

The upper boxes represent the biological inspiration, as seen in §4.1.
The ‘property validation’ demonstrates whether the engineered domain
(via its capture in simulation) exhibits the desired biological properties.

This approach is not specific to bio-inspired engineering. It can cover
any case where there is some ‘inspiration domain’ being exploited to
help engineer a ‘solution domain’. What is important is to understand
what information is coming from what domain, and how the domains
are linked, not directly, but through abstract models and metamodels.

We are currently applying this approach to developing a swarm robot
system to investigate Simon’s Loose Horizontal Coupling hypothesis [9,
14].

5 Summary and Conclusions

The CoSMoS process emphasises the building of a range of models, sat-
isfying different purposes. In particular, the hypothesised properties (for
example, emergent properties) are captured in the domain model, where
they can be analysed, but are not present in the platform model, ensur-
ing that they are not explicitly implemented. The results model allows
the platform simulation outputs to be analysed and compared to the
domain model.

Here we have introduced the use of an overarching metamodel in the
CoSMoS process, to ensure that the various models are expressed in a
common language, and to define the relationship between them.

We have shown an example of how the CoSMoS model and meta-
model approach can be used to analyse pre-existing development frame-
works, and to identify missing components that have a valuable function.
We have also sketched how the process can be applied to simulations of
bio-inspired engineered domains, in addition to simulation of pre-existing
natural domains.

Acknowledgements

This work is part of the CoSMoS project, funded by EPSRC grants
EP/E053505/1 and EP/E049419/1, and a Microsoft Research Europe
PhD studentship. We thank the anonymous referees for helpful sugges-
tions.

CoSMoS process, models, and metamodels 13

References

[1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

Paul S. Andrews, Fiona A. C. Polack, Adam T. Sampson, Susan Stepney,
and Jon Timmis. The CoSMoS process, version 0.1: A process for the
modelling and simulation of complex systems. Technical Report YCS-
2010-453, Department of Computer Science, University of York, March
2010.

Anton Jakob Fligge, Jon Timmis, Paul Andrews, John Moore, and Paul
Kaye. Modelling and simulation of granuloma formation in visceral leish-
maniasis. In CEC 2009, pages 3052—-3059. IEEE Press, 2009.

Philip Garnett, Susan Stepney, Francesca Day, and Ottoline Leyser. Us-
ing the CoSMoS process to enhance an executable model of auxin trans-
port canalisation. In Stepney et al. [17], pages 9-32.

Philip Garnett, Susan Stepney, and Ottoline Leyser. Towards an exe-
cutable model of auxin transport canalisation. In Stepney et al. [15],
pages 63-91.

Teodor Ghetiu, Robert D. Alexander, Paul S. Andrews, Fiona A. C. Po-
lack, and James Bown. Equivalence arguments for complex systems sim-
ulations - a case-study. In Stepney et al. [18], pages 101-140.

Teodor Ghetiu, Fiona A. C. Polack, and James L. Bown. Argument-
driven validation of computer simulations — a necessity rather than an
option. In VALID 2010:, pages 1-4. IEEE Press, 2010.

Paolo Giudici. Applied Data Mining: Statistical Methods for Business and
Industry. Wiley, 2003.

Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Ezxplained: the Model
Driven Architecture: practice and promise. Addison-Wesley, 2003.
Jennifer Owen, Susan Stepney, Jon Timmis, and Alan Winfield. Exploit-
ing loose horizontal coupling in evolutionary swarm robotics. In ANTS
2010, Brussels, Belgium, September 2010, volume 6234 of LNCS, pages
432-439. Springer, 2010.

Fiona A. C. Polack. Arguing validation of simulations in science. In
Stepney et al. [17], pages 51-74.

Fiona A. C. Polack, Paul S. Andrews, Teodor Ghetiu, Mark Read, Susan
Stepney, Jon Timmis, and Adam T. Sampson. Reflections on the simu-
lation of complex systems for science. In ICECCS 2010, pages 276-285.
IEEE Press, 2010.

Fiona A. C. Polack, Paul S. Andrews, and Adam T. Sampson. The
engineering of concurrent simulations of complex systems. In CEC' 2009,
pages 217-224. IEEE Press, 2009.

Mark Read, Paul S. Andrews, Jon Timmis, and Vipin Kumar. A domain
model of experimental autoimmune encephalomyelitis. In Stepney et al.
[18], pages 9—44.

Herbert A. Simon. The organization of complex systems. In Howard H.
Pattee, editor, Hierarchy Theory, pages 1-27. George Braziller, 1973.
Susan Stepney, Fiona Polack, and Peter Welch, editors. Proceedings of the
2008 Workshop on Complex Systems Modelling and Simulation. Luniver
Press, 2008.

14

[16]

[17]

[18]

Andrews et al.

Susan Stepney, Robert E. Smith, Jon Timmis, Andy M. Tyrrell, Mark J.
Neal, and Andrew N. W. Hone. Conceptual frameworks for artificial
immune systems. International Journal of Unconventional Computing,
1(3):315-338, July 2005.

Susan Stepney, Peter H. Welch, Paul S. Andrews, and Adam T. Sampson,
editors. Proceedings of the 2010 Workshop on Complex Systems Modelling
and Simulation. Luniver Press, 2010.

Susan Stepney, Peter H. Welch, Paul S. Andrews, and Jon Timmis, edi-
tors. Proceedings of the 2009 Workshop on Complex Systems Modelling
and Simulation. Luniver Press, 2009.

Agent-based modelling of electrical
load at household level

Jose Evora!, Enrique Kremers?, Susana Morales Cueva?,
Mario Hernandez!, Jose Juan Hernandez!, and Pablo Viejo?

1 SIANI, University of Las Palmas de Gran Canaria, Las Palmas, Spain,
jose.evora@siani.es
2 EIFER, European Institute for Energy Research (KIT & EDF),
Karlsruhe, Germany
enrique.kremers@eifer.org

Abstract. Regarding electrical systems as complex systems of-
fers new approaches for analysing, modelling and simulating
those systems. Using software engineering techniques like Model
Driven Engineering, a disaggregated model for household elec-
tricity demand is created. The Tafat framework for simulating
complex energy systems is presented, including the concepts of
the metamodel, models and behaviours. A first case study simu-
lating the load curve of 1000 households composed of five differ-
ent social groups is discussed and compared with an aggregated
curve. The model is able to represent the load curve of a sample
of households using a bottom-up approach.

1 Introduction

During recent years, an increasing interest in knowing more about elec-
trical demand at low levels of the power grid can be observed. This is
mainly due to the process of change the electrical system are undergoing,
motivated by causes such as the introduction of renewable energy sources
(RES) as well as distributed generation (DG). These changes require a
better knowledge of the load curves at a distributed level, which involves
different factors such as electrical equipment, user behaviour, environ-
mental conditions, etc. that have a potential impact on the consumption.
Aggregated data at substation level is no longer accurate enough to de-
scribe the consumption processes at the level of the distribution grid.
Modelling the consumption locally can help us to better understand
the composition of aggregated load curves (also represented by load pro-
files) and analyse how local measures can have an effect on the global
curve. Current aggregated models do not provide the possibility to model

16 Evora et al.

local measures on the grid, as for example punctual actions taken by in-
dividual consumers, like switching on a cooking stove or an oven. They
can only be included by modelling their aggregated effect and integrat-
ing it at aggregated level, due to their resolution. When considering the
proposed changes in the electricity system, for planning and control ac-
tivities at distribution level, these curves are not suitable, as they only
fit for a large number of consumers because they describe the average
use of energy over time [12, 4].

Some approaches already exist found which considered these facts
and implement a demand modelling at lower scale. In [10] a simplified
demand model for domestic lightning is presented that provides estimat-
ing the aggregated demand or even the distributed loading for groups
of households. In [4] a multi-use bottom-up domestic consumption mod-
elling tool was developed and verified. [14] gathered and analysed high
resolution domestic electrical data and found that logging at intervals
of few minutes is necessary to capture the fine detail of load patterns
for evaluating on-site generation. In [11], a high resolution stochastic ap-
proach, using heterogeneous Markov chains is chosen to model domestic
electricity demand.

2 Electrical systems

The electric power system is composed of different electrical components
that allow for the production, transmission and consumption of electric
power. Production or generation of electric power is the process of con-
verting energy in other forms (chemical, mechanical, nuclear, etc.) into
electrical energy. For the transmission, different kinds of electrical net-
works are used. Generally, they are classified by their nominal voltage
at each level. Long range transmissions over hundreds of kilometres are
performed at high voltages of several hundreds of kilovolts (kV). These
networks are called transmission systems. Transformer stations (substa-
tions), can reduce the voltage at a given point in order to feed electricity
to the so called distribution system. The distribution system carries the
electricity to the final consumers. These networks operate at medium
voltage levels, usually between 1-50 kV. In a final stage, distribution
transformers can convert from medium voltage into low voltage (less
than 1 kV) which is the typical voltage level find at residential or ter-
tiary customers. Some specific customers (such as industries) may have
direct connections at medium voltage level, too.

In a classical energy system, generation is injected at high or medium
voltage level and consumed in the distribution system. Following the
trend of introduction of renewable energy sources and distributed gener-

ABM of electrical load at household level 17

ation, injections of energy at almost all levels of the system are possible.
Also, and in order to better match the fluctuating production introduced
to the system, Demand Side Management (DSM) mechanisms, which al-
low to manage the consumption are being developed. The electricity
system can be seen as a complex system, being composed of a large
number of interacting entities. The reproduction of the behaviour of the
system is therefore not possible by modelling only individual objects or
the system in a monolithic way. In this paper, we use a disaggregated
method to model a part of the electricity system. A detailed model of
low-voltage demand is constructed for simulating the load curve of indi-
vidual households. This includes the loads of each household, represent-
ing the final end consumers of this electrical system. Simulating a large
number of entities, the individual consumptions can be aggregated and
a representation of a load curve at e.g. substation level is created.

2.1 Complexity and intelligence in electrical systems

Classically, the electrical system management has been done based on
the aggregated consumption data at a global level. The nature of this
management is has been centralised since the system was considered as
an indivisible unit. When new devices that apply demand side manage-
ment strategies are introduced in real electrical systems, new manage-
ment conceptions must be considered. So, the management of the future
electrical system must overcome the restrictions that are introduced now
and start analysing the electrical system as a distributed system.

This conception of the electrical system shows analogies with other
living complex systems, such as ants or bees colonies, in which there are
several agents that are taking decisions and acting locally. Actions that
each agent are executing locally are aggregated, and these actions can
lead to emergent phenomena.

From our perspective, in the electrical systems, people living in the
household are agents [13]. They can be considered as intelligent [3] since
they are self interested units and exhibit an adaptive behaviour to their
environment. These agents are able to take decisions and coordinate their
actions with other agents. The main difference with the study of living
complex systems is that in the electrical system, we are not interested
in the study of the emergent behaviour starting from the local actions,
but the modification of local behaviours to get the desired emergent
behaviour [9]. However, in a second point of view, a complex system
simulation model can serve to observe unwanted emergent phenomena
and study these effects on the system. An approach to analyse complex
systems from this point of view, at the very bottom, can be seen in [6].

18 Evora et al.

2.2 Analysing electrical systems

From an analytical point of view, in electrical systems, we can classify
objects according to their behaviour in three categories: first entities that
can be described in term of their physics such as a building that exhibits
a thermodynamical behaviour, second entities that can be described with
a mechanistic model such as a washing machine and third agents that
can be described with a intentional model such as people living in a
household or smart meters.

This behaviour separation match perfectly with the differentiation
proposed in [2]. In this work, the author proposes the following three
behaviour categories from a observer point of view:

— Physics Stance: at the level of physics and chemistry. It is con-
cerned with things such as mass, energy, temperature, velocity, and
chemical composition.

— Design Stance: at the level of biology and engineering. It is con-
cerned with things such as the function of a living system or the
design of a system.

— Intentional Stance: at the level of software and minds. It is con-
cerned with things such as belief, thinking and intention.

3 Simulation of electrical systems

Like other complex systems, electrical system simulations involve the
behaviour execution of the many elements that exists in a real grid.

The process starts by modelling the electrical system using Tafat.
Tafat is a framework for building simulation through Model Driven En-
gineering which is currently under development by SIANI and EIFER.
It is currently implemented in JAVA, but designed to be language-
independent. Tafat uses an object oriented and agent-based approach.
In this framework, each element of the system is represented including
a behaviour that explains how it changes over time. Then, a simulation
is run by executing all the behaviours concurrently. During the simula-
tion, behaviours can modify the attributes of these entities. One entity
can have different kinds of behaviours, that are stored in a repository.
The separation of structural and behavioural elements (entities, defined
in the metamodel; and behaviours, stored in a repository) should be
underlined here.

However, since the electrical system is locally and massively affected
by the human interventions, it is also required to model this behaviour
along with other entities that belong to the electrical system architecture.
Representing the human behaviour means that it is required to define

ABM of electrical load at household level 19

what people do during a time period, which electrical devices they have
and how they use them.

Until now, the human behaviour has not been analysed and electri-
cal companies only have historic aggregated data of the consumption at
global level. From now, it is quite important to have data at the house-
hold level to be able to model households and simulate the behaviour of
people inside. So, the main challenge in modelling electrical systems is to
describe all the electrical appliances in the households and the behaviour
profiles whose actions generate electrical consumption.

3.1 Software engineering approach

It is needed to approach the software engineering of the simulator with a
methodology that supports the modelling of a large number of entities.
The goal is to make the simulator development and maintenance easier.

The approach that has been taken is based on a software engineering
paradigm called Model Driven Engineering (MDE) in which systems are
developed at an abstraction level close to the problem domain. In this
approach, models are the artifacts that drive the development process.
From an evolutionary point of view, development methods have been
trying to get more abstractions in order to reduce the gap between the
programming semantic and domain semantic.

MDE is the result of the combination of technologies such as Domain
Specific modelling Languages (DSML) and engines that analyses models
for synthetising software artifacts. This paradigm allows to improve pro-
ductivity and flexibility at developing a simulator, since the application
is developed and modified just by changing the model [8].

3.2 Metamodel and models

To model the electrical system, a metamodel for this domain has been
developed. The metamodel is a formal representation that supports the
description of an electrical system with a semantic that is closer to the
domain expert. The metamodel can be understood as a representation
language for modelling electrical systems.

This metamodel comprises the classes of entities that have been iden-
tified in the real world. So, the metamodel defines what kind of elements
can be represented in the model and provides a standardised way of
representing elements. Classes are represented in a model by means of
context, features, variables and behaviour (Figure 1). Context defines
where elements can be placed in the scene. Features are defined as static
data of an element; while variables are defined as dynamic data. The
behaviour is the logic that updates the dynamic data.

20 Evora et al.

Metamodel
Building Household Refrigerator
Area: double Area: double Labelling: {A,B...}
Levels: int Heigth: double Volume: double
Repository
Y Y
Building behaviour Refrigerator behaviour
Thermodynamical

Fig. 1. Structure of the metamodel where the element definitions are exposed.

Model

Building

Household

Washing Machine| Agent

Connection

A

Fig. 2. Structure of the model shown by an example including behaviours

In the metamodel, we distinguish different types of model elements:
entities, static objects that belong to the scenario (e.g. refrigerator);
agents, intentional objects that interact with entities and communicate
with other agents (e.g. person); connections that define relations between
entities or agents (Figure 2).

A model is a representation of a specific electrical system using the
metamodel classes. Elements that are going to be simulated are instanti-
ated from the metamodel in the model. Both, models and the metamodel,
are represented using XML.

3.3 Programming behaviours

To simulate the electrical system, all the metamodel classes have to in-
clude behaviours that must be programmed.

ABM of electrical load at household level 21

[kw]

1,5

0,5

. | —

0 30 60 9 120 [min]

Fig. 3. Simulated load curve of a washing machine

A separation between the different types of behaviours must be done
according to the discussion exposed in the section 2.2. In this section,
an example of each kind of behaviour will be exposed.

Environmental behaviour Environmental behaviours represent the change
over time of some environmental variables. Environmental variables are
normally common to a group of entities or devices and describe the sur-
roundings or ”outdoor”. These can be for example solar radiation mod-
els, which represent the insolation and can be used for calculation of
the thermal gains of a building, or further for energy production (photo-
voltaics, solarthermal use, etc.). These behaviours do not directly change
the attributes of a device or agents, but rather allow some interactions
in an indirect way (e.g. through heat exchanges, etc.).

Device behaviour Most of the electrical devices used in a household are
major appliances such as washing machines, refrigerators, etc. There are
also some other, smaller appliances, such as CD players, TVs, HiFi Au-
dio equipment, etc. Usually, the major appliances cause a larger part
of the electrical consumption. In order to recreate the individual load
curves, EIFER (European Institute for Energy Research, a common re-
search institute by KIT and EDF) has developed individual models for
the behaviours of electrical appliances, which were integrated into Tafat.
Simplified technical models are used, which take into consideration dif-
ferent technical parameters of a specific appliance. So, for example, the
load curve a TV will be characterised by the size and technology (CRT,
LCD, Plasma, etc.). Major appliances also are modelled using the EU
Energy Label as an input parameter, which is an indicator for the en-
ergy consumption of a device and is compulsory for appliance sold in the

22 Evora et al.

Agent Environment
Mission maker Entity 1
Y
Decision maker [« Recipes Entity 2
Y
Action Maker > Entity 3

Fig. 4. Agent architecture composed by a mission maker (intentions), decision
maker (recipe selector) and action maker (recipe executor)

EU. Different releases for the behaviours of the electrical devices were
created. Using this modular approach, a behaviour of a single device can
be exchanged in a simple way. The different releases include simplified
technical models with varying degrees of accuracy, thus allowing for an
optimisation of execution time vs. accuracy of the model. In Figure 3
an example of the load curve generated by the behaviour of a washing
machine can be seen. This load curve is created by a simplified technical
model of this appliance.

Social behaviour A flexible architecture is proposed to carry out a social
behaviour. As described in section 2.2, intentional stances are the most
complex behaviours. For this reason, the architecture must be flexible
to allow a range of behaviours from simple behaviour based on a list of
tasks to a complex behaviour implemented as a neural network.

The mission maker is the intention launcher, the decision maker is
in charge of choosing a recipe to accomplish the mission launched and
the action maker is the executor of the recipe. The recipe is a list of
actions that executes to accomplish a mission. With this architecture,
a simple behaviour can be developed by creating a big recipe in which
all the tasks are described and having a mission and decision maker
very simple. Otherwise, in a complex social behaviour, the task can be
launched by the mission maker according to several parameters of its own
agent or the environment, having a hard process to choose a recipe in
the decision maker, but easier recipes that only describe how to arrange
a task as, for example eat.

ABM of electrical load at household level 23

Metamodel Simulator Engine Repository

Profiled

XML Profiler

Simulator

Fig. 5. Tafat architecture

3.4 Simulation

The main problem for developing good models that represents accurately
a place (town) as the lack of data. Often, it is quite difficult to gather
the needed data.

Ideally, models should be built using real data, since the simulation
will help to understand what happens in the electrical system. However,
since data is not available at all, a model approximation is done. A
tool called profiler has been developed (Figure 5), which helps to carry
out this task. Using a high-level description of a place (for example,
amount of buildings and population), Profiler automatically generates
an electrical system model that can be simulated directly. The profiler
is part of Tafat, a MDE platform that supports the development of
simulations.

Electrical models can be created to represent the load accurately
but light-weight enough for use in large scale simulations, and handle
demand side management mechanisms through the use of an agent-based
approach.

4 Case Study

4.1 Modeled scene

The case study proposed is an analysis of the electrical load of households
according to social group characteristics. The following five different so-
cial groups have been taken into account to develop the case study:

1. junior single,
2. senior single,
3. junior couple,

24 Evora et al.

Socio-demographic groups distribution

Sample Population used in the

Population in Germany imulati
simulation

Other combination _ Couple without children
8% /’ h 17%

1 pers.HH, person
\ | GT 60
> Selection | 9%
/ |

70% |

Family with
children LE 16
20%

Couple with

children GT 16
16%

// 1 pers.HH, person LE 60
9%

Couple without children
GT 60
15%

Single parent
6%

Fig. 6. Socio-demographic groups used in the case study. Source: SOEP.

4. senior couple and
5. family with children.

These groups were taken as a part which represents about 70% of
the population of Germany, being the most numerous groups identified
by the German Socio-Economic Panel Study (SOEP). The constitution
of this sample is shown in Figure 6.

A survey® has provided the information about the timetables and
appliance usage of a household according to the social group. Based
on this information the agent behaviour which is related to the house-
hold is implemented. The electrical usage behaviour data employed for
this study was obtained through a local survey. Thus the gathered data
from a small sampling was used as input parameter in the Tafat model.
Hence, 20 different social behaviours (i.e. 20 different model recipes) are
been used to simulated the five socio-demographic groups. Each of these
recipes includes some randomness through the definition of intervals at

3 The survey consisted in local interviews with around 20 persons in Karl-
sruhe, Germany in order to obtain data like usage times and durations of
specific socio-demographic groups. It has to be noted that the survey is not
representative but rather a sample of the user behaviours of those groups.

ABM of electrical load at household level 25

[kw]
1000

900
800

[WY

600

500
400
300

200 ~ N\

=

100

0 [h]

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Fig. 7. Simulated load curve of 1000 households for one day

which devices are switched on or off. The exact time instant of time is
obtained as a uniformly distributed random variable over this interval.
To arrange this study, an important utility of Tafat to build auto-
matically a scene has been used. This utility uses statistical data from
the SOEP and the survey to create a model scene in which the social
groups are distributed in the households. Those households contain the
electrical devices, and their amount, according to the social group.

4.2 Simulation and results

In the simulation, the device load curves within a household are gener-
ated. The curves were aggregated using an individual behaviour for each
household taking into account some randomness (variation of the dura-
tion and use time in a defined range of the different electrical devices).
The simulation results show the load curve of a day of 1000 house-
holds with around 12 appliances each, composing thus an amount of
approximately 12000 simulation elements. This type of simulation can
provide the relevance of a determined power consumer in the household
consumption as well as the influence of a specific type of consumer on

26 Evora et al.

the global load. The number of 1000 entities was chosen, as it was deter-
mined that larger amounts did not change substantially the results and
only increased the execution time of the simulation. This is probably due
to the use of a limited number of recipes (taken from the number of sur-
veyed persons). In this case, the execution time was around 20 minutes
on a standard desktop PC for the simulation of a period of 24 hours.

The 1000 household sample is composed of a distribution of the dif-
ferent social groups according to real statistical data, in order to obtain
a sample of households that is as close as possible to reality. In Figure 7,
the simulated load curve for one day can be seen. The simulation is run
in a high time resolution, being the time step one minute. This allows
observing effects which are neglected in simulations at lower resolutions,
provided by 15 minute or hourly models. Some sharp peaks can be ob-
served, which are caused by the use of high power consuming devices
in the household. A general trend to use more power during the day is
clearly visible. During the night, the base load (devices that are con-
stantly running, such as refrigerators and other permanent loads) cause
a consumption that is only around a third part of the daily peak load.
The configuration of the simulation can be seen in Figure 8.

In Figure 9 the curve is compared to a standard load profile of Ger-
many for a winter weekday (according to [1] and made public by [7])
for household demand. The profile is provided in a normalised form in
order to be weighted with a given number of energy. In this case, and
for comparison purposes, the profile was weighted with the same amount
of energy as the simulation curve, i.e. that the daily consumed energy
[kWh] is the same in both cases. The load profile is a smooth curve, rep-
resenting an aggregated load behaviour at high levels of the electricity
system for large number of consumers. The are the result of a statistical
analysis based on representative samples from different consumer groups
[5].

The simulated curve represents the total power consumed by a sam-
ple of 1000 households, modelled individually and with an autonomous
behaviour for each of them. The curve has been adapted by averaging
periods of 15 minutes in order to match the same time granularity as
given by the standard load profile. The curve is more peak shaped, which
is probably due to the relatively small amount of households (in com-
parison to the statistical samples taken to obtain a profile, which are
representative) and the reduced number of behaviours (in total, only
20 different behaviours have been used). Furthermore, only 70% of the
household population is modelled, neglecting other social groups which
may change the curve.

ABM of electrical load at household level 27

Entity Attributes Components Behavior

Building Household: n=1 -

Household sg = montecarlo” PowerConsumers Sociological Behavior
Households are classified CookingStove n=4 Each social group
into one of the 5 social Microwave n=1 has 4 different
groups (sg) using Oven: n=1 recipes. A recipe is
montecarlo method Dishwasher: n =1 randomly selected.

Refrigerator: n = 1 The recipe defines
area = farea(SQ) AudioHifii n =1 how the power
Area is variable TV: n =fy(sg) consumers mode is
depending on the social Ligthing: n=1 changing
group Washing Machine: n=1

Computer: N=fcompuer(S9)

Waterboiler: n =1

Hairdryer: n =1

Vacuum:n=1

Iron:n=1

Console: n = feonsole(SY)

PowerBus

PowerConsumer mode DeviceBehavior

power Power is calculated
depending on the
device mode and on
its technical
characteristics

PowerBus power DeviceBehavior

power is calculated
by aggregating the
consumption of
Household
PowerConsumers

Fig. 8. Configuration of the entities used in the simulation.

Even though the selected samples in the survey are not representative
for all Germany nor society as a whole (only five social groups were
used), the general trend of both curves are similar. Three peaks can
be observed, which are closely synchronised in time and correspond to
morning, noon and evening peaks. These peaks are correlated with a
large and concurrent usage of high power devices, such as cooking plates,
ovens, microwaves, etc. due to alimentation habits, as well as lightning
use in the evening hours. The morning and noon peaks are lower in the
simulation than in the profile, whereas the evening peak is higher. The
timely synchronisation of the ramps of the peaks matches quite well; this
indicates that the activities (having breakfast, lunch, returning home,
etc.) were modelled according to the average German user behaviour.
Even though, some differences can be observed at the evening drop (21-
23h), as well as a small second peak that cannot be found in the profile.

28 Evora et al.

[kw] = = Weighted profile ~——Simulation
1000

900

800

700

600

500

400

300

200 = 7

100

0 » [h]
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Fig. 9. Simulated load curve vs. standardised residential load profile

4.3 Discussion

Even using a relatively small sample of households and reduced number
of behaviours, a curve that represents the major characteristics (peaks
and troughs, as well as their timely synchronisation) is generated. Con-
cerning the differences in the height of the peaks, the model could be
reviewed in order to check the individual power curves of each electrical
device. This seems to be quite hard as almost no data is available for
such a validation (at a representative sample). However, the differences
could also be related to the use of only 70% of the socio-demographic
population share. Further, behaviour itself is another factor to consider,
as a largely simplified and almost static model was used. Some specific
characteristics of the model create peaks, which could be explained by
a rather homogeneous behaviour of the groups. For example the sec-
ond evening peak (around 21:30h) is possibly caused by some activities
(watching TV, other evening activities) which start and end at similar
times, because of the relatively small sample. Using data from a more
representative survey or a more stochastic-based social behaviour, this
could be avoided, though.

ABM of electrical load at household level 29
5 Conclusions and outlook

In this paper, a vision of the electrical system as a complex system has
been introduced. This is necessary as the future grid behaviour becomes
more distributed. Furthermore, the simulation of the electrical system
at a household level as a complex system has been addressed.

The case study demonstrates that a bottom-up simulation of the res-
idential consumption using an agent-based approach has been successful
since the result curves show similarities to aggregated load curves. A
comparison with a national aggregated profile shows similarities in the
main characteristics of the curve. Moreover, due to the high resolution
of the model, a large number of parameters (individual appliances types
and models, socio-technical behaviours, etc.) is available for variation.

From now, the simulation that has been developed will allow us to
experiment and study new algorithm and strategies for electrical system
management. New scenarios, new problems and new challenges will arise
in the near future with the introduction of renewables and a distributed
production in the electrical system. Simulation is particularly necessary
to design a new management approach.

The simulation will allow us with further work to study the integra-
tion of demand side management strategies. Strategies, such as adaptive
or reactive technologies, incentives or campaigns, can be addressed for
studying their impact at load curve level.

However, social behaviours need to be validated and improved. This
validation is necessary for studying the emergent behaviours and for iden-
tifying the local actions of agents which provokes the desired emergent
behaviour. Moreover, social behaviours must be improved in order to in-
troduce a higher degree of heterogeneity to the models. Due to the high
resolution of the household model, individual actions such as changing
specific parameters on a device can be performed.

Furthermore, the model developed could be expanded in order to
simulate not only the demand side, by including distributed generation
or other injections to the grid (like storage), which could interact with
the existing elements. This is already contemplated within Tafat, and
would allow a disaggregated analysis of offer-demand balance and the
possibility to estimate the impact of those measures at a system level.

References

[1] Bundesverband der Energie- und Wasserwirtschaft. BDEW - Standard-
lastprofile (SLP), 2011.
[2] D. Dennett. The Intentional Stance. M.I.T. Press, 1987.

30

3]

[10]

[11]

[12]
[13]

[14]

Evora et al.

A. Monti, F. Ponci, A. Benigni, and J. Liu. Distributed intelligence
for smart grid control. In Nonsinusoidal Currents and Compensation
(ISNCC), 2010 International School on, pages 46-58, 2010.

Jukka V. Paatero. Computational Studies on Variable Distributed Energy
Systems. Phd thesis, Helsinki University of Technology, 2009.

P. Palensky, F. Kupzog, A. A. Zaidi, and Zhou Kai. Modeling domes-
tic housing loads for demand response. In Industrial Electronics, 2008.
IECON 2008. 34th Annual Conference of IEEE, pages 2742-2747, 2008.
Fiona A. C. Polack, Tim Hoverd, Adam T. Sampson, Susan Stepney, and
Jon Timmis. Complex systems models: Engineering simulations. In A Life
XI, Winchester, UK, August 2008, pages 482—-489. MIT Press, 2008.
RWE Rhein-Ruhr Verteilnetz. Lastprofile, 2011.

Douglas C. Schmidt. Guest editor’s introduction: Model-Driven engineer-
ing. Computer, 39:25-31, February 2006.

S. Stepney, F. A. C. Polack, and H. R. Turner. Engineering emergence.
In Engineering of Complex Computer Systems, 2006. ICECCS 2006. 11th
IEEE International Conference on, page 9 pp., 2006.

Melody Stokes, Mark Rylatt, and Kevin Lomas. A simple model of do-
mestic lighting demand. Energy and Buildings, 36(2):103-116, 2004.
Joakim Widén and Ewa Wickelgard. A high-resolution stochastic model
of domestic activity patterns and electricity demand. Applied Energy,
87(6):1880-1892, 20009.

H. Lee Willis and Walter G. Scott. Distributed power generation: planning
and evaluation. Marcel Dekker, New York, 2000.

Michael J. Wooldridge. An Introduction to Multiagent Systems. John
Wiley, Chichester, West Sussex, United Kingdom, 2002.

Andrew Wright and Steven Firth. The nature of domestic electricity-
loads and effects of time averaging on statistics and on-site generation
calculations. Applied Energy, 84(4):389-403, 2007.

A computational technique to scale
mathematical models towards
complex heterogeneous systems

C. H. McEwan!?, H. Bersini®, D. Klatzmann!,
V. Thomas-Vaslin!, and A. Six!

1L UPMC Univ Paris 06, UMR7211, I2D3 Integrative Immunology:
Differentiation, Diversity, Dynamics; 83 Bd de I’'Hopital F-75013
Paris, France
2 CNRS UMRT7606, LIP-6, Agents Cognitifs et Apprentissage Symbolique
Automatique; 4 Place Jussieu 75005 Paris, France
3 IRIDIA Universit Libre de Bruxelles, 50 Av. F. Roosevelt,
Brussels, Belgium

Abstract. In this paper, we report progress on applying tech-
niques traditionally used by computer scientists for specifying
finite state machines, to concisely express complex mathemat-
ical models. These techniques complement existing graphical
methods in Systems Biology by allowing a systems approach to
be taken at a coarser granularity than biochemical reactions —
where parallel, multi-level interactions within and between sys-
tems must be documented, communicated and simulated.

1 Introduction

Modelling of complex systems is a persistent problem in science. In prin-
ciple, modelling is the means by which empirical observations can be ex-
plained and predicted by mechanistic reasoning. In practice, modelling is
fraught with many methodological and pragmatic trade-offs. One partic-
ularly divisive trade-off has traditionally been the commitment to either
population-based Ordinary Differential Equations (ODE) or individual-
based Agent-Based Modelling (ABM). The former has a proud history
across the sciences, with a strong theoretical foundation and well devel-
oped methods. The central idea is the aggregation of individuals into
homogeneous compartments with mean behaviour; which is both the
strength and weakness of the approach. It might be argued that, for
typical “complex systems”, homogeneity is not a defining feature [18].
In contrast, ABM support very fine-grained heterogeneity by composing

32 McEwan et al.

arbitrary agent behavioural rules. However, this approach has little the-
oretical or methodological foundation [14]. For non-trivial models, ABM
is computationally prohibitive, rendering impractical the many execu-
tions necessary for parameter fitting, sensitivity analysis and statistical
confidence. Furthermore, non-negligible technical details of either meth-
ods tend to be opaque to experimentalists, whom these models claim to
afford insight. A complementary problem exists, ensuring the fidelity of
interpretation of an experimentalist’s phenomenological description.

Our proposed attack on these problems utilises techniques devel-
oped by computer scientists for specifying Finite State Machines (FSM).
FSM are the de facto engineering approach to developing many real-time
safety critical systems, such as those in the avionics industry [8] and these
systems tend to be significantly more complex than typical mathematical
models in science. This paper will demonstrate that the techniques that
allow FSM to scale to such complexity can be applied to mathematical
modelling and improve upon existing graphical modelling frameworks.
This benefits both the modeller and collaborators: producing models that
approach the intuitiveness and heterogeneity of individual-based models,
but support the formalism and efficiency of population-based models.

The remainder of the paper is outlined as follows. In Sect. 2 we
briefly review the work we intend to draw upon. In Sect. 3 we introduce
a hypothetical modelling effort to motivate and serve as an illustration
for later sections. In Sect. 4 we formalise our ideas, demonstrating their
application in Sect. 5. We conclude in Sect. 6 with some discussion and
future work.

2 Background and related work

Classically, an ODE model is presented as an n-dimensional state vector
x(t), representing the n quantities of interest at time ¢, and a system of
n coupled differential equations of the general form

d;i :fi(x,t) :Zfij(xat)_iji(x,t)7 (1)
Jj=1 j=1

where each f;; quantifies the flow of “mass” into x; from z;. For maximal
generality, each f;; is presented as an arbitrary function of the current
state . In practice, f;; may be a function of z;, z;x) for k € [1,n], or a
constant. Typically, many f;; = 0 (coupling is sparse) and none depend
on time ¢ (the system is autonomous). What follows does not depend on
these conventions.

This deliberately over-general presentation makes the graphical form
of an ODE readily apparent (see Fig. 1(a)): each variable z; can be

Scaling mathematical models towards complex systems 33

card inserted
Wait PIN

Dispense |S€lection made [\yithgraw
and Return Menu

(a) ODE flow diagram (b) Finite state machine

Fig.1. ODE and FSM models as directed graphs. (a) The classic “suscepti-
ble, infected, recovered” model from epidemiology, parameterised by rates of
flow between population compartments. The ODE can be read off from this
diagram, e.g. % = alS — DI — ylI. (b) A simple finite-state representation
of a cash machine. Transitions occur in response to discrete external events
generated as the customer interacts with the machine.

represented as node and each f;; as a directed edge. Such graphical ap-
proaches are sometimes used for pedagogical purposes, under the the
moniker of flow charts [15]. Graphical modelling is also popular in Sys-
tems Biology (see e.g. [11]) although the approach we introduce here will
be more widely applicable than chemical kinetics.

Although conceptually simple, it is perhaps worth noting that the
graphical representation in Fig. 1(a) is both more readily accessible to
those untrained in mathematical modelling and more concise than the
corresponding mathematical expression and its numerical implementa-
tion. For example, each term f;; in Eq. (1) appears at least twice, in the
incoming summation of f;(x) and in the outgoing subtraction of f;(z).
In models less abstract than Eq. (1) this can make for an error-prone
developmental process. In contrast, simulation of Fig. 1(a) essentially
amounts to enumerating each directed edge and transferring mass be-
tween it’s end-points. This is more akin to stoichiometric “reaction chan-
nels” in chemical kinetics [4], of which Eq. (1) can be seen as a special
case.

2.1 Finite state machines and statecharts

In contrast, Finite State Machines are a computational formalism that
are explicitly based on directed graphs (see Fig. 1(b)). Here, each node
represents a possible “state” of the machine; each edge represent the
change of state that occurs in response to a discrete “event”. There are

34 McEwan et al.

several flavours of this formalism, though the details are not important
here. Although Fig. 1(b) is intuitive, as FSM become more elaborate
the complexity of the graph structure rapidly grows beyond that of the
behaviour it describes. In the worst case, introducing a state may result
in a combinatorial increase in the elements of the graph.

To address this problem, Harel introduced statecharts [7], a graphi-
cal formalism for the unambiguous representation of complex finite state
machines. The impetus for this contribution was concern not unlike that
we see voiced today in biological modelling, e.g. a need for hierarchical,
multi-level organisation with a controllable level of granularity; and rep-
resenting systems composed of complex internal sub-systems that oper-
ate in parallel. Indeed, Harel is a vocal proponent of applying this formal-
ism to modelling complex biological systems [3, 5, 19], albeit as an ABM
paradigm. Others have incorporated state machine and ODE formalisms
in so-called “hybrid models” [9]. Recently, statecharts were proposed as
an aid in producing logical (i.e. qualitative) models [16]. In contrast to
preceding work, we apply statecharts to quantitative, population-based
modelling of continuous-deterministic and discrete-stochastic systems.

The most prominent contribution of statecharts was the introduc-
tion of hierarchy and orthogonal parallelism as organisational constructs.
These allow the diagram to remain closer to the conceptual complexity
of the model, while retaining the necessary expressive power to specify
all possible execution paths of the model unambiguously. Informally, the
motivation for both is thus:

Hierarchical States (see Fig 2(a)) aggregate simple states into com-
pound states that are implicitly entered when one of the sub-states is
entered. This compound state provides a graphical element where similar
functionality, e.g. transitions, shared by all sub-states can be refactored
to minimise diagram clutter. This hierarchical organisation also allows
the modeller to “zoom” into specific levels of model detail. Similarly, a
simple state may be expanded into a hierarchical state as more detail
about the system becomes available.

Orthogonal States (see Fig. 2(b)) factorise the diagram horizontally —
decoupling sub-systems that are “almost independent”. Clearly, if these
sub-systems were truly independent then they could also be modelled
and simulated independently. The value of orthogonal states is that they
provide a manner to specify just the deviation from independence, while
diagrammatically representing the sub-systems as if they were indepen-
dent. The orthogonal state is a minimal representation of something that
would be graphically and organisationally unwieldy, though largely re-

Scaling mathematical models towards complex systems 35

Hierarchical states

(Orthogonal states w

c
(e)=o)
d

(a) Hierarchical statechart (b) Orthogonal statechart

Fig. 2. The two fundamental ideas behind statecharts. (a) Hierarchical states
representing different granularity of detail. A machine in states B, C' or D
is implicitly in SubstateA. Common elements can be refactored, minimising
clutter, such as the transition e that is a valid transition from B, C' or D.
(b) Orthogonal states represent a machine that must be in one of each states
separated by dashed lines, e.g. C' and E. These constructs can be composed
arbitrarily to express complex internal behaviours.

dundant due to the combinatorial nature of the underlying FSM. This
will be demonstrated in further detail in Sect. 3.

There are of course other aspects to the statechart formalism. Some will
not make the translation to mathematical models, others will be intro-
duced as needed. The key point here is that although the interpretative
semantics of the directed graphs may be quite different for ODE and
FSM formalisms, the techniques we introduce below largely operate on
the underlying graph structure, not these semantics. This combinato-
rial perspective allows us to resolve a difficult issue with developing and
communicating complex mathematical models — the proliferation of vari-
ables, their evolution equations and the terms in these equations — that
has already been solved in the context of FSM. In turn, complex sys-
tem models become more scalable for both theorist and experimentalist
collaborators.

3 Cellular processes: a motivating example

To avoid digressions that distract from the technique itself, we develop a
toy model that can be easily followed and succinctly explained. We also
take some liberties with the true phenomenon in order to demonstrate
specific points. The reader should keep in mind that the techniques intro-
duced are applicable to models of greater complexity than that shown.

36 McEwan et al.

The level of complexity we have in mind can be seen in efforts such as
[1, 18].

3.1 The complexity of systemic models grows multiplicatively

Consider a hypothetical model of a lymphocyte that, after an initial pe-
riod of “naivety”, has its receptor bind to its ligand. This induces the
cell to become an “effector”, performing some function not relevant here.
After a period, effector functionality wears off and this binding process
can repeat indefinitely, but the cell is now upgraded to a “memory”,
rather than “naive”, cell. Perhaps effector cells proliferate more heav-
ily and memory cells have a lower death rate. Such models are typical
in theoretical immunology and a common modelling step would be to
examine if and how a population of such cells reaches a homeostatic
configuration given initial conditions and appropriate parameter values
for binding, maturation, proliferation and decay. A likely model might
be

dN
E:b+p1N—(d1+a(N,M,L))N (2)
dE
E:ng-I—a(N,M,L)N+a(M,N,L)M—(d2+y)E (3)
dM

where N, FE, and M represent naive, effector and memory cell popula-
tions, respectively, and b, d;, p; and y are rates of birth, death, prolifer-
ation and maturation. The non-linear function a quantifies competition
for and binding to ligand L, the details of which have no immediate
bearing on our presentation. Now, lymphocytes spend their life between
peripheral tissues in the body and the lymph nodes, where antigenic de-
bris is drained and collected. Not only is there a greater concentration of
ligand in the lymph node, but also the appropriate chemical environment
for sustained proliferation. We need to expand our model to account for
these facts, which requires replicating Eqgs. (2)-(4) to represent dynamics
inside and outside the lymph node, as well as flow into and out of the
lymph node itself. Perhaps

Scaling mathematical models towards complex systems 37

dN

dE)

E=p2E+a(N,M,L)+a(M,N,L)—(d2+y+y>E+kE’ (6)

dM

o =p1M +yE — (do+j +a(M,N,L))M + kM’ (7)

dN/ ! ! ! / ! .

el 0| —(dy+k+a(N',M',L'))N' +jN (8)

dE/ / / / / ! ! / / .

7 =p3E' +a(N',M',L') +a(M',N',L') — (dy + k + y)E' + jE
(9)

dM/ ! / A A / ! .

y7 =p M +yE — (dy+k+a(M N L')M +jiM (10)

where primed variables represent lymph-node specific quantities, j and
k represent flow into and out of the lymph node, respectively, and ps
represents the increased proliferation rate due to the favourable environ-
ment.

We now introduce an experimental treatment where dividing cells
can be induced to initiate apoptosis, or cell death (see e.g. [20]). To
emphasise our point, at some cost to plausibility, we will assume that
this treatment takes effect at any checkpoint during the cell-cycle. This
simply provides a multi-level, finer granularity to the modelling task,
while avoiding contrived realism. For a basic five-stage cell-cycle, this
development would require replicating Eq. (5) - (10) for each stage of
cell-cycle, with additional terms to account for movement between these
stages and the absence or presence of treatment. The resulting model is
a system of 30 equations with over 125 individual terms (see Figs. 5 and
6). Although by no means a complex phenomenological description by
biological standards, its mathematical expression is incommensurately
complex, tedious and fragile. Although they have a long history [12], it
is rare to find such elaborate stage-structured compartmentalisation in
theoretical biology, not least because of the burden of communication.
We intend to automate, and extend, this process.

3.2 Using statecharts to factor model complexity

Figure 3 provides a statechart description of our motivating example,
including cell-cycle. Notice how the diagram complexity is closer to that
of the biological description. In contrast, the FSM represented by this
statechart is shown in Fig. 4 and is of proportional complexity to the

38

McEwan et al.

Hypothetical cell

k [~Cycle]

p1 [Naive | Memory]
p2 [Effector & Periphery]
p3 [Effector & LymphNode]

2t

D[T&(G1]G2)]
d1 [~Memory]
d2 [Memory]

Fig. 3. The statechart representing the illustrative model. Intuitively, this di-
agram is of comparable complexity to the phenomenological description and
requires minimal formal prerequisites to be understood. See text for a discus-

sion of diagram elements.

d1 l
o d2
>[Naive.L p .Gg 2 fffector.Lymp (}; - IMemory.Lymp! G)O
l il !
b c D[T]
@aive.L p .G) [Effector.Lymp! @ Memory.Lymp G}
‘ — L : >
2t \Lq [-T] 2t \Lq -1 2t \Lq [=T]
(Naive.L S (Effe(lor.L S (Memory.L S|
U N
§ ol AIIC IC
: - :
\Ls (=] \Ls (=T] J T
® \Naive.L, p M) | Effector.Lymp 9 Qwemory.L p 9—
O, O,
s Ul I IRV NS)
Naive.Periphery.GO | Effector.Periphery.GO = Memory.Periphery.GO
pZ\L pl\b
Naive.Periphery.G1 (Effecror.?er\pheryﬁa (Memory.?er\phery.cl;
- :
2 2 iq -1l 2t Jat
Naive.Periphery.S (Effeclor,l’er\phery.sj (Memoryyenphery.s)—
I 1
Naive.Periphery.G2 (Effecror,l’er\phery.ﬁa (Memory.?er\phery.GZ; d2 (oT)
‘ [T
I
D[T]

Naive.Periphery.M

% =T

\Ls =71

d1[-T]

| Effe(lor.Peripherv.M)

{ Memory.periphery.M

Fig. 4. The underlying directed graph behind Fig. 3. The greyed-out tran-
sitions can be statically evaluated as logically invalid and removed prior to
simulation. For clarity, we omit invalid transitions into and out of the lymph
node. Section 4 describes formally the automatic reduction of statecharts such
as Fig. 3 to directed graphs, which is an intermediate step between model
formulation and numerical simulation and analysis.

Scaling mathematical models towards complex systems 39

L NPO] = KINLO] + b+ 20[NPM] — (d1 + j + p1 + a(INPO], [MPO], L))[N PO]
t

d
;[NPIJ =p1[NPO] — ((1 = T)(d1 + q) + TD)[NP1]

di[NPS] = (1 —-T)q[NP1] — (d1 + r)[NPS]
t

d
;[NPQ] = r[NPS] — ((1 — T)(dy + s) + TD)[NP2]

di[NPM] = (1 — T)s[NP2] — (di + t)[NPM)]
t

di[NLO] = j[NPO] 4+ 2¢[NLM] — (d1 + k + p1 + a([NLO], [MLO], L'))[NLO]
t

d
E[NLU =p1[NLO] = ((1 = T)(d1 + q) + TD)[NL1]

%[NLS] = (1 - T)q[NL1] — (dy 4 r)[NLS]
%[NL2] = r[NLS] — (1 = T)(d] + s) + TD)[NL2]

%[NLM] = (1 —T)s[NL2] — (dy + t)[NLM]

%[EPOJ = k[ELO] + a([NPO], [MPO], L) 4+ a([M PO], [NPO], L) + 2¢t[EPM] — (d1 + j + p2 + y)[EPO]

d
;[EPIJ = p2[EPO] — ((1 — T)(d1 + q) + TD)[EPI]

di[EPS] = (1 —-T)q[EP1] — (d] + r)[EPS]
t

%[EPQ] = r[EPS] — ((1 — T)(dy + s) + TD)[EP2]

%[EPM] = (1 — T)s[EP2] — (dy + t)[EPM]

%[ELOJ = j[EPO] + a([NLO], [MLO], L") + a([MLO], [NLO], L") + 2¢[ELM] — (d1 + k + p3 + ¥)[ELO]
%[ELIJ =p3[ELO] — ((1 — T)(d1 + q) + TD)[EL1]

%[ELS] = (1 —T)q[EL1] — (d1 + 7)[ELS]

%[EL2] = r[ELS] — ((1 — T)(dy + s) + TD)[EL2]

i[ELM] = (1 — T)s[EL2] — (d1 + t)[ELM)]
dt

Fig. 5. Part one of the system of equations for the illustrative example
with cell-cycle and treatment. Note that this system of equations cor-
responds to the directed graph in Fig. 4 in much the same manner as
explained in Fig. 1(a). The parameter T' € {0, 1} indicates the presence
or absence of treatment and is used, like an indicator variable, to im-
plement conditional logic. The three character variable names represent
{Naive, Effector, Memory} x {Periphery, LymphNode} x {GO, G1, S,
G2, M}. We use [-] notation for variables to aid visual clarity, not nec-
essarily to represent concentrations.

40 McEwan et al.

di[IWPO] = k[MLO] 4+ 2t[M PM] 4+ y[EPO] — (dg + j + p1 + a([M PO], [N PO0], L))[M P0]
t

%[MPH =p1[MPO] — ((1 — T)(d2 + q) + TD)[MP1]

%[A{PS] = (1 — T)q[MP1] — (dg + r)[MPS]

%[Mpm = r[MPS] — ((1 — T)(dg + s) + TD)[MP2]

i[MPM] = (1 — T)s[MP2] — (dg 4 t)[MPM]

%[JWLO] = j[MPO] 4+ 2¢[MLM] + y[ELO] — (dg + k + py + a([MLO], [NLO], L))[M L0]
%[MLI] =p1[MLO] — ((1 = T)(d2 + q) + TD)[ML1]

%[MLS] = (1 — T)q[ML1] — (dg + r)[MLS]

%[MIJ] =r[MLS] — ((1 = T)(dz + s) + TD)[ML2]

i[MLJM] = (1 — T)s[ML2] — (dg + t)[MLM]

Fig. 6. Part two of the system of equations for the illustrative example
with cell-cycle and treatment. Continued from Figure 5.

mathematical description in Figs. 5 and 6. Recall, even though this com-
plex model may be what is ultimately executed, it is the statechart that
is communicated and developed amongst collaborators.

Certainly, one could use the statechart in Fig. 3 as the basis of a dis-
crete ABM model. But this might be a rather poor and costly choice. It is
rare to have sufficient data to properly assess the validity of fine-grained
agent behaviours such as movement and interactions. Depending on the
size of our hypothetical cell population, simulation and analysis may also
be a glacial process. For the remainder, we commit to interpreting the
FSM directed graph as an ODE model?, much like that in Fig. 1(a).
What we gain, over Fig. 1(a), is the ability to finesse the homogeneity
assumption by introducing fine-grained structuring of the population —
approaching ABM heterogeneity without incurring the cognitive costs of
maintaining and communicating the accompanying mathematical struc-
ture.

4 Reducing statecharts to directed graphs
Although it is well established that statecharts can be represented as
FSM, the statechart literature has developed several variants of its own

4 Although we emphasise ODE models, the following techniques are also a
valid alternative formalisation of ABM, where agents are encoded as FSM.

Scaling mathematical models towards complex systems 41

Fig. 7. The structure of a statechart’s states can be represented as an AND-
OR tree. Nodes in the tree correspond to different state types: simple (leafs),
hierarchical (OR branches) and orthogonal (AND branches).

“formal semantics” (e.g. [6, 21]) which do not make use of this con-
nection. Given that the FSM directed graph structure is central to our
interpretation as ODE, we now provide what is, to our knowledge, a
novel formal description of such a reduction. This not only clarifies the
interpretation of diagram elements for the reader, but is sufficient for
reproducible, automatic generation of numerical simulations.

4.1 Basic definitions

Let S and T represent the sets of all states and transitions in a statechart.
The following definitions make use of the fact that the structure of a
statechart’s states (but not transitions) may be represented as an AND-
OR tree [8], as illustrated in Fig. 7. It is this hierarchical structure that
is “reduced”.

Definition 4.1 (State). Every state s is represented by the tuple {p,v,
L}, where p € S is the parent state in the AND-OR tree and L is an
arbitrary label or name. The value v indicates state activity: for FSM,
its domain is simply {0,1}; for ODE its domain is the real numbers,
quantifying the homogeneous sub-population in compartment s.

Definition 4.2 (OR-state). An OR state is a compound state that ag-
gregates states hierarchically (see Fig. 2(a)). It is an internal branch node
in the AND-OR tree and is represented by the tuple {p,a,L,S} where
p and L are defined as above and v =) s;.v for each child sub-state
s; € S CS. For one s; € S the function start (s;) = true indicating
the default initial sub-state on entry, which is depicted graphically by the
target of the black dot in Fig. 2(a).

42 McEwan et al.

Definition 4.3 (AND-state). An AND state is a compound state that
aggregates orthogonally (see Fig. 2(b)). It too is an internal branch node
in the AND-OR tree, however, only OR states are valid child nodes in
the tree. Otherwise, it is represented equivalently to an OR state.

Although they play no part in the AND-OR tree structure, transi-
tions can be seen as additional edges between nodes in the tree.

Definition 4.4 (Transition). A transition is represented by the tuple
{s,t, L, f,g} where s,t € S represent the source and target states of
the transition, respectively. L is an arbitrary label. The function f takes
different form depending on formalism employed. For FSM, f — {0,1}
evaluates whether the currently processed event’s name matches this tran-
sition’s label — the necessary condition for a FSM in state s to transition
to state t. For ODE, f(0,5) — R quantifies the mass transitioning from
compartment s to compartment t. In this case, f may be a function of
additional states S C S and arbitrary parameters 6. The function g rep-
resents a “transition guard”, defined below.

An important expression of “almost independence” is when a partic-
ular transition may depend on the specific state of a parallel part of the
system in order to be valid. This dependency is realised with transition
guards.

Definition 4.5 (Transition guard). A transition guard is a logical
expression or indicator function g — {0,1} that constrains the validity
of a transition. Diagrammatically, they are traditionally presented beside
the transition label in square brackets (see Fig. 3). The expression g may
refer to parallel states by label s.L, evaluating presence or inequalities in
5.0.

Such guards can be very fine-grained when evaluated in terms of an
individual in a FSM or ABM. For an ODE model, their applicability is
more limited but still meets several important use-cases. For example, in
Fig. 3 transition guards add realism (or make assumptions explicit) by
restricting cells who have entered the cell-cycle from moving or changing
functional state. In cases such as this, transition guards can be statically
resolved, prior to simulation, because their logical validity depends on
where in the directed graph they are evaluated (e.g. greyed-out transi-
tions in Fig. 4). Other guards, that reference parameters or make use of
inequalities, may need to be evaluated during simulation.

4.2 State reduction

The process of reduction transforms the AND-OR tree into a flat di-
rected graph with only simple states (nodes) and transitions (edges).

Scaling mathematical models towards complex systems 43

This is always well-defined, because the statechart contains a complete
description of its architecture. Starting from the root of the AND-OR
tree, the following procedures are carried out recursively in depth-first
order for each state s

Definition 4.6 (State reduction). reduce (s) = s

Definition 4.7 (OR-state reduction). reduce (s) =
U, es.g reduce(s;)

In the case of orthogonal states, the reduction is a little more involved.
First, we need to introduce a state type that is never manipulated by
the modeller:

Definition 4.8 (Product state). A product state is a basic state that
represents an element in the Cartesian product of sub-states of each OR-
state s.S; that are child nodes of an AND-state s. The product state is
represented by the tuple {p,v, L, P} where p = s and v is a scalar just
as for the basic state. The set P contains the particular combination of
parallel states that this product state represents. The label L is a con-
catenation of the labels p.L for p € P.

Definition 4.9 (AND-state reduction). reduce (s) = |J, m; where
7; is a product state with 7;.P € reduce (s.5;) x ... x reduce (s.5,)

By our convention, the root of the tree (the statechart) is an AND-
state, thus all nodes in the directed graph are product states. Letting Z
represent the set of reduced states, then Z = reduce (c¢) for some state-
chart c¢. Having produced the appropriate graph nodes, we now construct
the transition topology that preserves the statechart’s semantics.

4.3 Transition reduction

Along with Z, let Y =) represent the set of reduced transitions. Then,
assuming no additional constraints on transitions, the basic reduction
process is as follows.

Definition 4.10 (Transition reduction). For each transition t € T
and each pair of states a, b in Z x Z, Y = Y Urewire (t,a,b) if
connected (¢, a,b)

where rewire (¢,a,b) produces a copy of ¢t with a and b as end-points
and connected (¢, a,b) is defined as

44 McEwan et al.

Definition 4.11 (Product state connectivity). Given a transition
t and two product states a and b, connected (t,a,b) — {true, false} is
true if and only if a.P — b.P = t.s and b.P — a.P = t.t. That is, the
product states have the same elements except for one and the anomalous
elements are the transitions end-points. Connectivity is not symmetric.

However, transitions with compound states as end-points require spe-
cial handling because these states (such as Cycle in Fig. 3) are not ex-
plicitly retained during the reduction. The statechart semantics of such
transitions is intuitive enough (see e.g. Fig. 2(a)) but preserving these
semantics across arbitrary statecharts is notoriously difficult and many
formal treatments impose additional restrictions on what makes a valid
statechart (see e.g. [17, 13]). The following definition is, at least, sufficient
when parallelism is restricted to a top-level organisational construct. For
biological models, this is the most plausible use-case.

Definition 4.12 (Transition reduction with compound states).

For eacht €T

1. Let §; = 0 and Ti = 0 represent candidate source and target states
2. Unless isCompound (t.s) then S; = Z.
Else Sy = {z: z € Z and isChild (t.s, 2) }.
3. Unless isCompound (¢.t) then Ty = Z. Else
(a) If isParallel (t.t) then
Ti = {z: z € Z and isChild (t.t, z) and start (2)}.
(b) If isHierarchical (t.t) then
Tt = {z: 2z € Z and Is; € z.P where isChild (¢.t,s;) and
start (s;)}.
4. For each pair of states a, b in S X Ty,
Y =Y U rewire (t,a,b) if (isCompound (t.s) or a.P —b.P =1.s)
and (isCompound (t.t) or b.P — a.P = t.t).

where predicates isCompound (-), isHierarchical (-) and isParallel (-)
are self-explanatory. For regular states x and y, isChild (x,y) searches
up the AND-OR tree, from y, for a parental state x. For product states,
z € Z, which are not part of the statechart or AND-OR tree, start (z) =
N; start (2.P;) and isChild (-, z) = \/, isChild (-, z.P;). Notice that Def.
4.12 reduces to Definition 4.10 for transitions between two simple states.

Unfortunately, this transition reduction is not quite sufficient to prop-
erly express important statechart semantics. Another common depen-
dency between “almost independent” states is orthogonal transitions
that respond to the same event, causing synchronous state changes in

Scaling mathematical models towards complex systems 45

Coupled transition example Default interpretation

done { 0.2) done{ 03 \ done

begwn\L Tdone begm\L Tdone

done \f \ done\f \ done
L

M/S.2) L M/S.3)

Correct interpretation

A G0.2) G0.3)
begin done beg\n\L done beg\n\L

(wms.2) (wmS.3)%@

Fig. 8. An illustration of the semantics of a coupled transition (done) in par-
allel charts, representing a simple cell division model (left). As daughter cells
transition from M /S-phase they should also move through the numbered gen-
erational compartments. The default interpretation of Def. 4.12 (top-right)
does not respect this, motivating Def. 4.13.

orthogonal charts. Figure 8 illustrates the problem with a parallel state-
chart representing a simple cell division and 3-generation stage structur-
ing. Clearly, these are not independent: when (a population of) daughter
cells transition from the S/M-phase back to state GO they should also
move through the generational stages. The right half of Fig. 8 illustrates
the differences in the directed graph generated from the reduction above
and the one intended by the statechart semantics. The result is still a
single transition, but the topology of the FSM graph is now quite differ-
ent.

Fortunately, if transitions with the same label occur in parallel charts,
then they will always occur multiple times as outgoing transitions from
any product state that represents the combination of their individual
sources. Such a situation is never logically valid for ODE (or determin-
istic FSM), making for an non-determinism we can exploit to identify
and correct erroneous reductions.

Definition 4.13 (Coupled transition correction).

To identify and correct erroneous reductions in Def. 4.12

1. Let R=D=L=0

2. For each ty1,to € Y X Y, if t1.s = to.s and t1.L = t5.L then
R:RUtl.S,D:DUtl andE:EUtlL

3. Y=Y—{t:teYandt.L € L}.

4. For each s € R

46 McEwan et al.

(a) Let P=10

(b) For eacht € {t:t €D andt.s=s} do
P=PU(tt.P - s.P)

(c) For anyt € {t :t € D and t.s = s} Y = Y Urewire(t, s, z) for
each z € {z:z € Z and P C z.P}.

The intuition behind the last step is that we are able to sufficiently
reconstruct z.P for the correct target product state(s) z, even if transi-
tions are only coupled in a subset of parallel states.

4.4 Some minor details

The reduction is now complete. For brevity, we omit the details of a
final check for (7) transitions that exit terminal states, (i7) transitions
with guards that are always false, and (iii) states with no incoming
transitions. Lastly, because none of the original states in the statechart
will make it into the reduced model, we have found it convenient to
introduce implicit states that serve no role in the reduced model or its
simulation, except to provide aggregated measures across the appropriate
subset of Z that represents an original state in the statechart.

5 In-silico analysis and exploration after reduction

Given the reductions defined in Sect. 4, the resulting directed graph is
readily analysed and simulated, either in-place or by translation to an
existing format. Although we have no intention of offering the illustra-
tive example of Sect. 3 as a proper model, for completeness we briefly
demonstrate the type of analysis that is possible, which allows us to ad-
dress a pertinent question raised by a reviewer: at what point does the
ability to describe complex models with relative ease become a hindrance
to understanding the system in question?

From a practical perspective, the analysis of statechart-derived mod-
els can also benefit from the combinatorial factorisation. Because we
simulate all low-level state combinations, it is possible to reconstruct
any subset of the population by aggregating these combinations — e.g. in
Fig. 9, abusing notation slightly [Memoryl, = >, >~ [Memory.S;.S;l:.
Thus, we are able to examine (or ignore) how heterogeneity in the sub-
populations influence the homogeneous populations in the phenomeno-
logical description (e.g. Fig. 10). Similarly, we are able to construct pro-
jected views of the model’s dynamics that omit or cut across certain
subsystems, e.g. highlighting differentiation in particular locations (Fig.
10). This ability to construct views of the factorised model is crucial:

Scaling mathematical models towards complex systems 47

Cell Function Cell Location Call Cycle

TOTAL TOTAL TOTAL|
Haiv Feriphery I
—— Effestor —— LymphNode — <
—— Memory —— o2
——u

Cell sount

Fig. 9. The simulated dynamics of the states represented in the statechart
Fig. 3. Each graph corresponds to a parallel subsystem, each curve to a simple
state in that subsystem. The model is run until steady-state then treatment
and recovery are simulated as described in Sect. 3. Biological interpretation
should be avoided and axes markings have been removed to emphasise that
model parameters and axes scales are arbitrary.

Memory cells and sub-population Cell Function (by Location)

Memon (total) Naive (periphary)
hemory (sub-papulations) Nsiwe (lymph node)
Effector (periphany)
Effector (lymph node)
Memory (periphery)
Memory (lymph node)

Call sount
Cell count

time time

Fig. 10. Constructing “views” of the system dynamics from kinetic data of
the low-level state combinations. Left: how the heterogeneous dynamics of
memory cell sub-populations contribute to the curve of the Memory com-
partment in Fig. 9. Right: how functional differentiation differs by location,
without regard for cell-cycle. Such views allow us to better understand the
coarse dynamics in Fig. 9 and compare to, or predict, experiments that can-
not simultaneously observe the entire system.

48 McEwan et al.

although parallel sub-systems may be “almost independent” in princi-
ple, in practice, it is likely that experimental data is not. This is par-
ticularly true in cellular biology, where observing different aspects of
a system can involve entirely different experiments or treatments that
interfere with observations. One can easily envisage a situation where,
for a diagram such as Fig. 3, the formulation of parallel sub-systems
and the supporting experimental data has been produced by remote
labs, each with their own motivation for studying the system. From the
“systemic” perspective presented here, it is apparent that independent
models of parallel sub-systems, like the apocryphal blind men and the
elephant, risk misrepresenting the quantitative influence of dependencies
through a mixture of erroneously inferred rates or mechanisms and ap-
peals to experimental variance. Although we make no claim to solving
this problem, the statechart formulation provides a clear path towards
such systemic models — possibly bootstrapping from independent studies
— by constraining projections of the model that admit empirical support.
Likewise, novel projections may provide testable predictions.

From a theoretical perspective, observe that although we emphasised
in Sect. 3 that the structural complexity of a systemic model grows multi-
plicatively, the parametric complexity only grows additively. It is implicit
in the statechart formulation that transitions are replicated and param-
eters reused. There are two separate numerical issues here: the number
of parameters that need to be searched (the domain) and the “shape” of
the error function to be optimised (the range). A combinatorial increase
in states may not substantially affect the former, however, we expect
identifiability issues in the latter [2]. Our research is simply not mature
enough to offer any real insights into such problems at this time, but we
are inclined to concur with [23] that ill-posedness is a simple reality of
biological modelling. The non-uniqueness of a model’s solution provides
useful information that may elicit prior knowledge or direct empirical
research.

Lastly, a compelling feature of this graphical formalism, not discussed
in the preceding material, is its malleability and extensibility. States,
transitions and parameters are all first-class objects that can be easily
rewired and reparameterised even, in principle at least, by experimen-
talists. State and transition classes can be extended to represent e.g.
arbitrary non-linear functional forms and common modelling patterns
such as temporally-constrained states. This allows theorists and exper-
imentalists to explore structural and functional forms of a model with-
out maintaining the underlying numerical realisation. Although existing
graphical modelling languages claim similar benefits, to our knowledge

Scaling mathematical models towards complex systems 49

none are able to generate the substantial bulk of a model automatically
from a concise human-friendly description.

6 Discussion and future work

We submit that with some minor enrichment of the statechart diagram
language, to better align it with scientific investigation and reporting,
statecharts could serve as an effective medium of communication and
development for both theorists and experimentalists. We have only con-
cerned ourselves with a formalisable subset of statecharts proper — avoid-
ing features unnecessary for our needs and, arguably, for scientific mod-
els. Although we have presented the formal constructs in the context of
an hypothetical example, much of this example is based on our experi-
ence with difficulties in modelling immunological data that is inherently
parallel and multi-level using traditional techniques. This work is still in
progress, though we have some idea where future efforts may focus.

Diagram enrichment Our non-classical use of statecharts leaves us
wanting in some respects. For example, the informal referencing of pa-
rameters, variables, their units and the functional form of transitions
in Fig 3. Largely, these issues are not ODE-specific and appear to be
solvable with “syntactic sugar” rather than reinventing the statechart
formalism under a different moniker.

Computational complexity Our focus has been on managing descrip-
tive complexity, but computational complexity is an ever-present issue
too. It is an interesting open question as to when highly compartmen-
talised ODE models would become less efficient than a pure ABM effort®.
Certainly, although we can insulate the modeller and the experimental-
ist from the combinatorial growth of states, we cannot yet insulate the
machine. For scientific simulation, this is a much less pressing issue than
depicted in the statecharts literature, where systems are often embed-
ded with realtime constraints, but exponential growth is still a concern
in the long term. One interesting possibility is that the techniques used
by statechart researchers (e.g. see [22]) may be adapted as hybridised
numerical integration algorithms.

5 A rough guess would be when the number of state combinations exceeds
the number of agents, although such a situation seems largely artificial as
subsequent statistical analysis would need to smooth over this fine level of
state granularity.

50 McEwan et al.

Coupled states A fundamental aspect of complex systems is the in-
teractions of non-trivial entities. For ODE modelling, the coupling of
molecular species into complexes is well established using techniques
from chemical kinetics. However, molecules are simple stateless objects.
As a contrasting example, different immune cells undergo surface-binding
while still progressing through the “almost independent” processes of
metabolism, regulation and so on. Classically, models of cellular inter-
actions are reduced to the chemical kinetics of receptor-ligand binding
— treating the cell as an implicit object. To fully express interactions
between complex entities, what is required is the expression that some
states are coupled between different systems during interactions. To the
best of our knowledge, the coupling of state machines is a surprising
omission in the statechart literature (although, see e.g. [10]). We have
largely solved this problem for pairwise coupling (not shown), but not
in general for n-wise coupling.

Methodological unification Statecharts can represent high-level se-
mantics suitable for pedagogical descriptions as well as low-level quan-
titative information suitable for individual-based ABM (traditionally)
and population-based ODE (shown here). A unified formalism would
better allow these different levels of description to be directly compared,
highlighting how each modelling effort realises the phenomenological de-
scription and the quantitative and structural assumptions it makes in
doing so. This would require some novel enhancements to the statechart
language, e.g. abstracting interactions that may be based on mass-action
assumptions or localised cellular-automata neighbourhoods, depending
on the simulation method. This is largely a problem of transition imple-
mentation, although there are several subtle issues that would need to
be resolved.

7 Conclusion

The ability to model sub-system parallelism and multi-level hierarchy is a
powerful feature of Harel statecharts — a feature that is sometimes lost in
the literature under computer science and software engineering nomen-
clature. We have shown how a formalised subset of Harel statecharts can
be applied to scaling mathematical descriptions of systemic phenomena.
In addition to finessing the associated increase in underlying model com-
plexity for the modeller, this approach provides a graphical communica-
tion medium that, in our experience, is readily accepted by non-technical
collaborators and can be productively discussed, questioned and refor-
mulated without excessive concern for underlying technical details.

Scaling mathematical models towards complex systems 51

We submit that this technique complements existing methods in Sys-
tems Biology, allowing a systems approach to be taken at a coarser gran-
ularity than biochemical reactions. Such progress is necessary in many
domains, such as immunology, where the primary focus is on intra- and
inter-cellular interactions. Of course, this argument generalises to the
scientific study of any complex system where “agents” are compound,
stateful and inter-dependent.

References

[1] Marco Ajelli, Bruno Gongalves, Duygu Balcan, Vittoria Colizza, Hao Hu,
José J Ramasco, Stefano Merler, and Alessandro Vespignani. Compar-
ing large-scale computational approaches to epidemic modeling: agent-
based versus structured metapopulation models. BMC infectious dis-
eases, 10:190, January 2010.

[2] R. Bellman and K. J. Astrom. On structural identifiability. Mathematical
Biosciences, 7:329-339, 1970.

[3] Sol Efroni, David Harel, and Irun R Cohen. Emergent dynamics of thy-
mocyte development and lineage determination. PLoS computational bi-
ology, 3(1):e13, January 2007.

[4] Daniel T. Gillespie and Linda R. Petzold. Numerical simulation for bio-
chemical kinetics. MIT Press, 2006.

[5] D Harel. Concurrency in Biological Modeling: Behavior, Execution
and Visualization. Flectronic Notes in Theoretical Computer Science,
194(3):119-131, 2008.

[6] D. Harel and A. Naamad. The STATEMATE semantics of statecharts.
ACM Transactions on Software Engineering and Methodology (TOSEM),
5(4):293-333, 1996.

[7] David Harel. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, (8):231-274, 1987.

[8] David Harel. Statecharts in the Making : A Personal Account. In HOPL
III Proceedings of the third ACM SIGPLAN conference on History of
programming languages, 2007.

[9] T. A. Henzinger. The Theory of Hybrid Automata. In Proceedings of the
11th Annual Symposium on Logic in Computer Science (LICS), pages
278-292. IEEE Computer Society Press, 1996.

[10] Dominikus Herzberg and Andre Marburger. An extension of state ma-
chine modeling: the concept of coupled state machines. In OMER-2
Workshop on object-oriented modeling of embedded RT-systems, 2001.

[11] Hiroaki Kitano, Akira Funahashi, Yukiko Matsuoka, and Kanae Oda.
Using process diagrams for the graphical representation of biological net-
works. Nature Biotechnology, 23(8):961-966, 2005.

[12] L. P. Lefkovitch. The study of population growth in organisms grouped
by stages. Biometrics, 21:1-18, 1965.

[13] Florence Maraninchi and Yann Remond. Argos: an automaton-based
synchronous language. Computer Languages, 27:61-92, 2001.

52

[14]
[15]
[16]
[17]

18]

[19]

[20]

21]

[22]

23]

McEwan et al.

John H. Miller and Scott Page. Complex Adaptive Systems. Princeton
University Press, 2007.

Sarah P. Otto and Troy Day. A biologist’s guide to mathematical modeling
in ecology and evolution. Princeton University Press, 2007.

Yong-Jun Shin and Mehrdad Nourani. Statecharts for gene network mod-
eling. PLoS ONE, 5(2), 2010.

A. J. H. Simons. On the Compositional Properties of UML Statechart
Diagrams. In Rigorous Object-Oriented Methods, 2000.

Michail Stamatakis, Kyriacos Zygourakis, and Monte Carlo. A mathe-
matical and computational approach for integrating the major sources of
cell population heterogeneity. Journal of Theoretical Biology, 266(1):41—
61, 2010.

Naamah Swerdlin, I.R. Cohen, and David Harel. The lymph node B cell
immune response: Dynamic analysis in-silico. Proceedings of the IEEE,
96(8):1421-1443, 2008.

Veronique Thomas-Vaslin, Hester Korthals Altes, Rob J. de Boer, and
David Klatzmann. Comprehensive Assessment and Mathematical Mod-
eling of T Cell Dynamics and Homeostasis. The Journal of Immunology,
(180):2240-2250, 2008.

Michael von der Beeck. A Comparison of Statecharts Variants. In For-
mal Techniques in Real-Time and Fault- Tolerant Systems, pages 128—148,
1994.

Andrzej Wasowski. Flattening Statecharts without Explosions. ACM
Sigplan Notices, 39(7), 2004.

Sven Zenker, Jonathan Rubin, and Gilles Clermont. From inverse prob-
lems in mathematical physiology to quantitative differential diagnoses.
PLoS Computational Biology, 3(11), 2007.

Plotting a catchy tune: tracing
sound meme evolution through
visualization

A. Guest!, J. Bown?, A. Sapeluk!, A. Winfield?,
and M. Shovman?

! School of Computing and Engineering Systems,
University of Abertay Dundee, UK
2 Institute of Arts, Media and Computer Games,
University of Abertay Dundee, UK
3 Bristol Robotics Laboratory, University of the West of England,
Bristol, UK
m.shovman@abertay.ac.uk

Abstract. Complex systems comprise many relative simple ag-
ents interacting in space over time. The interactions among the
agents can give rise to emergent behaviours that are not de-
ducible from the individual agents alone. To understand the dy-
namics of complex systems is challenging and visualization is
a common tool used to aid understanding. We present a case
study of a complex system focused on communication among
agents. We have developed visualizations for intra-individual
state, inter-individual communications and community-scale di-
versity in communication. We report on the purpose, approach
and insights gained from each visualization in turn. We also
present a critical appraisal undertaken by a party with exper-
tise in visual analytics and external to the project, and report
candidly on the limitations of our visualizations. This includes
us creating limited, misleading and confusing interpretations as
we translate from the visual representation back to the data
domain. We also propose some improvements to these specific
visualizations and offer some general guidelines for effective vi-
sualizations.

1 Introduction

Complex systems are known to comprise many individual agents inter-
acting in an environment, and be driven by processes that operate at

54 Guest et al.

multiple scales in space over time [12]. In many systems these individu-
als are all different, and this variation is important for system dynam-
ics [4]. Moreover, global, or at least non-local, emergent behaviour may
arises from the local interactions among individual agents [6]. Processes
at multiple scales, emergent behaviour, individual variation, combined
with the difficulties associated with system measurement generally [7],
means that characterizing system dynamics is challenging. Modelling can
aid understand as to how behaviours at the individual component scale
give rise to emergent patterns at larger scales, and how those larger-
scale phenomena impact on the behaviours of smaller-scale individuals
[4]. However, interpreting model dynamics at multiple scales is likewise
challenging, and as systems get larger in space and time this becomes
increasingly difficult.

Here, and detailed in Section 2, we chose as a candidate system the
artificial culture laboratory [20] designed to explore cultural evolution
through changes to memes, i.e. units of cultural transmission [5]. This
artificial culture laboratory implements a basic architecture that affords
(re)production of memes, variation in meme production and a range of
meme selection strategies. Through these fundamental processes, we are
able to identify conditions that promote and inhibit both meme diver-
sity and reproductive fidelity. The agents in this system are physical,
mobile robots that exchange memes through inter-robot interactions. As
described in Section 2, these real robots are heterogeneous and com-
munication is error-prone and highly spatially contingent. Our interest
in this system pertains to identifying conditions that promote effective
meme diversity within and propagation across a community of inter-
acting robots, and observing any emergent behaviour linking observed
community-scale.

To explore this, we are interested in phenomena at three different
scales: individual robot memory, i.e. the set of memes that a robot has
stored; inter-robot communication, i.e. occurrences of meme exchange;
and community memory, i.e. the set of memes in the collective robot
population. Because of the large number of meme exchanges, errors in
meme exchange and variation in memory among individuals interpret-
ing the system dynamics is challenging. Indeed, this is a generalisable
challenge for any system of heterogeneous, interacting agents: we may
be interested in internal state, interactions between individuals and the
impact of those interactions on community state.

Visual representations may help this interpretation; human visual
perception routinely copes with large amounts of input data, effortlessly
parsing complex and confusing sensory stimuli into coherent and mean-
ingful perceptual objects. Specifically, pattern-recognition abilities of hu-

Plotting a catchy tune 55

man cognition make visualisation an effective method for understanding
complex models [18]. Visual exploratory data analysis is concerned with
detecting and describing pattern and relations in data [1], such as out-
liers, trends and clusters [3]. The idea of visualising abstract data for
analysis and exploration is not new [11], but a focused research in visu-
alisation design and usage, as a separate discipline of Visual Analytics,
has only recently started to be acknowledged as a separate area of scien-
tific endeavour in its own right, helping analysts to detect the expected
and discover the unexpected [16].

Visual Analytics seeks to ensure that visualisations are efficient and
fit for purpose, since poor visualisations may offer no insight or worse
still mislead (e.g. [8]. This is made possible by advances in understand-
ing processes of human perception and cognition [18]. Visual Analytics
supports the design of tools that presents data in a way that is opti-
mised for human perception, and provides objective benchmarking of
tool performance in terms of efficacy in conveying relevant information.

In the most general terms, data visualization is a process of creat-
ing images, diagrams or animations based on abstract data to convey
information efficiently [17]. A mathematical formalism exists [9] that
represents visualizations as functions mapping from data space into vi-
sualization space. Thus, for example, in a yearly precipitation chart, date
and precipitation levels are mapped onto horizontal and vertical axis of
the chart respectively. The same mapping function maps the tasks the
analyst must undertake in the data domain, e.g., to find the rainiest
month of the year, to visual tasks, e.g., to find a month-sized region of
the chart with the largest area under it. Likewise, the domain-specific
insights gained from visual analysis are mapped from visual tasks, e.g.,
a single sharp peak in a generally low flat region, back into the data
domain as an interpretation, e.g., either a sudden shower in the middle
of a dry season — or an error in data collection.

Analysing of the effectiveness of visualizations in terms of the relation
between visual tasks and domain data insights is a promising novel ap-
proach [14]. Tt is favourably comparable with previous analysis method-
ologies such as user studies [18] or the analysis of constituent visual
elements (e.g. [17, 18, 3]. The main benefits are that it draws upon the
wealth of research in visual perception [15, 18] and is easily generalisable
across subject domains,. For instance, the majority of visual analytics
tasks, when expressed in visual terms, can be parsimoniously divided
into only three groups: outlier detection, clustering (group detection) or
trend detection [15].

Here, we consider the use of visualisation to understand the rela-
tion between scales in this particular complex system, especially how

56 Guest et al.

individual interactions drive large-scale dynamics. We consider how to
describe visually the memory of individuals, especially to identify novel
meme structures identified through errors, and the phenomena of in-
terest: community-scale meme diversity and meme propagation. These
visualisations at different scales may be a useful mechanism for describ-
ing scale-linkages, and this is of particular value when systems are scaled
up because the system dynamics become increasingly difficult to elicit
[13].

2 The Artificial Culture Lab

The artificial culture lab comprises a physical arena with closed bound-
aries, populated by mobile robots called e-Pucks (www.e-Puck.org), that
are wheeled and capable of moving forwards, backwards and turning [10].
They are equipped with a range of sensors that enable detection of ob-
stacles and other robots. Robots can signal to each other with movement
and light (through programmable LEDs), and both movement and light
may be detected through a simple on-board camera. Robots can also
signal to each other through sound, as each has an on-board speaker
and microphone.

We have already used this tracking system in a study on movement.
In this work [19], memes are self-contained movement features. While a
teacher robot, seeded with one or more initial memes, enacts its meme,
one or more learner robots observe that meme and store it in memory.
When learner becomes teacher, a meme is selected from memory and
enacted while other learner robot(s) observe. Importantly, we preclude
robot-to-robot telepathy: the learner robot formulates the meme enacted
by the teacher through its senses alone.

In our case study, we focus on sound-memes: short tunes generated
through on-board speakers and heard through on-board microphones.
Crucially, this system is noisy and robot-to-robot communication is so
difficult that we had to resort to simulation. Robots were not able to
generate a consistent frequency, and need to be directly facing the singing
robot under idealized (sound proofed) conditions.

Moreover, there is a strong distant-dependent attenuation, with the
strength of signal dropping off sharply to 25% at 10cm and 10% at 15cm,
with a linear decay until 70cm. We accommodated this in the simulator
via systematic in vitro experiments to characterize that natural variation
and then parametrise the simulator based on those experiments as in
previous ecological studies [4].

The simulator is a bespoke simulation developed for this research. It
is a high-fidelity simulation of the audio aspects of the e-Puck robots,

Plotting a catchy tune 57

Signal Detected
by Frequency Fange

£ 1500 m Z000Hz
E 1000 W Z250Hz
@ 500 I I 2800Hz
E 0

in 5 B 7 8 9 10 11 12

Frequency Range

Fig. 1. A sample of how actual frequency maps to frequency ranges. 2000Hz
and 2250Hz give clear, strong signals. 2500Hz is interpreted as two distinct,
weaker signals in two different frequency ranges.

replicating the sound generation and detection capabilities of the e-Puck
robots, specifically; the sound attenuation over distance, the range of
sounds that can be generated and detected and the variation in fre-
quency of an e-Puck making a sound of a “constant” frequency. The
directionality of the real e-Pucks sound detection is not simulated. In
addition the simulator is a low-fidelity simulation of the movement of
the e-Pucks.

The e-Pucks cannot distinguish which e-Pucks they are hearing, they
rely on the frequencies they hear to distinguish one meme from another.
The e-Pucks analyse the sounds they hear and break them down in to
different frequency ranges and treat the sounds made within a single
range as a single meme. This allows the e-Pucks to distinguish two dif-
ferent memes sung by two different e-Pucks at the same time provided
the memes are sung within different frequency ranges. If two e-Pucks
sing two different memes at the same time, in the same frequency range,
then any e-Puck hearing them will be unable to distinguish the two
memes, instead the listener will perceive a single meme consisting of the
combination of the two sung memes.

Due to the variation in frequency (discussed above), it is possible that
a single e-Puck trying to sing in one frequency range will sometimes sing
part of the meme in an adjacent frequency range. When this happens a
listener will perceive two distinct memes in two distinct frequency ranges,
usually one meme is very close to the meme intended to be sang and the
other consists of small snippets of that meme.

Importantly, there is no synchronization between these robots. Addi-
tionally, it is not possible (by design) for a robot to distinguish between

58 Guest et al.

different robots singing and consequently, memes may be heard individ-
ually or misheard in combination, i.e. memes overlapping since there is
no special delimiters on memes. Further, the inherent noise in the sys-
tem means that some memes may be mis-sung, i.e. generated with errors
such that the listened for frequency is not generated. Every robot starts a
given simulation with a small set of pre-seeded tunes in memory. Robots
move around an arena, listen to tunes sung by other robots and then
imitate what has been heard, under different meme selection strategies.

Several visualizations have been developed to analyse robot meme
fidelity and propagation at three different scales: individual robot meme
memory, community-scale meme diversity over one or more simulations
and individual-to-individual meme exchange in a single simulation. These
visualizations will be presented and analysed in a format of case study:
for every stage of the data analysis: the research questions will be de-
scribed; the visualizations employed to address these questions outlined;
the insights that were obtained using these visualizations, both in visual
and in data terms; and in the light of all the above, a critical analysis
of the role of the visualization technique will be presented. This critical
analysis has been undertaken by someone external to the case study and
so is as objective as possible. In the spirit of Visual Analytics motto,
Detect the expected and discover the unexpected [16], the answers pre-
sented will be of two kinds: expected answers to the questions asked; and
unexpected insights generated by the visual analysis.

3 Individual e-Puck Memory

3.1 The Question

What are the memes heard by an individual robot, and how does this
vary from the original seed meme?

The aim of the first analysis was to provide an overview of the range
of memes generated during a three-robot experiment. All three robots,
each seeded with the same initial meme, began communication, listening
and copying each other’s memes. Importantly, there is no synchroniza-
tion between these robots. Since memes may be misheard and mis-sung,
variety will occur during the simulation, and we are interested in the
nature of that variety. Here, we considered a simple meme memory and
meme selection strategy. When a robot heard a meme it was added to
memory, regardless of whether the meme had been heard before. For
selection of a meme, robots picked memes at random [19] from memory,
and so memes that have been heard often are more likely to be selected
again.

Plotting a catchy tune 59

ePuck 0 ePuck 1

Only epuck 0 sings | a

Both epucks hear one song = !

Both epucks sing same song

Both epucks hear the same song twice
Both epucks sing same song

Both epucks hear three different songs| 4

.
|

Fig. 2. A sample of a beginning of two-robot simulation run. Every bar rep-
resents an individual tune (meme), with darker areas indicating sound pulses
and lighter areas indicating pauses.

Figure 2 above shows the beginning of an imitation experiment with
two e-Pucks. It alternates between showing what is being sung and being
heard. The experiment starts with only one e-Puck (0) singing. Both e-
Pucks 0 and 1 hear that meme. Each responds by randomly singing one
of the memes it knows. The final heard section of memory shows that
one of the e-Pucks must’ve has mis-sung at the beginning and end of the
meme leading to a new meme being heard in a different frequency range.

3.2 The Visualization

All the tunes stored in a robot’s memory by the end of a single run
were visualized, separately for each robot. Figure 3 (left) shows data
from a single robot listening and mimicking. In this visualization, every
horizontal line is an individual meme, with dark grey areas indicating
sound pulses and light grey areas indicating pauses. The lines are stacked
vertically, sorted by number of pulses in a meme (two to five), then by
overall tune length, then by the length of the first note. The horizontal
axis shows time in milliseconds, indicating the total length of the meme.

3.3 The Interpretation

This visualization allows perceptual grouping of similar adjacent lines
and therefore separation of the whole meme set into a small number of
clusters of similar memes. The diversity of memes can clearly be seen,
together with the similarity of meme structures within clusters.

One insight generated by this visualization was the appearance of
groups of similar memes that exhibit a trend of small changes in over-
all meme length. It is conceivable that the tunes, being misheard, grow
progressively longer (or shorter), mutating over time. Note that the vi-
sualization used in Figure 3 (left) loses the time component of the ex-
periment. In order to explore the hypothesis that tunes get shorter over

60 Guest et al.

time, the data was re-plotted in the order of being recorded in robot’s
memory (Figure 4 (right)). This presentation of data immediately shows
that tune length varies over time, and that although some shortening
does occur (the first two lines are the longest, even if by a short margin),
no consistent trend of decrease in tune length is present.

Another insight is the generation of very long memes with long si-
lences in between two short pulses, and also very short memes. Both
arise from the asynchrony and lack of delimiter in robot-to-robot trans-
mission. Since there are no delimiters, robots may begin listening to
another robot at the final pulse of one meme and, by chance, stop lis-
tening at the end of another meme sung by perhaps another robot. This
asynchrony can generate novel meme structures.

Figure 4 shows the memory of all three individual robots, and the
effect of sound attenuation. The three robots are aligned equidistantly in
a row, bcm apart. Each e-Puck produces tunes at a different frequency,
in a different frequency range. The right hand e-Puck’s frequency is at
the lower end of its frequency range. This means the frequency variation
will affect this e-Puck more than the others. When a listener e-Puck
processes what it hears from this e-Puck, some of the received signal will
fall in the frequency range below the one it was produced in. Normally
the amount of mis-heard signal is below the threshold for detection, and
is therefore ignored, but it does mean that the signal in the correct range
is weaker and therefore is more affected by the attenuation of the signal
over distance. The result is that the left hand e-Puck cannot always
hear the right hand e-Puck. The left and centre e-Pucks sing strongly in
the centre of their frequency ranges so can always be heard by all three
e-Pucks.

The effects of this can be seen in Figure 4. The centre e-Puck sings
clearly and is easily heard by the others. It hears everything the other
e-Pucks sing (including itself) and picks up any mis-sings by the right
hand e-Puck. Consequently it heard more memes than any other e-Puck.
The right hand e-Puck is not a clear singer, its ’voice’ is weaker and
more prone to errors caused by frequency variation. Note, this is a clear
example of the variation occurring as a consequence of using real robots.
However it can hear all the e-Pucks clearly, including itself, since it is
close enough to itself to pick up its own weak signal. As the result, it has
heard almost as many memes as the centre e-Puck. The left hand e-Puck
sings clearly enough to make itself heard by all the others. It can hear
itself and the centre e-Puck well. However it sometimes fails to hear the
right hand e-Puck, and therefore has heard less memes than the other
two e-Pucks.

Plotting a catchy tune

TR

I
\

ﬂ

[=]

500 1000 1500 2000 2500 3000 3500

(=]

500 1000 1500 2000 2500 3000 3500

Fig. 3. Memes in a single robot’s memory. Left: sorted by structure; Right:
sorted by time (truncated). X-axis is the length of tune in milliseconds; Y
axis — running order of the tune in dataset. Every bar represents an individual

tune (meme), with dark grey areas indicating sound pulses and light grey areas
indicating pauses.

61

62 Guest et al.

0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 4. Memes in memory of three robots, ordered by structure. X-axis is
the length of tune in milliseconds; Y axis — running order of the tune in
dataset. Every bar represents a tune, with darker areas representing sound,
and lighter representing pauses. The robots were aligned in a row. The effects
of distance/frequency-dependent attenuation can be seen in the difference be-
tween left and right charts.

3.4 The Critique

These individual-scale visualizations are straightforward representations
of a small subset of experimental data. As such we are able to answer
the question set. However, this visualization offers only a limited view of
the processes that take place in the experiment.

We are able to identify clusters of memes, as well as several out-
lier memes, through a process of sorting based on meme characteristics
(number of pulses and length). In doing this clustering we strip the tem-
poral component out of the data. In the sorted data we observe a trend
of smoothly increasing/decreasing meme length that is misleading — this
is not present when we view the data in time series. Of more value is the
use of these meme plots for ‘odd-one-out’ tasks as shown in Figure 4. It
is clear that the robot on the left has a very different set of memes in
memory because of its distance from the other two robots.

Plotting a catchy tune 63

We only observe visual clusters and outliers when we sort the data
to promote such trends; the side effect is that we create a new trend.
The main unexpected insight from this visualization is that broadly two
new forms of meme are generated, and these are readily observed in the
sorted meme list. First, on occasion a pulse is not heard and so memes
reduce in both length and number of pulses. Second, and unexpectedly,
memes with a short pulse at either end of a very long silence arise from
the asynchrony in the inter-robot communication.

This visualization will not scale well: it is a useful view of only a
small number of robots. With a large population of individuals it is
difficult for us to conceive of a visualization that would offer this detailed
view. It also, clearly, reveals nothing as to the source of the dynamics:
e.g. not representing the transmission data events from other robots. It
is therefore not possible to interpret this dynamic without recourse to
inference from the experimental design and comparative views of other
individuals’ memories. Of course, we could aggregate memes into groups
of sufficiently similar memes and visualize a reduced level of detail but
this may average over important novelty.

4 Community-scale Diversity

4.1 The Question

Which memory strategies promote or inhibit meme diversity in a robot
community?

This stage of analysis compared the results of running simulations
with different parameters, such as number of robots, speed of move-
ment, initial memes, selection strategy, etc. We analyse the set of the
memes generated by the community of robots as a whole, to enable
bulk-scale comparisons of meme diversity under different experimental
configurations, e.g., meme selection strategy. This may allow identifica-
tion of patterns in the diversity of memes in the community meme-space.
Here we considered communities of eight robots with four initial seed
memes in each robot and two memory strategies. One memory strat-
egy is the random pick as described above. The other memory strategy
is a form of proto-imitation [2], where the e-Puck compares the memes
it has just heard to the memes in its memory, determines which heard
meme is most similar to one of the memes already in memory and sings
the known meme from its memory. A distinction can be made between
mimicry, the copying of actions, and imitation, recognizing the intent
of those actions and attempting to achieve the same intent. With this
proto-imitation strategy, the e-Puck determines the meme it believes the
singer was trying to sing and sings that meme in response.

64 Guest et al.

4.2 The Visualization

The set of memes recorded over several simulation runs was visualized
as a three-dimensional scatter-plot (see Figures 5 and 6). The axes were
three measures of a meme: x-axis is total meme length, in milliseconds;
z-axis is number of sound pulses in the meme; and y-axis is a measure
of the structural difference between the meme and an idealized meme of
the same length and number of pulses. In an idealized meme all pulses
are distributed evenly across the meme and are all of equal length. This
structural measure is the log of the square root of the sum of squares
of the differences in pulses lengths between that meme and its ideal-
ized form. Two memes are identical if they have the same total length,
number of sound pulses and structure. Differences between memes may
be manifest in any single metric or combination of metrics. We have no
reason to favour any one of these metrics over another; consequently,
we give equal weighting to differences in each metric. For visualisation,
we plot these in Euclidean space and so as a result meme similarity is
directly proportional to the Euclidean distance in this three-dimensional
metric space.

4.3 The Interpretation

Visually, the overall structure can be seen as comprising several vertical
strands and a fuzzy cloud at the top spreading along the shape defined
by the columns. This structure presents the development of memes from
pre-seeded ones, at the base of some columns. Seed memes lie at the base
of columns since they have idealized structure. The columns are formed
from variations on these memes that are still recognizably close to the
original seed. The meme cloud at the top is the tunes that developed
from pre-seeded ones but cannot be traced to the original. Of special
theoretical interest is the cut-off point on a vertical axis after which the
columns dissolve into the cloud, and cluster analysis (Figure 5) overlaid
onto the visualization reveals this.

The volume of this cloud is sensitive to the meme selection strat-
egy. Figure 7 shows a conservative proto-imitation strategy. There are
fewer memes produced overall (number of points in the cloud) and fewer
columns representing repeatable, distinct ideal memes than in the ran-
dom pick strategy (Figure 5). This is expected since the proto-imitation
strategy only imitates memes already known to it. Consequently, while
memes heard may vary substantially from the ones in current memory,
these are not sung and this limits variation.

In the sing random meme, there is much more variation in the meme
cloud, and this is expected. What was not expected was the increase in

Plotting a catchy tune 65

o
=
[ce)
o) ., g
© <)
~ 0 25
® 20
N 15
T o @ 10
L 4 5
o : + } } 0
0 10 20 30 40 50

Fig. 5. 3D scatter plot of meme space, with random pick selection strategy. X-
axis is length (ms); y-axis is a measure of structural deviation from an idealized
meme; z-axis is the number of pulses. Red, Blue, Black and Green dots are
memes that are close enough to be considered a variation of a corresponding
seed meme (shown as solid circles).

30
|

15 20
|
-}

10
|

T I I T I I
0 10 20 30 40 50

Fig. 6. 2D scatter plot of meme space, with random pick selection strategy.
X-axis is length (ms); y-axis is the number of pulses. Red, Blue, Black and
Green dots are memes that are close enough to be considered a variation of a
corresponding seed meme (not highlighted in this figure).

66 Guest et al.

25 30

20

15

25
15

=) 0
0 10 20 30 40 50

Fig. 7. 3D scatter plot of meme space, with proto-imitation selection strategy.
X-axis is length (ms); y-axis is a measure of structural deviation from an
idealized meme; z-axis is the number of pulses. Red, Blue, Black and Green dots
are memes that are close enough to be considered a variation of a corresponding
seed meme (shown as solid circles).

the number of vertical columns and the extending of the meme cloud
along the x- and z-axes. A whole pulse being dropped from the original
seed meme set causes the increase in number of vertical columns. Thus,
new ‘idealized” memes of unintended length are formed in the meme
space. (Note, in the meme plot in Figure 5 this has occurred once but
is far more common in Figure 7). The extension of the meme cloud
along the x- and z-axes arises from meme concatenation: imitated memes
overlapping in time and a single listener combining these two (or more)
memes into a single meme.

4.4 The Critique

We get a clear view of the emergence of structure in the community of
memes from the original (four) seed memes at the base of the diagram.
The diagram also reveals clusters of repeated memes with a very small
amount of noise, towards the meme cloud of variation. We can also clearly
see the impact of selection strategy on diversity from the size and shape
of this meme cluster. A new insight of very long memes with many
pulses and silences is depicted as outliers (shown in the top right of
these visualizations).

Plotting a catchy tune 67

This form of diagram will scale — up to a visual saturation of points in
the space — as simulation size increases and there is no time component.
Of course, it is entirely dependent on our choice of axes, but nonetheless
this visualization works well, except for the following caveats.

This visualization showed similarities among memes and hints at
gradual evolution of memes along vertical paths in the meme space, from
the pre-seeded memes into the cloud at the top. However, this impression
of smooth trends in meme evolution may be misleading, as was seen in
the memory visualization of the single robot case. Here, we are not able
to see how this meme space evolved over time — we only observe it at the
beginning (implicitly through seed memes) and at the end (explicitly).
Added to this, we have no sense of the degree of repetition in this meme
space.

5 Meme Propagation

5.1 The Question

How do memes propagate over the robot community, and how does meme
memory strategy impact this?

To explore progression from seed memes through to memes that are
more varied, and especially meme reproducibility, i.e., how many repe-
titions of a given meme exist, a visualisation was developed that focuses
on meme imitation events. We considered two memory selection strate-
gies: distinct and grouped. A robot with distinct memory will store every
meme heard as a new meme, even if it is identical to a meme already in
memory. A robot with grouped memory will examine every meme heard
and determine if it is already known, in accordance with a similarity
threshold with respect to the length/pulses/structural metric described
above, or new. New memes are added to memory, already known memes
have their count incremented.

5.2 The Visualization

We show data resulting from a single simulation run with eight robots.
A data unit is a single interaction: a robot singing a meme, and a robot
(not necessarily a different one) hearing it and imitating what it heard
(although not necessarily the same meme since errors may be introduced
as described above). The parameters of an interaction were: the identity
of the originating and the imitating robots; and the memes played by
each of them. Some of the memes were classified as seed memes, being
either identical to original memes or sufficiently close to them. Other

68 Guest et al.

memes were classified as novel, based on the metric developed in the
previous analysis.

These data were visualized as a link-chart, which we call a memeo-
graph, where every node represented a robot meme, and every edge is
a listening event. The spatial layout of the nodes and the routing of
the links was undertaken using the hierarchical layout algorithm, im-
plemented as a part of Graphviz software package (www.graphviz.org).
The shape of a node glyph corresponded to the robot identity, and the
combination of two colours (fill and border) represented meme iden-
tity. Glyph size represented meme novelty: large glyphs represented pre-
seeded memes, and small ones — novel memes.

5.3 The Interpretation

Figure 8 shows the impact of the direct memory strategy, and highlights
a number of features of meme evolution. First, there are long (vertical)
chains of the same glyph: catchy tunes. These are selected at random but
are repeated with increasing frequency and by an increasing number of
robots (i.e., different shapes) as the simulation progresses. For example,
see the long run of dark squares (a particular meme sung by the square
robot), which is repeated frequently by other robots as well (circle, tri-
angle, hexagon etc.). This particular seed meme pervades the length of
the memeograph.

There are other examples of non-seed memes exhibiting this same
pervasiveness. The right-hand branch of Figure 8 shows three different
newly generated memes, depicted as small shapes, occurring over several
imitations. However, there are just as many non-seed (small) memes that
fail to catch on. These are depicted by small memes that exist at the
terminal end of the sequence.

For the grouped memory strategy, the overall memeograph topology
is characteristically different (see Figure 10). It necessarily has fewer
nodes — because of the grouping. Edges are further annotated by the
number of times they are repeated. It may be observed that the same
dark seed meme is repeated many times, depicted by the ‘pig’s ear’ arrow
on several different robots (different shapes). Likewise, there are several
non-seed memes with a similar number of repetitions. Indeed, as with
the direct memory strategy, there are many occasions of seed memes and
new memes failing to be repeated at all.

5.4 The Critique

This is a complex visualization for a complex transmission dynamic. We
have had some success in answering the question set, in that we can

Plotting a catchy tune

s e
A B o veOV
s Al ave Ow
. L D&
. ay Goe
.. oy S04 @
AR -

M Ovs e

A OA . B 23 43 4
AOAGA E . @ ov
AGA HE ® v - Ve
AGA N OvEOV-@v:
AGA ON=@-ve .
AoLomeN - .
A0A HONOA- .
oA me v
E@OA H@ve v
.l @A B “va
@A . ov -.v‘
" @A m ove v
.A] oV o~ al
.A . veowv -"A oA

69

Fig. 8. Memeograph for direct memory strategy, showing long chains of meme
repetitions for some memes and other memes that are imitated once and not
repeated. Each node represents an instance of a meme in the memory of a single
e-Puck. The shape of the node identifies the e-Puck possessing the meme. The
meme is identified by the colour combination of the node. Large nodes are seed
memes; small nodes are new memes.

70 Guest et al.

& A A
& B A QA
Py a4

The 'triangle' epuck sings The 'triangle’ epuck sings The 'triangle' epuck

a meme in isolation from a meme and is heard hears itself correctly but
other epucks. It correctly successfully by itself and the 'circle' epuck mishears
hears itself. the 'trapezoid' epuck. and identifies it as a different

meme.

) v o v
DG E " v

The same emergent meme occuring several times from mis-hearing the same seed meme. Some
memes emerge over and over again deriving from a common mistake that gets repeated regularly.
This process can lead to more stable memes that get passed on correctly more often.

() wve
® evevw
(6] vevae

oA

The ‘circle' epuck mishears itself giving rise The 'hexagon' epuck sings a meme which is
to a new meme which it can hear and mimic misheard by itself and the 'inverse triangle'
correctly but which the 'triangle' epuck epuck. Both epucks interpret the meme the
mishears twice. Interestingly the 'triangle’ same way, suggesting the error was in the
epuck hears it as the original meme the singing rather than the hearing.
This new meme turns out to be unstable and
is not passed when sang.
However this unstable meme gives rise to a
new, emegent meme which is stable.

Fig. 9. Explanation of details of memeographs, examples taken from Figure 8.

Plotting a catchy tune 71

Fig. 10. Memeograph for grouped memory strategy, with lines showing both
the repeated memes and meme variations as a consequence of transmission.

72 Guest et al.

Fig. 11. Memeograph for grouped memory strategy, with lines showing both
the repeated memes and meme variations as a consequence of transmission.
Detail view of part of the memeograph from Figure 8. The thickness of the
links and the numbers on the links indicate how many times the tail meme
has been interpreted as the head meme.

see the impact of memory strategy and selection strategy (not shown)
on memeograph topology. We make use of trend visuals to depict long
trails of repeated memes and readily spot outliers — i.e. branches in
these sequences and single node sequences. However, caution must be
taken when interpreting the trends, since it is tempting to imagine this
is time series data. A given node-edge-(same colour) node link repre-
sents a single event of a meme being repeated. Several time steps may
have passed between each imitation and the imitating robot may have
repeated other memes in between. We do not make use of any clustering
in these mimeographs, aside from the implicit clustering of the grouped
memory strategy.

This is the first time we have attempted such a visualization, and
there are many features that could be improved. In this visualization,
shape is related to robot, and size and colour to meme. Perceptually,
shape and size are automatically aggregated into object identity. Group-
ing size and colour and dissociating these from shape is perceptually

Plotting a catchy tune 73

unnatural. This means that we make associations more easily between
two unrelated visual features and provide an unintuitive view of the data.

Our visualization also makes poor use of colour (not shown here but
available at http://sites.google.com/site/artcultproject/). The different
meme identities, shown as colour combinations, give no indication to
meme similarity: specifically, the allocation of colours to memes is en-
tirely at random. Correlating meme similarity with hue similarity would
have provided us with a mechanism to depict meme similarity, and this
would have answered our question on whether memes changes gradually
or suddenly over imitation events. In its present form, it is not possible
to determine this. The numbers on edges and inside glyphs are not easily
readable. The range in variation of edge thickness (1 point to 3 points)
does not allow for high-fidelity representation of the range of values in
the data. A better option would be to increase the thickness of all edges
to the maximum (here 3 points) and map the data onto the edge colour
intensity. The visualization provides no information on the closeness of
robots during transmission. Given the shape of the sound attenuation
curve (above) this would not be difficult to factor in — a distinction be-
tween immediate vicinity and any further away (but still able to hear
the transmission) would be sufficient. Therefore, it is not possible deter-
mine the relative contribution of meme reproduction error and distance
to variation.

6 Discussion

We appraised three visualizations — each at different scales — in our arti-
ficial culture system. We considered this appraisal in terms of the com-
monly performed visual tasks of detection of outliers, trends and clusters.
When mapping these typical visual search tasks back into the data do-
main, outliers and clusters were shown to reveal new insights in the robot
community dynamics. For example, in the robot memory visualization
(Section 2) we observed as outliers an unexpected meme comprising two
short pulses punctuated by a very long silence. We also observed new,
very short memes. Both of these features could be explained in terms of
the underlying robot-to-robot interactions, but without visualisation it
would have been difficult to determine that this dynamic occurred.

We also observed individual variation among robots. By visualizing
the internal memory of three separate robots, we could immediately see
the impact of spatial arrangement on memes stored (Figure 4). Two
robots were very similar in this regard; the robot furthest away from
the robot with the weak voice was characteristically different. Moreover,
analysis of these single-robot scale visualizations directly informed devel-

74 Guest et al.

opment of metrics which were used in subsequent larger scale analyses.
Specifically, we could see the changes in structure that could arise from
robot-to-robot interactions, and this was not possible to determine in
advance of the simulation.

Likewise in the community scale visualizations (Section 3), we noted
concatenated and truncated memes. Similarly, these phenomena are ex-
plained by the asynchrony in robot communication. Visual clustering
revealed consistencies and differences in both of these visualizations. For
example in both Figures 5 and 7 we could clearly observe seed memes,
copies (or sufficiently close copies) of the seed memes and the new memes
arising from a mix of errors in meme transmission and differences in
meme selection strategies. In particular, the impact of meme selection
strategy on community diversity was obvious from visual inspection of
the clusters in Figures 5 and 7.

Observation of trends typically stimulated new enquiries: a suggested
trend of a smooth meme lengthening / shortening process over time was
readily dismissed (Figure 3 (left)) with a different visualization (Figure
3 (right)). Discussions between the primary researcher and the external
party revealed an inferred trend of a smooth evolution from idealized
memes into a diverse cloud over time (Figures 5 and 7). We sought to
investigate this trend with our most complicated and new, at least to us,
visualization of the memeograph.

Perhaps unsurprisingly, this unconventional visualization attracted
the most critique.

In this visualization, we made poor use of the mix of size, shape
and colour. We bound together colour and size for memes and shape for
robot, yet in the perceptual system size and shape are readily aggregated
and this ready aggregation should be recognized and factored into the
design. Further, colour could have been used to understand the nature
of the evolution of memes in the community, by linking similarity in
colour to similarity in meme (based on our meme metric). We will update
the visualization accordingly in subsequent analyses. Other refinements
suggested above will also be factored into our visualization approach.

We are not able to derive easily generalities or repeatability from
our memeographs. Memeographs are too detailed in their representation
of individual interaction. While it is possible to see small-scale details
of mutations of a specific meme, no overall characteristics of a simu-
lation (except the overall shape of the memeograph network) can be
derived. General characteristics relating to meme diversity are better
represented by the 3D scatterplot. Regarding repeatability, a specific
simulation may be run a number of times resulting in a number of
very different memeographs, while the 3d scatterplots are consistent,

Plotting a catchy tune 75

the structure of the 3d plot revealing common features of the nature of
that specific community. The 3d plot retains details of the length, timing
and structure of the memes which the memeograph does not.

More generally, a given visualization construction can only properly
answer the question it was designed for. Trends, outliers and clusters may
emerge, as we have shown, that suggest additional interpretations to the
data. While these are useful for stimulating different, new questions it is
not enough to rely on the existing visualization to answer new questions.
In this respect, it is like any other model, e.g., a simulation model. It is
fit for the purpose it is designed for, and extending the purpose without
extending/ reviewing the design is just as inappropriate.

With regard to scaling, we have presented three different visualiza-
tions at three different scales. Only the community visualization will
scale to communities with much larger numbers of agents. This scaling
can continue up to the loss of clarity in the 3D plot, which to some ex-
tent may be alleviated through interactivity in 3D rotational navigation.
Clearly, the robot memory and robot-to-robot communication memeo-
graph visualizations scale poorly with the number of robots, although
the robot-to-robot communication will scale better. One solution is to
generate more abstracted and coarse-grained representations of each —
e.g., collapsing the meme list down through grouping and then storing
frequency of memes for each group for robot memory — would help ad-
dress the volume of data introduced by up-scaling. Another solution is
to adopt an interactive overview and zoom visualisation approach where
this coarse-grained overview may be shown for selected sub-populations
of robots, and there is always the opportunity to probe in detail individ-
ual robots located in space over time.

More interestingly, visualization itself may offer a pattern-based solu-
tion to dealing with the increase in data that is an obvious consequence
of an increase in scale. Note that our third visualization (4) arose out
of a need to understand the relation between individual scale exchange
of memes — the process — and community-scale meme evolution — the
pattern.

We propose that an effective (improved) visualization of robot-to-
robot communication that shows the similarity of memes involved in
transmission events can help link from process to pattern and deal with
an increase in spatial scale. Specifically the list of memes imitated (and
that could be heard) at the time of listening and the resulting meme
stored in memory, may be useful in linking scales. Such a visualiza-
tion, as a precursor to more rigorous statistical methods, would enable
derivation of a probability density distribution of the meme transmission
process from robot-to-robot. This probability density function would be

76 Guest et al.

parametrized by local neighbourhood variables such as the number of
other robots in the vicinity and a frequency distribution of the meme
memories (as described above) in neighbourhood. In this way, visualiza-
tion may act as a guide to simulation reformulation into higher-level,
abstracted processes — ultimately founded on statistical averaging — that
build in links in scales and ease the up-scaling process.

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Re-
search Council (EPSRC) grant reference EP /E062083/1 and the authors
gratefully acknowledge project co-investigators and researchers.

References

[1] N. Andrienko and E. G. Andrienko. Ezploratory analysis of spatial and
temporal data: a systematic approach. Springer-Verlag, 2006.

[2] P. Andry, P. Gaussier, and J Nadel. Simulations of dynamical interactions
for social learning. In European Workshop on Learning Robots, EWLRO01,
pages 5764, 2000.

[3] J. Bertin. Smiologie graphique. Paris: Mouton, 1967.

[4] J.L. Bown, E. Pachepsky, E. Eberst, U. Bausenwein, P. Millard, G.R.
Squire, and J.W. Crawford. Consequences of intraspecific variation for the
structure and function of ecological communities part 1: Model develop-
ment and predicted patterns of diversity. Ecological Modelling, 207:264—
276, 2007.

[5] R. Dawkins. The Selfish Gene. Oxford University Press, 1976.

[6] R.E. Falconer, J.L. Bown, N.A. White, and J.W. Crawford. Biomass
recycling and the origin of phenotype in fungal mycelia. Proceedings of
the Royal Society B, 272:1727-1734, 2005.

[7] P. Humphreys. FEztending Ourselves: Computational Science, Empiri-
cism, and Scientific Method. Oxford University Press, 2007.

[8] D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler. Challenges
in visual data analysis. In Tenth International Conference on Information
Visualization, pages 9-16, 2006.

[9] J. Mackinlay. Automating the design of graphical presentations of rela-
tional information. ACM Transactions on Graphics (TOG), 5(2):110-141,
1986.

[10] F. Mondada, F. Bonami, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, Zufferey J., D. Floreano, and A. Martinoli. The e-Puck,
a robot designed for education in engineering. In 9th Conference on
Autonomous Robot Systems and Competitions, pages 56—65, 2009.

[11] W. Playfair. The Commercial and Political Atlas. 1801.

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

Plotting a catchy tune 7

M. Prokopenko, F. Boschetti, and A.J. Ryan. An information-theoretic
primer on complexity, self-organisation and emergence. Complexity,
15(1):11-28, 2009.

J. Redish. Expanding usability testing to evaluate complex systems. Jour-
nal of Usability Studies, 2(3):102-111, 2007.

M. M. Shovman, A. Szymkowiak, J. L. Bown, and K. C. Scott-Brown. Use
of ‘pop-out’ paradigm to test graph comprehension in a three-dimensional
scatter plot. Perception, 37 (ECVP Abstract Supplement):79, 2008.

M. M. Shovman, A. Szymkowiak, J. L. Bown, and K. C. Scott-Brown.
Changing the view: towards the theory of visualisation comprehension.
In IEEFE conference on Information Visualisation, Barcelona, 2009.

J. J. Thomas and K. A. Cook. Illuminating the Path: The Research
and Development Agenda for Visual Analytics. IEEE Computer Society
Press, 2005.

E. R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, 1986.

C. Ware. Information Visualization: Perception for Design. Morgan
Kaufman, 2000.

A.F.T. Winfield and M. Erbas. On embodied memetic evolution and
the emergence of behavioural traditions in robots. Journal of Memetic
Computing, (to appear), 2011.

A.F.T. Winfield and F. Griffiths. Towards the emergence of artificial
culture in collective robot systems. In P. Levi and S. Kernbach, editors,
Symbiotic Multi-robot Organisms, pages 431-439. Springer-Verlag, 2010.

78

Guest et al.

Multiple model simulation:
modelling cell division and
differentiation in the prostate

Alastair Droop, Philip Garnett, Fiona A. C. Polack,
and Susan Stepney

YCCSA, University of York, UK, YO10 5DD
Alastair.Droop|Fiona.Polack|Susan.Stepney@york.ac.uk;
Philip.Garnett@yccsa.org

Abstract. We describe an approach to building a hybrid multi-
scale model, using a Petri net model for the top layer, and object-
oriented models at the lower layers, with a rigorous definition
of how the layers compose. We apply this approach to build-
ing a model of prostate cell division and differentiation, with
each model layer describing the processes at a suitable level of
abstraction. This provides a systematic modular approach to
modelling and to model validation, allowing use of diverse mod-
elling techniques in developing multi-scale models with no loss
of rigour or validity. We use this prostate model to develop a
prototype simulation, and demonstrate that it is capable of sim-
ulating biologically-relevant numbers of cells.

Keywords: complex systems, agent based modelling, Petri nets,
object models, prostate

1 Introduction

Simulations of complex systems have the potential to complement lab-
oratory based biological research, providing a platform for repeatable
experimentation, and for exploration of parts of biological systems that
cannot be analysed directly in live organisms or dead tissue. Elsewhere
[1, 11, 33, 34, 35], we consider how scientific simulations can be designed
and validated.

In this paper we present the modelling and simulation of cell division
and differentiation in the prostate. The results of this simulation will be
used as hypotheses to guide laboratory experimentation by suggesting
the cellular behaviours and pathways which are most likely to be involved
in early cancer neogenesis.

80 Droop et al.

Prostate cancer is a common disease, accounting for almost 25% of
male cancers in the UK. As with many cancers, prostate cancer is a com-
plex disease arising from the aberrant behaviour of a tissue. High-grade
prostate cancer is characterised by a breakdown of normal cell differen-
tiation behaviour, leading to a proliferation of terminally-differentiated
cells. The study of prostate cancer therefore requires an understanding
of the dynamics of a large population of cells. Many of the genomic
events that lead to cancer formation are rare, stochastic events. As such,
a continuous modelling approach (for example based upon ordinary dif-
ferential equations) is unable to capture the rich behaviour necessary to
model cancer neogenesis. The construction, parameterisation and anal-
ysis of the complicated models needed to study prostate cancer requires
input from multiple domain experts. The work reported here has been
the result of close collaboration between domain experts in the YCR
Cancer Research laboratory and software developers in the York Centre
for Complex Systems Analysis (YCCSA).

The prostate domain biology provides insight into cell transitions and
differentiation, transition rates and proportions of each cell type that can
be expected in normal, modified and cancerous prostate. However, as in
all systems biology, there are significant gaps in the domain knowledge,
and there are many features that cannot be accurately studied. In sim-
ulating the prostate cells, we seek to be able to (a) replicate the cell
behaviours and proportions in a normal prostate; (b) replicate the mod-
ifications that biologists make — for example, knock-out experiments to
determine causality — and to show that appropriate behaviours are sim-
ulated in the modified-prostate simulation; (c) to experiment with the
various forms of point mutation that have been postulated as initiators
of prostate cancer. The need to precisely measure rates and proportions,
and, in particular, the need to accurately express and explore interven-
tions and point mutations, dictates the use of an individual-based model;
we use an agent-based simulation. In modelling, we use diagrammatic ap-
proaches, which are easy to explain to domain experts, as well as being
familiar software engineering tools.

For the simulation, key features are the model of state change (dif-
ferentiation) and cell creation (division) in the prostate. We need design
notations that help us in validating the domain and conceptual models
with our domain experts. These models must also admit continuity in
development, and be verifiable. We also need to view the development
process as part of the construction of an argument of validity, which
requires us to systematically identify and record assumptions.

We follow the CoSMoS process: a principled, systematic development,
in which domain experts co-operate closely with simulation developers.

Modelling cell division and differentiation in the prostate 81

A domain model captures the domain experts’ view of the part of the
system to be simulated, and the desired scope and purpose of simula-
tion. From the domain model, a platform model, suitable for simulation
development, is produced. The simulation platform is then constructed
using a systematic software engineering process. Validation is empha-
sised, both in relation to the biological bases of the simulation and the
design decisions of the software engineering.

In [35] we note that the validation of the implemented simulation is
facilitated if the software engineering models use modelling approaches
that map seamlessly with the implementation platform and language(s).
In simulating aspects of prostate cell processes, we demonstrate that
appropriate modelling not only facilitates software engineering and val-
idation, but can also facilitate modelling and validation of the biology
underpinning the simulation and simulation experimentation.

1.1 Modelling notations for systems biology

Petri nets are widely used in modelling biological systems. Petri nets (see
82) are based on state-transition diagrams and the theory of automata,
they have strong mathematical underpinnings, and can provide formal
verification of properties. However, in computational modelling of bio-
logical systems most uses encounter the limitations of reactive-systems
modelling. For example, for the modelling of biological pathways, it has
been found necessary to extend Petri net notations with continuous fea-
tures: Matsuno et al propose, and extensively use, Hybrid Functional
Petri Net with extensions to accommodate continuous places and transi-
tions [28, 31]. Such adaptations of Petri nets have the advantage (usually)
of maintaining the strong formal basis. However, the resultant models
are poorly structured and hard to read — this inhibits validation of mod-
els against the biology. The scale and density of the Petri net models
also makes them hard to implement in current computer languages.

In 1987, Harel [14] noted the inappropriateness of conventional state-
transition modelling for transformational systems. His widely-adopted
answer is statechart diagrams, “a visual formalism for describing states
and transitions in a modular fashion, enabling clustering, orthogonality
(that is, concurrency) and refinement, and encouraging ‘zoom’ capabili-
ties for moving easily back and forth between levels of abstraction.” [14,
p233]. Statechart-like notations are readily understood by many biolo-
gists [12], and have been used in biological modelling [22, 43]. However,
statechart modelling also suffers from aspects of inadequacy. In systems
with significant state (those where data are generated, stored and used,
and values persist over time), statecharts cannot capture data structures

82 Droop et al.

or transactional (and reactive) structures adequately. Like Petri nets, at-
tempting to use a single statechart to capture a heterogeneous biological
system results in a complicated, dense model which is hard to validate
and to implement from.

Some biological modellers turn to UML-like modelling notations.
UML (Unified Modeling Language) [32] has many attractions: it pro-
vides notations for modelling static and transactional structures as well
as statechart-like notations; there is conceptual unification across nota-
tions (through a metamodel-based language definition); there are lots
of tools; some of the notations map readily to common programming
languages (principally, Java). However, UML is a unified object-oriented
(00) modelling language, and the connotations of object-orientation
are not always appropriate for biological systems. The most significant
issues for modelling cell division and differentiation are that objects can-
not reproduce and divide, and an object cannot change its type (class).
Continuous concepts such as cell populations and concentrations do not
map well to the instance-based OO modelling concepts (class, object,
slot, value). These problems are usually ignored in biological modelling
[11, 12, 38, 39, 40, 48, 49]: it is considered sufficient that the diagrams
say something about the biological structures, and map to Java.

To summarise: Petri nets are a clear, elegant way to model reactive
systems; statecharts allow clarity in the modelling of transformational
systems; OO modelling notations such as UML provide useful and com-
plementary visuals if we can ignore issues of semantics.

1.2 Hybrid models

Most modellers use one base notation and extend it, adapt it or abuse it
to model the whole of a biological system. However, this approach loses
much of the clarity that abstract modelling should bring to a problem.
There is some multi-notation modelling in biology. Harel et al [7, 8,
15, 16] address the inadequacies of statecharts for biological modelling in
Reactive Animation, a proprietary modelling framework that uses stat-
echarts for transformational aspects, object models for static structure,
and live sequence charts for transaction structures. The notations are in-
tegrated through their roles in generating and maintaining a simulation
implementation. Setty, Cohen, and Harel [16, 42] use Reactive Anima-
tion to model pancreatic organogenesis. Statecharts are used to model
the individual cell lifecycle; other models capture the morphology of the
system. The cell division process is captured only informally: “Prolif-
eration ends when the Cell duplicates itself by creating an identical
instance. In turn, a message is sent to the front end, which creates a new
identical sphere corresponding to the new Cell at the proper location.”

Modelling cell division and differentiation in the prostate 83

[16, p9]. In Reactive Animation, models are complementary, and the aim
is to progress as far as possible in the analysis without connecting the
models [42].

The hybrid modelling approach that we use is not proprietary (or
tied to the modelling notations used here): it focuses on finding an ap-
propriate notation for each aspect of the system, and an appropriate way
to integrate the component models, for example through input-output
mappings. Whilst we anticipated that this would cause problems in im-
plementation, it turns out to be a natural way to construct and structure
simulation code. Appropriateness is determined primarily by the ability
of the notation to express domain concepts in ways that the domain ex-
perts, as well as the simulation developer, can understand. However, it
is also important that models map clearly to code concepts, to support
software validation.

1.3 Structure of this paper

In this paper, we use multiple models, apply them to modelling cell dif-
ferentiation in the prostate, and reflect on the advantages, opportunities
and limitations of such an approach. §2 introduces Petri nets and Petri
net terminology, and introduces a high-level model of cell differentia-
tion and division. §3 introduces three notations (loosely based on UML)
that are used to model the lower-level individual cell behaviours. The
behaviour of a cell is determined by its place in the Petri net, and its
environment. A key aspect is that, in moving between two places, a cell
undergoes a change in its active behaviours, and its internal structure.
84 describes how the different models and layers can be combined. §5 dis-
cusses how our approach amounts to defining a domain specific language.
86 presents a prototype model of the prostate cell structure. §7 describes
the simulation implementation: this prototype replicates the dynamic
changes in cell-type proportions in a normal prostate. §8 outlines fur-
ther work in developing the modelling approach, and in the prostate
model itself. §9 presents our conclusions.

2 The high level system structure: Petri net
modelling

The high level Petri net model captures the structure of the cell di-
vision and differentiation process, without considering the detailed in-
ternal structure of the component cells. Petri nets are widely used to
model signalling and pathways in biological systems (see, for example,
[5, 13, 27, 41]), and are attractive to many systems biologists. They

84 Droop et al.

Fig. 1. Example Petri net. (a) A net with n places pii ...pin, input to the
transition t, which has outputs to m places poi ...po,,. Place por has two
incoming arcs. The net’s current marking is 2 tokens in place pii, one token
in pin, and one token in place pom,. (b) The same net after transition t has
fired. One token has been consumed from the place along each input arc, and
one token has been produced in the place along each output arc. Hence two
tokens have been produced in place pog, one for each of its arcs.

provide a natural way to model cell division (one object becoming two
objects) and cell differentiation (one object becoming a different type of
object).

2.1 Petri net concepts and definitions

The (draft) Petri net ISO standard website [17, 18] defines a Petri net
as “a formal, graphical, executable technique for the specification and
analysis of concurrent, discrete-event dynamic systems”. There are many
flavours and varieties of Petri net; here we describe only the features
necessary for our model. The interested reader is referred to the extensive
bibliography accessible from the ISO standard website.

A Petri net is a bipartite directed graph. The two kinds of nodes
are places and transitions. Place nodes have a marking: a set of tokens
occupying the place (figure la). A transition can fire when all its input
places hold a token: one token per input arc is consumed from its input
place, and one token per output arc is produced in the respective out-
put (figure 1b). Some descriptions instead talk of tokens flowing around
the net; here we emphasise that tokens are consumed and produced by
transitions, and so emphasise that their numbers and types need not be
conserved, as the focus of our modelling is on the production of new cells
and new kinds of cells.

When Petri net models get large, it can be helpful to structure them.
Fusion places [19, ch.5], an extension to standard Petri nets, allow a Petri
net to be presented in several pieces. A fusion place is marked on several
nets, which means it should be identified across the nets (figure 2). We

Modelling cell division and differentiation in the prostate 85

5)
2 p2 f 11
pl

o—1®

p2 f

Fig. 2. Example fusion place. The two nets on the left have the fusion place f
(dark grey). They are equivalent to the net on the right.

use fusion places to help structure the chain of cell differentiations. A
fusion transition can be used to capture an entire sub-net; we could use
a simple version to help capture the repeated pattern of cell divisions,
but do not do so here (see §8.3).

2.2 Modelling cell interactions

In our Petri net model, each cell is modelled as a token, and each type
of cell is modelled as a place. The way cells differentiate (change type)
and divide is modelled by the transitions. We name all the places and
transitions in the net; these names are used to link the Petri net model
to the lower level models (§3).

Figure 3 shows a variety of differentiation and division processes mod-
elled using a Petri net. These various possibilities can be captured in a
single model of cell differentiation, figure 4. (Our actual model of prostate
cell differentiation and division includes more detail; see §6.) There are
two possible models. Figure 4a shows the case where the two daugh-
ter cells are distinguished separately. This allows asymmetric transition
probabilities (with d1 being highly likely to remain a pl cell, and d2
being highly likely to differentiate, for example). Figure 4b shows a sim-
pler representation, that cannot capture the asymmetry at this level of
modelling. As we include a lower layer of modelling, we use the simpler
representation, and devolve handling the asymmetry to the lower level.

86 Droop et al.

o0 &K
p diff d1 p P divdl
(b) (© p

(@)

divd
N o—{KZ0
P divd2 p d
(d) d2 Q)

Fig. 3. Simple Petri net models of cell differentiation and division. (a) cell of
type p differentiates into cell of type d1; (b) parent cell of type p divides into
two daughter cells also of type p; (c) parent divides into two daughter cells,
one also of type p, one differentiated into a daughter cell of type d; (d) parent
divides into two cells, one differentiated into type d1, one into type d2. (e)
parent divides into two cells, both differentiated into type d.

reml

(b) rem

Fig. 4. A Petri net model of cell division incorporating all differentiation pos-
sibilities. (a) a cell pl divides into two daughter cells d1 and d2, which each
chose either to remain a pl cell type (transition rem), or differentiate into a p2
cell type (transition diff). (b) a cell pl divides into two daughter cells d, which
each chose either to remain a pl cell type (transition rem), or differentiate into
a p2 cell type (transition diff).

Modelling cell division and differentiation in the prostate 87

1

Place
holder
* *
* 1
input consumer " * * .
Token L Transition Environment
*

output producer

Fig. 5. The class model for the tokens. A token is in a place. Token and Place
are abstract classes; there is one subclass of each for each Petri net place. A
transition may consume many input tokens; a token is consumed by precisely
one transition. The transition may produce many output tokens; a token is
produced by precisely one transition. Transition is an abstract class; there
is one subclass for each Petri net transition. Places and transitions may be
associated with many environments, which can affect their behaviour.

3 The low level component structure

The low level component model captures the behaviour of an individual
cell through its life cycle, and the details of the division process where
one cell becomes two, and includes interactions with the environment.
We use object-oriented modelling notations to capture this structure
(see, for example, [9]).

3.1 Modelling cells: classes and objects

A cell, modelled as a Petri net token in the system layer, is modelled
as an object (instance of a Token class) with state and behaviour in
the component layer. Each place is modelled as a (singleton) instance
of its Place class (every place is different), as it too can have state and
behaviour. The behaviour of a transition is modelled by an instance
of the Transition class, which consumes token objects from the input
places, and produces token objects into the output places. We also allow
the model to have environment(s) (instances of the Environment class or
its subclasses), to provide inputs to the behaviours (for example, to the
guards on state changes, or to the mutation rate on cell division). The
relevant class model is shown in figure 5.

88 Droop et al.

/ - \ thb

a S s2
= | U
tf
@

init

- /

Fig. 6. An example state diagram. If the token in place p3 in the Petri net
layer is produced from transition ta, it starts in state s1; if produced externally,
it starts in state s3. The cell can exit to transition tb only from state s2; it can
exit to transition tf from any substate.

3.2 Modelling cell state: state diagrams

The behaviour of a token in a place is modelled using a state diagram;
each place has a different kind of token (cell), and so has its own state
diagram. This has one or more start states, labelled with a name (corre-
sponding to a Petri net layer transition name, or to some initialisation),
and one or more end states, also labelled with a transition name. For
example, see figure 6.

3.3 Modelling cell transitions: sequence diagrams

In the Petri net layer, the transition is where a cell divides into two new
cells, or differentiates into a new kind of cell. The low level modelling
allows details of these processes to be specified, such as what informa-
tion about the cell survives the transition, and what changes. We use a
transient transition object for this, which ‘consumes’ the input cell, and
‘produces’ the new output cell(s). In some sense, this transition object
can be thought of as ‘being’ a cell in its transition state of dividing or
differentiating.

So, in object-oriented modelling terms, a transition object (figure 5)
exists for the duration of the transition behaviour. It is initialised with
any necessary information from the input token object(s) and the en-
vironment, performs appropriate behaviours, and initialises the output
token object(s). The input tokens(s) terminate once the transition object
is initialised. The transition object terminates once the output token(s)
are initialised. The interactions can be modelled with a sequence dia-
gram; a typical example is shown in figure 7.

Modelling cell division and differentiation in the prostate 89

X X

time

Fig. 7. An example sequence diagram. The input tokens a_pl and a_p2 are
consumed by the transition object a_ta (which can therefore have information
about their state). The transition object produces tokens a_p3 and a_p4; it
can initialise them with processed information from the inputs, and from the
environment a_env. The transition object exists only for the duration of the
interaction. X indicates object termination.

3.4 Introducing the environment

Cell behaviour (maturation, differentiation, and division) is affected by
environmental factors as well as internal properties. It is important to
capture environmental effects in the overall model; that is the purpose
of the Environment class in figure 5.

The cell model has multiple levels of detail and abstraction, and the
environment can interact with all these. Environmental effects may be
global (for example, a global irradiation of tissue), or local (for example,
specific to a particular spatial region or type of cell). The environment
can affect rates (transition rates within a state model, transition rates
within the Petri net model) and behaviours (choice of transition within
a state model due to guard values). The environment can itself be af-
fected by the cells (for example, cells excreting chemical signals that are
transported by the environment to other cells).

As much, or as little, should be put into the environment as is needed
for the particular modelling purpose. This enables environmental effects
to be modelled explicitly and rigorously within the same framework as
the cell modelling, but cleanly separated from the individual cell models.

90 Droop et al.

4 Combining the layers

The high level Petri net model and the detailed object-oriented models
represent the layers of the system. These layers are combined by linking
the Petri net place and transition names to the component level class
names and state diagram labels. The token classes are named after the
Petri net place names, the place classes are named Place_X, where X is
the relevant token class name. The start and end points on the state
diagram are labelled with the relevant Petri net transition names. The
transition classes are named after the Petri net transition name.

This approach provides a simple and straightforward, but neverthe-
less explicit and rigorous, linking of the two layers of the model. The
cell state behaviour, cell differentiation and division, and environmental
effects are all modelled. These models make sense individually, at suit-
able levels of abstraction, and provide a modular approach to modelling
and to model validation. How the models are related is clearly defined
through this linkage process, and so there is a clear mapping from the
model to the code, further easing validation.

Systems biology aims to analyse biological phenomena as dynamic,
interacting systems rather than individual components [20, 24]. This
high-level approach allows us to address the complexity inherent to bio-
logical systems in a way that is impossible using conventional, reduction-
ist molecular biological approaches. A major limitation to the utility of
systems approaches to biology is that very many components across mul-
tiple scales need to be simultaneously modelled. Building single models
that capture multiple levels of biological complexity is extremely diffi-
cult. The modelling strategy proposed here provides an intuitive frame-
work for combining models at different biological scales (in this case a
tissue differentiation level and a cellular level) in such a way that each
level can be treated separately. This separation of levels allows for the
construction of manageable models, whilst providing the ability to build
multi-scale models.

5 A Domain Specific Language

Our use of different models and notations effectively amounts to a do-
main specific language (DSL) [10, 29] for modelling cell differentiation
and division. As with any DSL, we develop the DSL by extending and
adapting existing languages. There are three principle extensions and
adaptations.

For the detail of cell behaviours, the models are based on object-
oriented modelling notations. However, we apply an agent semantics,

Modelling cell division and differentiation in the prostate 91

rather than the object semantics defined in, for example, UML2.x [32].
The agent semantics means that an object is instantiated to an active
state and allocated its own execution thread. The object persists until it
is consumed, and its thread terminates. This alternative semantics allows
us to map cleanly from the low-level specification to an agent-based im-
plementation, aiding software engineering validation. Furthermore, this
semantics allows us to express concepts in a biologically meaningful way,
supporting biological validation.

For the system level, we use Petri nets. However, we modify the se-
mantics of transition firing. In standard Petri nets, a transition fires
when a token is in a place. In our usage, the firing of a transition is
determined by the state diagram of the relevant place: a token (rep-
resenting a cell) remains in a place until the conditions are achieved
for firing a transition. This may depend on the environment, or simply
on passage of time to maturity. Again, this semantic adaptation allows
a biologically-meaningful representation of cell behaviours. Note that
a common alternative approach is to introduce a timing distribution
to control transitions; even if based on biological observation, this is a
coarser solution, providing a less biologically-realistic determination of
transition rates.

The third key element of our DSL approach is to define the linking
between layers (§4). Like UML syntax, concepts in our models are named,
and the names are used to link the detailed and system level models, as
described above.

The DSL approach opens several novel directions for our research
(see also §8). Firstly, we can exploit the metamodelling approach to DSL
syntax and semantics, to produce tool support for our models. Secondly,
we can exploit the formal underpinnings of Petri nets, and the fact that
state diagrams and other OO modelling notations can be represented
as Petri nets [30, 45], to support formal analysis of the cell behaviours.
The potential of the DSL approach differentiates our simulation and
modelling from other multi-model solutions (for example, the work of
Harel et al discussed in §1.1), where model integration is done at the
implementation level, through a computational framework.

6 Domain model of prostate cell division

6.1 Biological domain

Cancer is a phenotype arising as the result of aberrant interactions be-
tween many individual cells. The study of cancer is therefore the study
of cell population dynamics. Prostate cancer is the most commonly diag-
nosed cancer in UK men, accounting for almost 25% of all male cancers in

92 Droop et al.

lumen
luminal
L compartment
0000 [CO0000E:
basement S\ compartment
membrane %@Q e
s ==
stromal cells

SC CcB TA

Fig. 8. The major cell types present in the prostate. The stromal cell com-
partment contains various structures, for example blood vessels, and is not
modelled in our work. SC: stem cells; TA: transit amplifying cells; CB: com-
mitted basal cells; L: luminal cells. The transit amplifying cells in our model
include both non-stem basal cells and transit amplifying cells. Figure adapted
from [26].

the UK [46]. The UK lifetime risk for getting prostate cancer is approxi-
mately 1 in 10 men [46]. Mutations in a wide range of genes (oncogenes)
are known to increase the risk of cancer [4]. Although the presence of
mutations in oncogenes confers an elevated risk of cancer, there is a high
level of variability in the timing and exact genotype of cancers. This
stochastic element makes the analysis of cancers at the expression level
very difficult. Stochasticity and genetic variability make cell population
modelling a very attractive tool for the study of cancer neogenesis.

Several cell populations are present in the prostate (figure 8). The
majority of prostatic tissue is composed of stromal cells which consist
of connective tissues and blood vessels. The tissue of interest with re-
spect to prostate cancer is the prostatic epithelium, which consists of
basal, secretory and neuroendocrine cells [6]. The secretory cell popula-
tion consists of terminally-differentiated columnar cells. The basal cell
compartment contains less-differentiated cells that are still in contact
with the basement membrane.

The presence of small numbers of self-renewing stem cells in most
tissues is now widely accepted. The stem cell population is able to replace
dead cells in the tissue by the processes of division and differentiation.
Stem cells are able to undergo two types of division: symmetric division
in which a single stem cell divides to yield two similar daughter stem

Modelling cell division and differentiation in the prostate 93

revia

Fig. 9. A Petri net model of stem cell (SC) division and differentiation. A stem
cell can divide (divsc); its daughters Dsc can each either remain a stem cell
(remgc), or differentiate (diffzgsc) to a Transit Amplifying cell TA. A stem cell
can also differentiate (diffsc) directly to a TA cell without division, or can
undergo apoptosis (apsc), and become dead (Deadsc). A TA cell can revert
(revra) to a stem cell.

cells; and asymmetric division in which a single stem cell divides to give
rise to a daughter stem cell and a daughter cell of a more differentiated
phenotype.

The role of stem cells in the formation and maintenance of tumours is
not well understood. Viable mutations in a stem cell will be passed on to
its large number of progeny by the normal processes of cell division and
differentiation. The cancer stem cell model [25] suggests that, if these
stem cell mutations confer a malignant phenotype, then these progeny
will form a cancerous population (a tumour). If this model is correct, then
the stem cell population is of utmost importance in cancer treatment;
the common therapy of removal of the bulk tumour mass will not impact
the long-term patient survival rate, whereas ablation of cancerous stem
cells would allow successful treatment.

Here we are studying a population of cells moving through a differ-
entiation topology (modelled by the high-level Petri net). The decision-
making processes and the underlying molecular biology are encapsulated
in the lower level models. The two-level modelling allows us to easily cre-
ate appropriate agent-based simulations of cell population dynamics.

94 Droop et al.

remo,

Fig. 10. A Petri net model of transit amplifying (TA) cell division and differ-
entiation. The pattern is similar to the SC diagram, except that a committed
basal cell (CB) cannot revert to a TA cell.

6.2 The division pathway model

Figure 9 shows our Petri net model of prostate stem cell division and
differentiation. A stem cell can divide; its daughters can each either
remain a stem cell, or differentiate to a Transit Amplifying cell TA. In
figure 9 the place TA is shown as a fusion place, indicating it occurs
in another Petri net in this model (here, in figure 10). A stem cell can
also differentiate directly to a TA cell without division, or can undergo
apoptosis, and become dead. A TA cell can revert to a stem cell.

Figure 10 shows our Petri net model of TA cell division and differenti-
ation. The pattern is similar to the SC diagram, except that a committed
basal cell (CB) cannot revert to a TA cell (there is no analogue of the
revr4 transition). Note that the dead place is not modelled as a fusion
place: each cell type has its own dead place. This is because a dead cell
is still present in the tissue, taking up space and potentially influencing
different locations of the environment in different ways (for a while at
least; a more sophisticated model could have a further transition to a
Decayed place).

Figure 11 shows our Petri net model of CB cell division and differ-
entiation. The logic of division and differentiation is identical to the TA
cell model in figure 10, but with different cell types and transition types.

Figure 12 shows our Petri net model of luminal cell division. A lu-
minal cell can divide into two luminal cells (although this happens at a
very low rate in normal tissue, it is included here because it occurs in
the cancerous case). Note we do not need the intermediate daughter cell
places in this model, as biologically there is no “remain or differentiate”

Modelling cell division and differentiation in the prostate 95

remeg

Fig.11. A Petri net model of committed basal (CB) cell division and differ-
entiation. The logic is identical to the TA cell model in figure 10.

Dead,

ap,
div,

Fig.12. A Petri net model of luminal (L) cell division. A luminal cell can
divide (divy) into two luminal cells, or can also undergo apoptosis (apr), and
and become dead (Deady,).

choice in this division process. A luminal cell can also undergo apoptosis,
and and become dead.

6.3 The cell state model

Figure 13 shows the class model of the place tokens, with a subclass
for each place type (the daughter cell subclasses and dead cell places are
omitted for clarity). This is an instantiation of figure 5, and as such could
mostly be automatically derived by a tool. We have chosen to bundle
together the similar D classes and the Dead classes into abstract classes,
and not show the individual subclasess, for brevity. The only addition
compared to figure 5 is the instance variable genome in the abstract Cell
class, and the instance variable next in the abstract D class.

The next instance variable indicates whether the daughter cell should
preferentially remain as its originator type, or differentiate into the next

96 Droop et al.

Cell

genome

il
| | | | | |

e TA CB L D Dead

next

Fig. 13. The class model of the cell tokens (the tokens in the various places).
Apart from the Cell and D instance variables, this can be automatically gen-
erated from the Petri net model. There is a parallel class model for the places
themselves.

type of cell. This captures the asymmetry of the cell division, and leaves
enough flexibility for the actual transition taken to be influenced by
environmental factors in addition to the value of this instance variable.

The genome instance variable encodes an individual cell’s transition
rates and mutation rates. The genome is the part of the state that is
preserved (possibly slightly modified) as a cell transitions between places.
Since the genome is modified at certain points (particularly on division
due to copying errors, but also more slowly at at other times), we can
model the fact that mutations change an individual cell’s transitions
rates, which potentially initiate cancerous behaviours. Thus our model
does not have a ‘flag’ that says whether the cell is cancerous or not
(cancer is a phenotypical property of a collection of cells, not a property
of a single cell), but is a model of a population of cells with varying
properties, which allows investigation of the situations that lead to the
emergence of a cancerous phenotype.

Figure 14 shows our state model of a stem cell SC. It has two sub-
states: quiescent and active. It is produced (via reversion, or from a
divided daughter cell) in the active state, and it exits to differentiate or
divide from the active state. It can apoptose from any state.

Figure 15 shows our state model of a TA cell. It has three sub-states:
juvenile (just produced), excreting (active)®, and mature (ready to divide
or differentiate). A TA cell is produced (via differentiation of a stem cell,
or from a divided daughter cell) in the juvenile state. It can revert to a
stem cell from this juvenile state; it can differentiate or divide from the
mature state. It can apoptose from any state.

We omit discussion here of the CB and Luminal L cell state models,
for brevity. The state models of the various daughter cells are essentially

! The term ezcreting is used here to refer to a metabolically active cell before
it commits to differentiation, division or death. Excreting cells in this model
can emit signals to the environment.

Modelling cell division and differentiation in the prostate 97

O aPsc

=

revrs
remge

divge
diffee

Fig. 14. A state model of a stem cell (a token in the SC place). It has two
sub-states: quiescent and active. It is produced in the active state, and it exits
to differentiate or divide from the active state. It can apoptose from any state.

? apqp
| TA |

diffsc di

. A] . [\
diffysc Juve@—{exLetmg} mature g ﬁ:i
remp,

O] revra

Fig. 15. A state model of a TA cell (a token in the TA place). It has three sub-
states: juvenile, excreting, and mature. A TA cell is produced in the juvenile
state. It can revert to a stem cell from this juvenile state; it can differentiate
or divide from the mature state. It can apoptose from any state.

. diff
div. D SC

sc sc remge
Fig.16. A state model of a daughter cell (a token in the Dsc place). The
model for the other daughter cell places has identical logic.

98 Droop et al.

Transition
1
SC
input T
1
consumer div
5 2 1 e
sC output producer

Fig.17. A class model of the divsc transition. This can be automatically
generated from the Petri net model.

trivial (figure 16), having no substates. The state models of the various
dead cells are even more trivial (no substates, one input, no outputs).

All the transitions in these state models have conditions and rates
associated with them, some affected by environmental conditions. We
omit discussion of these, again for brevity.

6.4 The cell transition model

There is a subclass of Transition for each transition in the Petri net (not
shown). The subclassing is an instantiation of figure 5, and automatically
generatable from the Petri net model. Figure 17 shows our class model
of a divge transition, an (automatically generatable) instantiation of
figure 5.

The operation of the specific transition object is to take the genome
of the parent stem cell, and ‘replicate’ it, subject to an environmentally
and genomically specified mutation. So, in pseudocode:

div_SC()

outputl.genome = mutate(input.genome, env)
output2.genome = mutate(input.genome, env)

This gives two potentially different resulting genomes, as the mutate ()
operation is stochastic.

6.5 The full combined model

All the separate models are combined automatically by matching cell
layer and Petri net layer names, as described in §4.

6.6 Model and simulator validation process

Validation is a continuous review process between the biological domain
experts, the modellers, and the simulation developers [33]. The valida-

Modelling cell division and differentiation in the prostate 99

tion process for the models presented in this paper comprised walk-
throughs of the diagrammatic models, with highlighting and discussion
of the appropriateness of assumptions and abstractions. Meeting notes
are recorded in the project wiki.

In the prostate cancer modelling, our domain expert is a group of
researchers from Maitland’s Yorkshire Cancer Research lab at the Uni-
versity of York. One of the development team is also a member of this
lab; his roles are: to identify biological issues as they arise; to provide
background and interpretation of the biology for the developers; and to
set up review meetings at which both developers and lab members are
represented. In producing the first prototype simulator, there were four
major review meetings, at which diagrammatic models were discussed
in detail, and changed to better represent the biological understanding
of the laboratory researchers. The developer team comprised an imple-
mentation expert, two modelling experts and the link-biologist, who has
experience of modelling and simulating biological systems. Many of the
advances in modelling the prostate cell behaviours occurred in regular
discussions among the team.

A validation argument for the models and simulator has been cap-
tured in a rigorous form after the modelling [36]. The information needed
for this argument was captured during the development process.

7 The platform model and prototype simulator

In moving from the domain model to the platform model, we focus on
the implementation detail of the simulator. This requires design decisions
about the implementation of the concepts in the domain model.

At the time of writing, we have completed a first prototype simu-
lator, using a platform model developed from the domain model in §6,
which was fully validated with YCR biologists before implementation
started. The prototype simulator is being calibrated, and we are testing
its scalability properties and performance.

7.1 The platform model derived from the domain model

To implement the prostate cell behaviours, we chose to use a process-
oriented programming language, since this provides a natural implemen-
tation for the state-transition structure of the high-level model in §6.
For prototyping, we use the JCSP (Java Communicating Sequential Pro-
cesses) class library for Java: this also gives us a seamless development
from the low-level OO models.

100 Droop et al.

ElpeadTACellPlace

ElTAcellPlace ;

EiDstemcellToTACelITrans

lo.*

0.+

ElpstemcellPlace T — EIDaughterstemCell‘ ETACeIITostemCeIITrans‘ EstemCelltoTACellTrans

0.4 0.

0.~

EistemcellPlace

[l stemcellToDStemGellTrans

=] IPlace

Fig. 18. Platform model of places, transitions, and cells.

JCSP? provides a natural way to capture the agent semantics. Any
class that implements the JCSP class CSProcess has instances that each
run in its own separate Java thread. The Petri net domain model places
and transitions map to platform model CSProcess classes, and the Petri
net arcs map to communication channels between the processes.

The use of JCSP requires the addition of structures to implement
process synchronisation: JCSP barriers to synchronise operations, so that
all parts of the simulation experience the same number of time-steps, at
the same time.

The prototype simulation is developed from the stem cell division
and differentiation domain model (figure 9), with the addition of transit
amplifying cell apoptosis (figure 10). The platform model is summarised

2 http://www.cs.kent.ac.uk/projects/of a/jcsp/

Modelling cell division and differentiation in the prostate 101

in a Java class diagram (figure 18). Each place and transition from the
domain model is a singleton Java class that implements the JCSP class
CSProcess. Because places and transitions have common characteristics,
inheritance hierarchies are used (not shown in figure 18).

The current prototype simulator includes stem cells (SCs), daughter
stem cells, TA cells, and dead stem and TA cells. Stem cells move between
the substates active and quiescent, and can apoptose, differentiate or
divide (figure 14). The TA cells have only limited behaviour: they are
either active or resting, and can only revert to a stem cell or apoptose.

Cell division and differentiation in the platform model is derived from
the Petri net structures, with the detailed actions of each behaviour de-
fined in the state diagrams of the domain model. The sequence diagrams
in the domain model (not illustrated) provide the interaction detail for
the implementation.

The cell state and operations are defined on the hierarchy of Cell
classes (implementing figure 13) Each cell type has appropriate methods
for changing its state, and an instance of the Genome class. The design
decision to extract the genome as a Java class supports the operations
needed to enact the state-diagram state changes (such as the move from
active to quiescent states of the stem cell, figure 14). The genome stores
and sets probabilities for different cell events, which gives the neces-
sary control over state change for biological experimentation with the
simulator; as in the cell biology, the genome representation allows differ-
entiation to change the ‘active genes’ in the genome.

The platform model also has a basic Environment class. This is used
to represent a global environment, the simulated prostate tissue. Cells
can poll the environment at any time, and the results affect the specific
behaviour of each cell. The interaction of the cells with the environment
will be used to simulate global mutation rates, and ultimately potential
treatments that could alter the mutation rate of the whole prostate tis-
sue. There is significant further development to be done, of which the
refinement of the environment, and of the behaviour and regulation of
the genome during the life of a cell are perhaps the most interesting and
potentially challenging.

7.2 The platform model implementation additions

The platform model needs extra implementation specific features not
derived from the domain model: buffers between places and transitions;
JCSP barriers to synchronise processes; a global clock to simulate time.

JCSP multi-threading provides better performance than a purely-
sequential implementation. Threads are used for places and transitions,
whilst individual cells (tokens in each location) are implemented as Java

102 Droop et al.

objects (not CSProcess objects, due to the limited number of threads
available), with relevant behaviours invoked each simulation timestep.
This means that the cells in a place or transition can all be processed
during each time-step. This design gives the potential to support many
thousands of cell objects per place, which is the biological requirement
for the eventual cancer simulations.

The Place and Transition JCSP CSProcess classes provide access to
both the read and write CSP channels (and barriers) as well as inter-
action with the GlobalClock and the Environment singleton classes. Spe-
cific places and transitions in the platform model extend the Places and
Transition classes: for example, TACellPlace extends Place implements the
domain model place TA in figure 9, and TACellToStemCellTrans extends
Transition implements revTA in figure 9.

In the implementation, cells are passed between places and transi-
tions via JSCP InfiniteBuffers, which are used to control synchronisation
of channels connecting places and transitions: this means that there is
one InfiniteBuffer for each arc in figure 9. InfiniteBuffers do not impose
read or write locks on the threads accessing them (unlike other JSCP
channels); this means that threads can write data into the buffer and
proceed without waiting for another process to read the data. In the
simulator, this is of particular importance when there are no cells ar-
riving at a particular location in a particular time-step: the place can
process any cells that are already there, rather than be suspended wait-
ing for cells that are not coming.

To keep track of the number of timesteps that the simulation has
completed, the GlobalClock is implemented as a JCSP CSProcess. The
clocking allows state readings to be regularly output during simulation,
and allows the setting of an end point for the simulation run. The Global-
Clock synchronises on the same barrier as all the places and transitions.

The barrier design and implementation is critical in ensuring that
all places and transitions experience the same sequence of timesteps and
remain synchronised. Before any place or transition can accept cells from
a buffer to which it is connected, all places and all transitions must be
synchronised on a read barrier. Once synchronised all cells are removed
from the buffers and are processed for that timestep. Once the cells are
processed all places and all transitions that output cells (that is, all lo-
cations except DeadPlaces) must synchronise on a write barrier. Once
synchronised, the locations move the relevant cells to the correct buffer,
and then synchronise on the read barrier. This ensures that all cells are
read before any are processed, and all cells are written correctly before
any are read. The additional development burden of correct barrier de-
sign can be verified by formal CSP analysis if required.

Modelling cell division and differentiation in the prostate 103

All the places and transitions are modelled as singleton classes so that
they can access each other as the program requires, supporting essential
feedback mechanisms in the simulation. For example, in the prototype
model, the probability of a TA cell reverting to a stem cell increases
if there are no stem cells in the stem cells place, and stem cells remain
quiescent longer as the number of TA cells rises; these rate changes act as
a surrogate for spatial crowding in the environment (see [36] for further
discussion).

7.3 Initial Results

The prototype simulator has been used to develop an approach to im-
plementation from multiple linked models. The simulator is subject to
testing, particularly of the logic of the design and performance. It has
not yet been used to run biologically-relevant experiments.

The implemented genome was designed to calibrate the prototype
simulator, to make it produce large numbers of TA cells and maintain
relatively small numbers of stem cells, with low death rates. This will
replicate the normal behaviour of the prostate in biological experimen-
tation.

The prototype simulator has completed testing with total cell num-
bers ranging between 100000 to 600000. Typical performance is illus-
trated by initialising a simulation run with 2 stem cells; the number of
cells quickly grows as stem cells divide and differentiate; the expansion
then slows as the TA population gets large, due to the surrogate crowding
effects; the result after 100000 time-steps is 851 stem cells, 598 616 TA
cells, 56 dead stem cells, and 28153 dead TA cells. (These numbers are
not being represented as biologically relevant, since the rates have not
been calibrated, but they do give an indication of the achievable scale.)
This simulation took 23 minutes on a 3.2GHz AMD Phenom II com-
puter. Whilst this is not particularly fast, it is a significant improvement
on the time taken to conduct the equivalent laboratory tests on prostate
cell behaviour (weeks or months of expensive wet-lab procedures).

Simulation performance is likely to decrease as simulation complexity
increases but it should be possible to simulate populations of cells well
into the millions within realistic timeframes. Further work on the im-
plementation architecture to capture more of the natural parallel struc-
ture of the model (for example, by increasing the implementation paral-
lelism within individual places and transitions) would support distribu-
tion across clusters or cloud platforms. The full process-oriented design,
with each individual cell implemented as a process, would be transferable
to high-performance parallel languages such as occam-7 [50] not limited
by the number of available threads.

104 Droop et al.
8 Further work

8.1 Further work on the prostate model

The prostate is a complex organ composed of many cell types. The model
we outline in this work is an excellent foundation for an iterative systems
biology programme to analyse prostate cancer neogenesis.

Parameterisation & Initial Conditions. As with any model, we
have a large number of possible variables that need to be parameterised.
Transition rates in the Petri net layer need to be defined as accurately as
possible. Similarly, the initial conditions for the model need to be sensibly
defined. These parameter values come from a variety of sources: litera-
ture searches; close collaboration with domain experts when choosing
suitable in silico proxies; focussed wet-lab experimentation to generate
the required data.

Cell Genome. Currently, each cell type has a minimal genome. As
the model is refined, suitable variables can be placed upon the genome,
allowing for mutable cell phenotypes. It is tempting to add as much com-
plexity to the model as possible, thus initially adding all the genes that
we can think of to the cell’s genome; however, we should attempt to keep
the model as simple as possible whilst retaining the ability to address
real biological hypotheses. The addition of genes to the cell genome and
the parameterisation of their rates is a major challenge for the next stage
of this project.

New Cell types. Castration-resistant prostate cancer frequently shows
a neuroendocrine like phenotype [47]. Currently, our model does not
include stromal or neuroendocrine cells, with the interactions between
these cell types and the modelled cells being abstracted to ‘global’ sig-
nals. If necessary, the inclusion of stromal and neuroendocrine cells would
be possible, but this extra complexity would have to be justified by added
ability of the model to address specific biological hypotheses.

8.2 Tool development

In this paper, the way the models in the two layers are combined is
described informally. The approach could readily be made rigorous us-
ing model-weaving techniques from model driven engineering [2, 3, 21],
allowing tool support (see also §5).

Modelling cell division and differentiation in the prostate 105

The (draft) Petri net ISO standard [17, 18] defines the notation in
terms of a UML class diagram, or metamodel. This would make it possi-
ble to integrate, at a deeper semantic (or at least abstract syntax) level,
the Petri net notation and UML state diagrams (as well as other UML
modelling notations). Two motivations for a language integration would
be semantic consistency, and integrated tool development. Support tools
would obviously help the use of combinations of models. Semantic consis-
tency is theoretically desirable; however, even if we unify the semantics
of two diagram notations, there is no way of guaranteeing that the user
intends their diagram to follow the semantics defined by the language
developer.

8.3 Extensions to this modelling approach

There are several extensions to this Petri net plus object modelling ap-
proach that are needed to make this more generally applicable to bio-
logical modelling. We outline a few here.

Petri nets can also be used to model biological processes of inhibition
and catalysis, by suitably interpreting the relevant arcs. Inhibitory arcs
need no change to the model described: they have the Petri net semantics
of not permitting a transition to fire if there is a token in the relevant
place. Catalytic arcs® need one change to the sequence diagram: the cat-
alytic token object is not terminated (not consumed) by the transition.
For example, see figure 19.

Larger models will need more structuring capabilities. We have used
fusion places (figure 2) to split our Petri net into digestible chunks. Fusion
transitions could be used to capture an entire sub-net, for example, to
capture the identical logic of the various cell division stages. This requires
further work to determine naming conventions to allow the individual
models to be combined into a well-defined whole.

8.4 Incorporating other approaches

There is nothing specific to Petri nets and object models in our general
approach; they are simply one way of capturing some high level global
structure, and lower level component behaviours. This choice is a natural
fit to a cell division model, but other biological processes may be better
fit by other modelling techniques.

3 Catalysis is sometimes denoted by a double-headed solid arc in the Petri net,
rather than the dashed arc of figure 19a. In our approach, this would imply
that the token is consumed, and a new different token produced to replace it.
The double-headed arc fits more readily into the ‘token flow’ interpretation
(see §2.1), rather than the ‘production and consumption’ interpretation.

106 Droop et al.

Fig. 19. An example catalytic arc. This is a small variant of figure 1, with the
arc from pl to ta here a catalytic arc (left). The only change to the overall
model is in the sequence diagram (right), where the token pl is not consumed
by the transition.

For example, L-Systems [37] have been designed to model plant-like
growth process. Preliminary work suggests that they can be used in a
hybrid model in an analogous way.

At the highest level, an L-System component (called a module) is just
a symbol; and productions (rewrite rules) define how symbols ‘grow’ (are
rewritten into sequences of symbols).

Descending levels one can add detail. Symbols can have parameters
whose values are determined by the productions. As one adds more
detail, full blown object/simulation models can be added to give the
symbols and rewrites richer behaviours. This is the approach that the
L-Studio tool [23] implements (by calling out to C functions).

We can use our approach to make this interaction of rewrite rules
and object models fully rigorous: a high level L-System growth model
can be combined with a lower level object-based module model. The
correspondence between the Petri net approach and the L-System ap-
proach is shown in figure 20 (and hints at the possibility of a unifying
metamodel). We can use the same approach to develop an object model
that describes complicated behaviour in components and in component
transitions. The ‘glue’ between the L-System and object model layers
would need to be a little different from our Petri net/object model glue
described above, however, as it would need to incorporate communica-
tion between the low level objects (between symbol instances), eg to
implement hormone transport, during the non-growth part of the itera-
tion.

Modelling cell division and differentiation in the prostate 107

concept ‘ Petri net L-System
type of component place symbol
change of component |transition production
instance of component| token instance of symbol
current state marking current generation

Fig. 20. Relationship between high level Petri net models and L-System mod-
els

9 Summary and Conclusions

We have presented a rigorous hybrid modelling approach combining the
strengths of Petri nets and object-oriented models. These models make
sense individually, at suitable levels of abstraction, and provide a system-
atic modular approach to modelling and to model validation, allowing
us to use diverse modelling techniques in developing multi-scale models
with no loss of rigour or validity. This hybrid modelling approach is not
specific to Petri nets and object modelling; we outline a similar approach
to combining L-Systems models with other modelling approaches, and
discuss how the hybrid approach effectively amounts to the use of a
domain specific language.

We have developed our hybrid modelling approach in order to model
cell division and differentiation in the prostate. In building the prostate
cell model, we have followed the CoSMoS process, with close coopera-
tion between the biological domain experts and the modellers and sim-
ulation developers, to ensure that the model makes both biological and
computational sense. In a companion paper [36] we have argued the va-
lidity of our model. We have developed a prototype simulation of the
prostate cell model, and demonstrated that it is capable of simulating
biologically-relevant numbers of cells.

In future work we will develop the hybrid modelling approach as a
generic technique for building multi-scale models, along with tool sup-
port. We will also develop the prostate cell model and simulation further,
and use it to investigate the onset of cancerous phenotypes.

Acknowledgements

This work is supported by Program Grant support (to N. J. Mait-
land) from Yorkshire Cancer Research, by TRANSIT (EPSRC grant
EP/F032749/1) through the York Centre for Complex Systems Analy-
sis, and by CoSMoS (EPSRC grant EP/E053505/1).

108

Droop et al.

We thank the members of the Cancer Research Unit in York for their

invaluable input to the project. Thanks to the anonymous referees for
helpful suggestions to improve the paper.

References

(1]

(6]

[7]

[10]
[11]

[12]

[13]

Paul S. Andrews, Fiona A. C. Polack, Adam T. Sampson, Susan Stepney,
and Jon Timmis. The CoSMoS process, version 0.1: A process for the
modelling and simulation of complex systems. Technical Report YCS-
2010-453, Department of Computer Science, University of York, March
2010.

Jean Bézivin, Nicolas Farcet, Jean-Marc Jézéquel, Benot Langlois, and
Damien Pollet. Reflective model driven engineering. In UML 2003 —
The Unified Modeling Language, volume 2863 of LNCS, pages 175-189.
Springer, 2003.

Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez.
Modeling in the large and modeling in the small. In Model Driven Ar-
chitecture, volume 3599 of LNCS, pages 901-901. Springer, 2005.

L. C. Cantley, K. R. Auger, C. Carpenter, B. Duckworth, A. Graziani,
R. Kapeller, and S. Soltoff. Oncogenes and signal transduction. Cell,
64:281-302, 1991.

Claudine Chaouiya. Petri net modelling of biological networks. Briefings
in Bioinformatics, 8(4):210-219, 2007.

A. T. Collins and N. J. Maitland. Prostate cancer stem cells. European
Journal of Cancer, 42:1213—-1218, 2006.

Sol Efroni, David Harel, and Irun R. Cohen. Reactive animation: Realistic
modeling of complex dynamic systems. Computer, 38:38-47, 2005.

Sol Efroni, David Harel, and Irun R. Cohen. A theory for complex sys-
tems: reactive animation. In Ray Paton and Laura A. McNamara, editors,
Multidisciplinary Approaches to Theory in Medicine, volume 3 of Studies
in Multidisciplinarity, pages 309 — 324. Elsevier, 2005.

Martin Fowler. UML Distilled: brief guide to the standard object modeling
language. Addison-Wesley, 3rd edition, 2004.

Martin Fowler. Domain Specific Languages. Addison-Wesley, 2010.
Philip Garnett, Susan Stepney, Francesca Day, and Ottoline Leyser. Us-
ing the CoSMoS process to enhance an executable model of auxin trans-
port canalisation. In Stepney et al. [44], pages 9-32.

Philip Garnett, Susan Stepney, and Ottoline Leyser. Towards an exe-
cutable model of auxin transport canalisation. In Susan Stepney, Fiona
Polack, and Peter Welch, editors, Proceedings of the 2008 Workshop on
Complex Systems Modelling and Simulation, pages 63-91. Luniver Press,
2008.

P. P. Glory, N. G. David, and J. D. Emerald. Petri net models and
non linear genetic diseases. In Bio-Inspired Computing: Theories and
Applications (BIC-TA), 2010, pages 1466-1470. IEEE, 2010.

Modelling cell division and differentiation in the prostate 109

[14]

[15]

[16]

[17]

18]

[19]
[20]

21]

22]

23]
[24]
[25]
[26]

[27]

28]

[29]

[30]

David Harel. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 8:231-274, 1987.

David Harel, Sol Efroni, and Irun R. Cohen. Reactive animation. In
Formal Methods for Components and Objects 2002, volume 2852 of LNCS,
pages 136-153. Springer, 2002.

David Harel and Yaki Setty. Generic reactive animation: Realistic mod-
eling of complex natural systems. In Formal Methods in Systems Biology,
volume 5054 of LNBI, pages 1-16. Springer, 2008.

High-level Petri Nets - Concepts, Definitions and Graphical Notation.
International Standard ISO/IEC 15909, 2000. Final Committee Draft:
www.petrinets.info/docs/pnstd-4.7.4.pdf.

Software and Systems Engineering High-level Petri Nets Part 2: Trans-
fer Format. International Standard ISO/IEC 15909, 2005. WD 15909-
2:2005(E): www.petrinets.info/docs/ISO-IEC15909-2.WD.V0.9.0.pdf.
Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets. Springer,
2009.

H. Kitano. Systems biology: a brief overview. Science, 295(5560):1662—
1664, 2002.

Dimitrios Kolovos, Richard Paige, and Fiona Polack. Merging models
with the Epsilon Merging Language (EML). In Model Driven Engineering
Languages and Systems, volume 4199 of LNCS, pages 215—-229. Springer,
2006.

Hillel Kugler, Antti Larjo, and David Harel. Biocharts: a visual formalism
for complex biological systems. Journal of The Royal Society Interface,
7(48):1015-1024, 2010.

L-Studio. Plant modeling with CPFG virtual laboratory. algorithmicb-
otany.org/lstudio/flyer.pdf.

Y. Lazebnik. Can a biologist fix a radio? — or, what I learned while
studying apoptosis. Cancer Cell, 2:179-182, 2002.

N. J. Maitland and A. T. Collins. A tumour stem cell hypothesis for the
origins of prostate cancer. BJU International, 96(9):1219-1223, 2005.
N. J. Maitland and A. T. Collins. Prostate cancer stem cells: a new target
for therapy. Journal of Clinical Oncology, 26(17):2862-2870, 2008.
Wayne Materi and David S Wishart. Computational systems biology
in cancer: Modeling methods and applications. Gene Regulation and
Systems Biology, 1:91-110, 2007.

Hiroshi Matsuno, Masao Nagasaki, and Satoru Miyano. Hybrid Petri net
based modeling for biological pathway simulation. Natural Computing,
pages 1-22, 2009. doi:10.1007/s11047-009-9164-6.

M. Mernik, J. Heering, and A.M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316-344,
2005.

H. Motameni, A. Movaghar, M. Siasifar, M. Zandakbari, and H. Montaz-
eri. Mapping state diagram to Petri net : An approach to use Markov
theory for analyzing non-functional parameters. In Advances and Inno-
vations in Systems, Computing Sciences and Software Engineering, pages
185-190. Springer, 2007.

110

31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Droop et al.

M Nagasaki, A Doi, H Matsuno, and S Miyano. Petri net based descrip-
tion and modeling of biological pathways. In Algebraic Biology 2005,
pages 19-31. Universal Academy Press, 2005.

OMG. Unified Modeling Language (UML). www.omg.org/spec/UML/.
Fiona A. C. Polack. Arguing validation of simulations in science. In
Stepney et al. [44], pages 51-74.

Fiona A. C. Polack, Paul S. Andrews, Teodor Ghetiu, Mark Read, Susan
Stepney, Jon Timmis, and Adam T. Sampson. Reflections on the simu-
lation of complex systems for science. In ICECCS 2010, pages 276-285.
IEEE Press, 2010.

Fiona A. C. Polack, Paul S. Andrews, and Adam T. Sampson. The
engineering of concurrent simulations of complex systems. In CEC 2009,
pages 217-224. IEEE Press, 2009.

Fiona A. C. Polack, Alastair Droop, Philip Garnett, Teodor Ghetiu, and
Susan Stepney. Simulation validation: exploring the suitability of a simu-
lation of cell division and differentiation in the prostate. In Susan Stepney,
Peter Welch, Paul S. Andrews, and Carl G. Ritson, editors, Proceedings
of the 2011 Workshop on Complex Systems Modelling and Simulation,
Paris, France, August 2011. Luniver Press, 2011.

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic
Beauty of Plants. Springer, 1990.

Mark Read, Paul S. Andrews, Jon Timmis, and Vipin Kumar. A domain
model of experimental autoimmune encephalomyelitis. In Susan Stepney,
Peter H. Welch, Paul S. Andrews, and Jon Timmis, editors, Proceedings
of the 2009 Workshop on Complex Systems Modelling and Simulation,
York, UK, August 2009, pages 9—44. Luniver Press, 2009.

Mark Read, Paul S. Andrews, Jon Timmis, and Vipin Kumar. Using UML
to model EAE and its regulatory network. In 8th International Confer-
ence on Artificial Immune Systems (ICARIS), volume 5666 of LNCS,
pages 4—6. Springer, 2009.

Magali Roux-Rouquié, Nicolas Caritey, Laurent Gaubert, and Camile
Rosenthal-Sabroux. Using the Unified Modelling Language (UML)
to guide the systemic description of biological processes and systems.
BioSystems, 75:3—14, 2005.

Derek Ruths, Melissa Muller, Jen-Te Tseng, Luay Nakhleh, and
Prahlad T. Ram. The signaling Petri net-based simulator: A non-
parametric strategy for characterizing the dynamics of cell-specific sig-
naling networks. PLoS Comput Biol, 4(2):e1000005, 2008.

Yaki Setty, Irun R. Cohen, Avi E. Mayo, and David Harel. On using
divide and conquer in modeling natural systems. In Anne Condon et al.,
editors, Algorithmic Bioprocesses, pages 661-674. Springer, 2009.
Yong-Jun Shin and Mehrdad Nourani. Statecharts for gene network mod-
eling. PLoS ONE, 5(2):¢9376, 2010.

Susan Stepney, Peter Welch, Paul S. Andrews, and Adam T. Sampson,
editors. Proceedings of the 2010 Workshop on Complex Systems Modelling
and Simulation, Odense, Denmark, August 2010. Luniver Press, 2010.

Modelling cell division and differentiation in the prostate 111

[45]

[46]

[47]

(48]

[49]

[50]

Ivana Trickovié. Formalizing activity diagram of UML by Petri nets. Novi
Sad J. Math., 30(3):161-171, 2000.

Cancer Research UK. Prostate cancer — UK incidence statis-
tics. info.cancerresearchuk.org/cancerstats/types/prostate/incidence/.
accessed 18/01/2011.

N. Vashchenko and P. A. Abrahamsson. Neuroendocrine differentiation
in prostate cancer: implications for new treatment modalities. European
Urology, 47:147-155, 2005.

Ken Webb and Tony White. Combining analysis and synthesis in a model
of a biological cell. In Proceedings of the 2004 ACM symposium on Applied
computing, SAC 04, pages 185-190. ACM, 2004.

Ken Webb and Tony White. UML as a cell and biochemistry modeling
language. BioSystems, 80:283-302, 2005.

Peter H. Welch and Frederick R. M. Barnes. Communicating mobile
processes: introducing occam-pi. In 25 Years of CSP, pages 175-210.
Springer, 2005.

112 Droop et al.

Simulation validation:
exploring the suitability of a
simulation of cell division and
differentiation in the prostate

Fiona A. C. Polack, Alastair Droop, Philip Garnett,
Teodor Ghetiu, and Susan Stepney

YCCSA, University of York, UK, YO10 5DD
Fiona.Polack@cs.york.ac.uk

Abstract. Individual or agent-based simulation is an impor-
tant tool for research involving understanding of complex sys-
tems. For a research tool to be useful, its use must be under-
stood, and it must be possible to interpret the results of using
the tool in the context of the research. This paper presents the
partial validity argument for ongoing work on prostate cell simu-
lation (a companion paper describes the models and implemen-
tation of the simulation). This is the basis for a discussion of
issues in the validation of complex systems simulations used as
scientific research tools.

Keywords: Complex systems, agent based simulation, validity,
argumentation, prostate

1 Introduction

The use of individual-based or agent-based simulation as a scientific re-
search tool requires both good software engineering and robust mod-
elling. For a research tool to be useful, its use must be understood: it
must be possible to interpret results from the tool in the context of the
research (see, for example, [12, 18, 22]).

This paper presents the partial validity argument for ongoing work
on prostate cell simulation, and uses this example as the basis for dis-
cussion of issues in the validation of complex systems simulations used
as scientific research tool. The paper complements Droop et al’s descrip-
tion of the modelling and implementation of a simulation of prostate cell
division and differentiation [7].

This section briefly summarises the background to the prostate cell
simulator, its modelling and validation. Section 2 introduces a partial

114 Polack et al.

validity argument for the cell division and differentiation model. In the
discussion (Section 3), we consider issues identified in the development,
and subsequent review, of the validity argument. Section 4 presents some
of the further work that is needed on the prostate cell simulator and to
support use of complex systems simulation as a scientific instrument.

1.1 Modelling prostate cell division and differentiation

The companion paper [7] establishes the biological basis for the simula-
tion of prostate cell division and differentiation, which is the first phase
in development of a simulator that will support the study of cancer neo-
genesis. The first-phase simulator will replicate observed cell population
dynamics in a “normal” prostate: calibration is against laboratory data
on prostate cell numbers and proportions. The full project will explore
cancer as an emergent result of rare-event mutations and cell division
and differentiation; thus the first phase has to develop a simulator that
allows later addition of mutability and heritability.

1.2 Development of the prostate cell simulator

The prostate cell model simulator [7] is developed following the CoSMoS
process, a principled approach to modelling and simulation [3, 16]. In
CoSMoS, a simulator is a platform on which simulations are run: the
simulator is built to support a specific area of research, or purpose. The
CoSMoS process starts by identification of a domain of interest and of
the domain expert(s) who are the primary source of domain information
and understanding. A problem faced by many simulation developers is
that there is disagreement among experts as to the behaviours, or even
structures, of a particular subject; working in isolation, a developer has to
try to extract a coherent view of the domain. A fundamental aspect of the
CoSMoS process is that development takes place in collaboration with
an explicit, specific group of domain experts. The simulator is designed
to express the domain experts’ understanding.

Having established the domain experts, the domain model is pro-
duced, in close collaboration between developers and domain experts.
Early and continuous involvement of domain experts helps to define the
purpose, scope and scale of the simulation exercise, the research context.
From the domain model, developers derive a platform model, a conven-
tional software (or hardware) design. The research context is elaborated
with modelling and design decisions, simplifications and assumptions.
A simulator is built from the platform model, and is subject to both
testing (to establish the quality of the implementation) and calibration

Exploring the suitability of a prostate simulation 115

(to establish the accuracy of parameters, behaviours etc. using simula-
tion runs initialised to known biological parameters). Throughout the
development of the simulator, the research context can be supplemented
with a record of sources, assumptions, design decisions, interpretations,
etc [3, 16]. The CoSMoS process does not end with implementation.
Simulations are run on the simulator, to test or develop hypotheses of
relevance to the domain. It is necessary to interpret data from a sim-
ulation, or observations made in watching a visual simulation, into the
domain of research: a simulator is not an exact replica of reality, and
data collected from a simulation is about the agents in the simulation,
not about concepts in reality. The research context is used to understand
the mappings between real and simulated concepts, and the limitations
of the simulation.

The domain for the project described here is the prostate cell division
and differentiation model summarised in [7]. The domain expert for this
simulation exercise is a group of researchers from Maitland’s Yorkshire
Cancer Research lab at the University of York!. The development team
(modellers and coders) comprises the authors of [7]. Droop is a developer
and a domain expert; his roles are: to identify biological issues as they
arise; to provide background and interpretation of the biology for the
developers; and to set up review meetings at which both developers and
lab members are represented.

Of the following three specific goals for the research, this paper relates
only to the simulation for the first goal; the later goals motivate the
purpose of the first simulation.

1. Develop a simulation of the Maitland Lab’s cell differentiation and
division model, based on prostate cell populations from laboratory
research. The purpose of the model is to replicate observed cell pop-
ulation dynamics, represented as changing proportions of cells in a
“normal” prostate.

2. Building on the model of the “normal” prostate, work with the Mait-
land Lab to develop simulations that capture known environmental
variation and mutation. The purpose of the model is to explore the
emergence of cell proportions indicative of cancer (or other prostate
conditions).

3. Using these models of normal and cancerous prostate cell behaviours,
develop simulation experiments that can be used to guide and test
laboratory hypotheses of cancer development and control.

Understanding the purpose of the simulation and the uses to be made
of it focuses the scope, scale and level of the simulation. To create the

! www.york.ac.uk/biology /units/cru/

116 Polack et al.

model of cell differentiation and division, the developers need to under-
stand the cell biology at an appropriate level, and to be able to engineer
environmental interaction. To meet the research purpose, it must be
possible to monitor the proportions of different cells in the simulated
prostate.

The domain model used in developing the first-phase prototype com-
prises two levels. The high-level model of cell division and differentiation
uses a Petri net (with novel firing semantics). We model the cell-level
behaviours with (a) a state diagram for the behaviours of cells in each
place and transition in the Petri net; (b) a class diagram (with agent,
rather than object semantics) for structure; (c) sequence charts to show
how cells are consumed and produced by transitions. The domain model
was developed iteratively, guided by the domain experts. From the do-
main model, a platform model was developed: the structure and design
decisions are summarised in [7], which also describes the first prototype
agent-based simulator, implemented in JCSP. Unusually for a simulation
of a complex biological system, there is a clean mapping from concepts
in the domain through to implementation.

In producing the first prototype simulator, there were four major re-
view meetings, at which biological understanding and detail of diagram-
matic models were discussed and revised, until all were confident that
the domain models adequately represent the biological understanding of
the laboratory researchers. The records of the meetings provide much
of the evidence needed to establish the biological validity (or fitness for
purpose) of the simulator.

1.3 Validity Argumentation

This section reviews our existing work on validity arguments, and in-
troduces a notation for summarising arguments.As part of CoSMoS, we
have been investigating validation of simulations (e.g. [8, 9, 15, 16]).
Building on traditional simulation development (e.g. [20]) and work in
critical systems engineering (e.g. [1, 13]), we propose a case for the va-
lidity, or fitness-for-purpose, of a simulation as a structured argument
over evidence.

Validation of a complex system simulation can never be absolute; it
can, at best, express the basis on which we believe that the simulation is
fit for its intended purpose. A key observation is that the validity argu-
ment may be incomplete without losing its value. Unless a simulation is
used as primary evidence in research and research publications, a thor-
ough and properly documented validation exercise may be unnecessary.
Polack [15] notes the importance of the validation exercise itself, and the
mindset that goes with the focus on capturing validity arguments and

Exploring the suitability of a prostate simulation 117

Claim or Goal Context Strategy Evidence or Solution

C_ «

Justification ~ Undeveloped claim Claim developed elsewhere

Fig. 1. Basic GSN notations [13, 23]. In safety case arguments, undeveloped
goals are always subsequently expanded to solutions. This is not the case in va-
lidity arguments, where claims may be left undeveloped; in validity arguments,
end point is a reference to evidence to substantiate the claim.

evidence, in generating a strong collaboration and in raising the profile
of simulation as a tool in scientific research.

When constructing and presenting an argument, it is useful to provide
a diagrammatic summary. This exposes the structure of the argument
so that it can be understood and reviewed. There are many possible
notations for expressing the structure of an argument: we use the Goal
Structuring Notation (GSN) [13, 23], a notation devised to support safety
case arguments. A GSN diagram shows a hierarchy from the top-level
claim, through sub-claims that support that claim, and eventually to
the evidence supporting the claims. The core notation is summarised in
Figure 1.

The GSN diagram is only a summary of an argument; it is intended
to provide an overview or index to supporting material. Notations such
as GSN also support expression of generic arguments and argument pat-
terns [8, 21]. Here we use some patterns for simulation validity argument
that we have identified elsewhere [8, 9, 15]. As in Weaver’s safety case
argument patterns [21], however, we find that the use of patterns can
reduce the insight gained during argument construction. Pattern use is
most appropriate for high-level structuring and for systematic claims
such as those relating to the statistical analysis of results.

Validity arguments vs safety case arguments. In safety case argu-
mentation, it is the argumentation culture and the safety-case literature
that make safety case argumentation a powerful tool. In using argumen-
tation in the validation of simulations for research purposes, we similarly
aim to influence the culture of development and research. However, there

118 Polack et al.

are some differences between safety case argumentation and our validity
argumentation.

In safety critical systems engineering, a GSN argument is used to
present a safety case [13]. The safety case must be a complete argument,
in which evidence is provided in support of all the claims. Recent work
has focused on completeness and clarity of safety arguments, and the
need for side-arguments to cover the motivation and justification of the
safety case (e.g. [11]). A validity argument is likely to present a much
less rigorous case. We do not commit to producing complete arguments,
being concerned primarily with capturing the rationale for a shared belief
in fitness for purpose.

Safety case arguments are constructed to be reviewed by independent
authorities, which determine what evidence is and is not acceptable. By
contrast, a validity argument does not usually have a regulator to judge
the acceptability of evidence, and is not automatically exposed to wider
review (though wider exposure is important if the subject of validation
is a high-impact or critical research simulation); the argument instead
captures the mutual understanding of domain experts and developers.
Typically, a validity argument must satisfy both parties, and accept-
able claims, strategies and evidence are those that demonstrate to the
participants that the simulation is fit for purpose.

2 The Prostate Model Validity Argument

The validity argument in this section was constructed during the de-
velopment of the simulator: the cell division and differentiation domain
model was complete, the platform model was well advanced, and an ini-
tial prototype simulation was under development. It is thus necessarily
incomplete (e.g. we had no results).

The argument is based on a top-level claim that the simulation is fit
for purpose, Figure 2. Context 1 points to where the intended purpose is
explained. There are many ways to demonstrate the fitness-for-purpose
of a simulation: Strategy 1, based on a pattern we have used elsewhere
[15], addresses separately the biological basis, the software engineering
and the results.

This section focuses on expansion of two of the three sub-claims:
Claim 1.1, concerning the adequacy of the modelling of the prostate cell
behaviour, and Claim 1.2, concerning software engineering quality. Issues
relating to Claim 1.3, consistency of simulation results and laboratory
results, are discussed in [8], where a similar argument over results is
presented, and [15] which presents a generic argument over the results
of a simulation.

Exploring the suitability of a prostate simulation 119

CLAIM 1
Simulation of prostate
cancer cell behaviour

is suitable for i ded CONTEXT 1
Is suitable for intende Intended research and purpose
research of simulator defined in [7] and

summarised here in S1.2.

STRATEGY 1
Argued over
(a) biological basis
(b) software engineering
(c) results

CLAIM 1.3
Simulation results are
consistent with results
of lab experiments

CLAIM 1.1
Biology of prostate

cell behaviour is CLAIM 1.2
adequately modelled Software engineering of
simulator is of sufficient
A quality to trust the

simulation results
A

Fig. 2. A top-level argument for the adequacy of the simulation.

2.1 Claim 1.1: adequate modelling of biology

The development of Claim 1.1, that the biology of prostate cell behaviour
is adequately modelled, is shown in Figure 3. The context points to a
definition of adequate modelling. Ultimately, the evidence of adequacy
here is that the domain experts and developers have jointly reviewed all
aspects of the domain model. The argument can systematically identify
what needs to be reviewed and agreed: this leads here to two strategies.
Note that, whereas in safety case argument, multiple strategies present
complementary approaches, here Strategies 1.1.1 and 1.1.2 represent dif-
ferent parts of the argument.

Figure 3 shows claims arising from Strategy 1.1.1, arguing that iden-
tified cell types and transitions are modelled adequately. Context 1.1.1
again points to Droop et al [7] as the definitive description of the cell
types and transitions in the domain model, including artificial daughter
cells, added to the domain model during discussion with domain experts
of how to model different effects and influences on division and differenti-
ation. We do not show the expanded claims here: Claim 1.1.1.1 (that the
identified cell types provide a sufficient basis for the simulated system)
and claim 1.1.1.2 (that the cell transitions are adequately modelled) are
substantiated by systematically addressing each cell type/transition in

120 Polack et al.

CLAIM 1.1

Biology of prostate

cell behaviour is CONTEXT 1.1

adequately modelled Adequate modelling means:
biologically acceptable behaviour that

will support mutability and heritabilty

STRATEGY 1.1.1 STRATEGY 1.1.2
Argue that identified Argue that scope and scale
cell types and transitions are adequate to express
are modelled adequately normal prostate cell behaviour

A

CONTEXT 1.1.1
Cell types and transitions
are defined in [7]

CLAIM 1.1.1.2 CLAIM1.1.1.3
CLAM11.1.1 Cell transitions are Modelling of environment
The identified cells types adequately modelled is a sufficient expression
provide a sufficient of external influences
basis for the simulated on prostate cells
system <>

Fig. 3. Expanding Claim 1.1 (Figure 2) to consider adequate modelling of
prostate cell behaviours (as described in [7]).

turn and recording the evidence for its adequacy, for instance by reference
to the minutes of meetings where each was reviewed by the developers
and domain experts.

Claim 1.1.1.3, that the modelling of the environment is a sufficient ex-
pression of external influences on prostate cells, is more interesting: there
is a potentially unlimited interaction between the environment and the
prostate cells, encompassing direct interaction (with chemicals, temper-
ature, radiation etc) and indirect representation of, for instance, spatial
effects such as proximity and crowding. Here, the discussion between de-
velopers and domain experts can be directed by focusing on potential
constraints and triggers on transitions: critical systems engineering offers
a range of deviational techniques for challenging models that could be
used to reveal any hidden assumptions of transitions.

Figure 4 shows the development of Strategy 1.1.2, that the scope and
scale are adequate to express normal prostate cell behaviour. Since the
development of the prototype is not complete, Claim 1.1.2.1, that the
numbers of cells in the simulation are sufficient for biologically realistic
behaviour to emerge, cannot yet be elaborated: a strategy could propose
suitable laboratory experiments and hypotheses for dual exploration us-
ing the completed simulator. Claim 1.1.2.2 demonstrates how a claim

Exploring the suitability of a prostate simulation 121

CLAIM 1.1

Biology of prostate
cell behaviour is
adequately modelled

STRATEGY 1.1.1 STRATEGY 1.1.2
Argue that identified Argue that scope and scale
cell types and transitions are adequate to express
are modelled adequately normal prostate cell behaviour
A V/\/K/l

CLAIM 1.1.2.1 CLAIM 1.1.2.2
Numbers of cells are Modelling prostate as a
sufficient for biologically || closed system of cells
realistic behaviour is biologically realistic
to emerge

EVIDENCE

Agreed with
Domain experts

Fig. 4. Expanding Claim 1.1 (Figure 2) to consider adequate scope and scale
of prostate cell models.

can be concluded with evidence: the evidence states that the claim, that
modelling the prostate as a closed system of cells is biologically realistic,
has been agreed.

2.2 Claim 1.2: quality of software engineering

Claim 1.2 in Figure 2 concerns the quality of the software engineering of
the simulation. The expansion (Figure 5) proposes the two-part strategy
of arguing seamless development, and of demonstrating that the soft-
ware is verified. Seamlessness is a systematic development from abstract
models to code. Claim 1.2.1 makes reference to the CoSMoS process,
since the principled approach to modelling and simulation recommends
seamless development (see e.g. [17]); the claim could be addressed by re-

122 Polack et al.

CLAIM 1.2

Software engineering of ONTEXT 1.2
smqlator is of sufficient Software éngineering
quality to trust the quality is discussed
simulation results in section 3.5

STRATEGY 1.2
Argued over
(a) seamless development
(b) verified software

CLAIM 1.2.1
CoSMoS process:

seamless development from
domain to platform model

CLAIM 1.2.4
Calibration of simulator
replicates bio-results

CLAIM 1.2.2 CLAIM 1.2.3

Platform model maps directly to Java environment testing

JCSP code details and debugging gives
sufficient trust in code

Fig. 5. Expanding Claim 1.2 (Figure 2) concerning Software Quality

viewing how the domain model concepts map to concepts in the platform
model. Similarly, Claim 1.2.2 requires demonstration the mapping from
the platform model to the JCSP code of the simulator. We cannot fully
elaborate this claim until the coding — and verification — is complete.

Verification is covered by two claims. Claim 1.2.3 makes reference
to the development environment for Java, and requires support for the
statement that the (unit) testing and debugging facilities of the environ-
ment are sufficient to establish trust in the code: this is a pure software-
engineering challenge for the developers. Claim 1.2.4 refers to calibration,
the process in which the completed simulator is given biological data for
a particular initialisation, and expected to replicate biological output
data. Note that this claim is closely related to Claim 1.3, but is under-
taken as part of the verification of the simulator, rather than as part of
subsequent use of the simulator as a research tool.

Exploring the suitability of a prostate simulation 123
3 Discussion

This section identifies issues in the use of argumentation for validation
of fitness for purpose, illustrated in relation to the arguments for the cell
division and differentiation validity in Section 2.

3.1 Fitness for purpose

A validity argument presents a specific claim — usually that the simulator
is suitable for the intended research. This is important: a simulator may
not be a good model of its domain, but could be suitable for an intended
research goal. The reason for using a simulator to study a complex system
is to abstract away enough of the detail to allow insight: a simulator that
is too faithful to its domain is almost as complex as that domain, and
thus a poor aid to exploration and understanding.

A connotation of the need to validate fitness for purpose is that, if
the research goal changes, the validity argument must be revisited. It is
unlikely that the prostate cell simulator would be fit for the purpose of
research on, say, a breast cell model. Even within the realm of prostate
cell modelling, a laboratory with a different theoretical standpoint, or a
different interpretation of the biology, might find that our simulator was
not fit for exploring its hypotheses. The simulator expresses a scale and
scope that matches the scope of the laboratory research of the domain
experts. The tie-in of the simulator to the domain expert view means
that, if the results of simulation are to be published to the wider prostate
cancer community, it is particularly important to record the biological
and theoretical basis of the simulation.

3.2 Living arguments

We have seen that a validity argument is specific to the domain experts’
intended research and the purpose of the simulation. However, a valid-
ity argument also changes as the simulator development and simulation
experimentation proceeds.

The argument outlined in Section 2 was developed before completion
of the simulator: before the initialisation and running of any simulation.
A wvalidity argument is a living argument, and can help to direct the ways
in which the simulation development proceeds. In our development, for
example, the software engineering strategy (Claim and Strategy 1.2)
focuses the attention of the developers on the quality requirements for
the implementation (covered in more detail in Section 3.5): attention
was paid to development of robust (manual) mappings from the domain

124 Polack et al.

model to the platform model and simulator implementation. Thus, the
use we make of argumentation helps to guide development of a simulator
that is demonstrably fit for purpose, rather than simply recording an
end-point opinion about fitness for purpose of the finished simulator.

Once a simulator is validated, it can be used for simulation experi-
ments; to analyse the results of simulation, we use the research context,
built up in the development and the process of validation. Through using
the simulator and conducting in silico experiments, we learn about the
domain, and about the simulator, and can expand the validity argument
with new evidence and understanding.

The validity argument is a snapshot relating to the simulation project
on the day that it was produced. If we want to publish the simulation
results, and expose the simulator to community evaluation, we need to
ensure that the validity argument is up-to-date and matches exactly the
published version of the results.

Since simulator validity is not absolute, it is important to know for
whom the validity argument is created. The argument that is shown in
Section 2 was created by the developers for the use of the developers
and domain experts at this point in the development. The developers
and domain experts would be content that the simulator is suitable for
the intended prostate research, if the biological model is agreed to be
adequate, the software engineering has sufficient quality, and the sim-
ulation results are consistent with those from the laboratory research.
You may disagree with this position; the point is that the researchers
(prostate cancer scientists and simulator developers) have made their
position explicit. As the research progresses, the validity argument will
develop to reflect changing understanding.

3.3 Reviewing validity

Whenever an argument is reviewed, it is likely to be expanded. In simula-
tion validity, it is likely that review will also extend the research context
and enable a better appreciation of the strengths and limitations of the
simulator. This can be illustrated by describing an issue that arose when
the authors reviewed the argument in Figure 4, during the writing of the
paper; that is, after the domain experts and developers had agreed on
the domain model, and had accepted that it was a valid model of the
biology of prostate cell division and differentiation.

In Figure 4, Claim 1.1.2.2 states that Modelling prostate as a closed
system of cells is biologically realistic. The evidence states the agreement
of domain experts. In review, the term closed system was identified as
contentious: complex biological systems are open by definition. It was
first noted that we have not explained what we mean by a closed system

Exploring the suitability of a prostate simulation 125

of cells: this can be addressed by adding a context explanation: Context
1.1.2.2 would state that the agreed model comprises a precise set of
cell types, their division and differentiation, and a limited (finite) set
of environmental influences. Next, we need to identify what the domain
experts agreed: the records of our meetings showed that it had been
explicitly discussed and decided that the domain model did not need to
model blood flow, nutrient supply and other biological fluxes in order
to develop a simulation of the prostate cell model that is suitable for
the intended research. We can then link the argument evidence to the
precise meeting record. Either through such a link or through use of
a GSN justification, we can also record the rationale for the domain
experts’ confidence that the closed cell model is sufficient.

The review of Claim 1.1.2.2 also leads to a clarification of the purpose
and suitability of the simulator. The discussion of the implications of a
“closed” system of cells identified a range of specific research questions
that cannot be addressed with this simulator. Since the simulator does
not include an explicit model of blood vessel formation and capillary bed
structure, it is impossible to explore vascularisation and hypoxia effects
in developing tumours or interventions that rely on blood flow or hypoxia
(14, 6].

In the course of reviewing an argument, it is inevitable that people
query the detail and the extent of an argument. In safe-systems engineer-
ing, such queries have to be taken very seriously and addressed before
the safety case is accepted. However, in our more informal use of argu-
mentation, it is sufficient that a consensus is reached on the adequacy of
the argument. In work using the CoSMoS principled approach and vali-
dation of the sort described in this paper, we have not yet failed to reach
consensus, but a notable feature is that the domain experts are often
more trusting of the simulators than the simulation developers. This ob-
servation needs following up in patterns of guidance for the construction
and review of validity arguments in collaborative research.

3.4 Representation of the domain

To be fit for purpose, the domain model needs to be an abstraction that
is agreed to be suitable for the intended research: the prior identification
of explicit domain experts is essential to achieving this. In an ideal sim-
ulator, each concept in the real domain would map directly to a concept
in the simulator. However, as noted in Section 3.1, a simulator that is
too similar to its complex-systems domain is unlikely to be a good aid to
understanding. In the prostate cell simulator, whilst it would be an inter-
esting challenge to construct a simulator that modelled the biochemistry
of signalling as well as cell division and differentiation, this would blur

126 Polack et al.

the focus on the scientific purpose and motivation of simulation. For
the intended purpose of this simulator, it is not necessary to know how
cells emit and receive chemical signals; it is sufficient to know that cells
affect the environment, and that the environment affects cells, through
particular interactions and behaviours. The model of the environment
must include the appropriate parameters to implement cell-environment
interaction, guided and checked by the domain experts. If the argument
that the simulator is sufficient were extended, the validation of each of
these areas would be added.

In addition to identifying the level of abstraction that is appropriate
to a domain and a simulation purpose, the domain experts work with
the developers to determine how to model necessary parts of the domain
that are not well understood, or are not easily amenable to measurement.

The prostate cell model abstracts away from low-level detail (bio-
chemistry, physics, the complex internal structure of cells, etc.), ignores
concepts other than the identified cell types and transitions, and simpli-
fies other concepts — cells are represented as a “genome”, a pre-defined
set of data defining the cell’s (computational) state. Most of the modelled
cell types map well to biologically distinct (stem and luminal) or distin-
guishable (committed basal and transit amplifying) cell types, but the
domain model also includes the entirely-artificial concept of a daughter
cell, to allow separation of cell division and cell differentiation processes
in the models. The daughter-cell concept was discussed at length with
biologists, and agreed as a reasonable way to represent biological be-
haviour. The level of abstraction of the domain model avoids many of
the biological uncertainties in the detail of cell mechanisms. This un-
usual level of clarity makes the validation of the biological modelling
straightforward (in comparison to many research domains).

In mapping from the domain model to the platform model, the devel-
opers need to identify implementation structures and remove any emer-
gent or derived behaviours included in the domain model (these need to
be consequences of computation, and must not be built into the simula-
tor). The demands of computation necessarily add features that have no
obvious dual in the domain. Some computational features are common
in simulations of complex systems, and could be the subject of generic
analysis, and of validation patterns. Three examples are as follows: (a)
computer simulation using digital representations of continuous aspects
(time, space, gradients, differentiation, etc.); (b) parallel implementation
using artificial synchronisation on, for example, time or the completion
of a task (e.g. using barriers over channels); (¢) computer simulation ini-
tialised to some artificial starting point, where the domain is a continuous
ongoing behaviour.

Exploring the suitability of a prostate simulation 127

The prostate cell simulator is a parallel implementation, in which
both time and differentiation/division are digitised. The effects of digi-
tising time need wider study, but the representation of the continuous
differentiation/division of cells as transitions between specific cell states
has been discussed and agreed to be adequate. In relation to initialisa-
tion, the prostate cell model can be started from an “embryonic” state (a
small number of stem cells) and the simulation can be used to populate a
prostate with cells: this is the focus of the first phase of the project, with
the ability to populate a naive prostate calibrated against laboratory
data on prostate development.

As a last point, the representation of the domain introduces the sur-
rogacy problem. Each concept in the simulator has explicit mappings
to domain concepts, but also plays some part in representing the things
that are not explicitly represented. Surrogacy is not simply an abstrac-
tion issue (e.g. the cells in the simulation surrogate the biochemistry),
and it applies to biological measurement as well as to simulator con-
cepts. Read et al [19] consider the surrogation problem in calibration,
sensitivity analysis, and results interpretation. In the prostate cell simu-
lator development, for example, the modelled cell behaviours surrogate
behaviours that are due to other prostate components, whilst the bio-
logical data on division rates implicitly includes the effect of crowding.
In relation to cell crowding, the easiest model to validate would be one
with a direct mapping between biological space and simulator space; this
would produce simulation results on spatial distribution and dynamics.
Unfortunately, the realistic 3D space model does not relate directly to the
biological data, as there are only very limited ways in which researchers
can observe the internal dynamics of a real prostate (this is one mo-
tivation for turning to agent-based simulation as a research tool). The
representation of crowding in the simulator is thus through adjustment
to transition parameters and environmental inputs, and needs careful
validation through calibration and, possibly, through comparison of spa-
tial and aspatial versions of the simulation.

It is impractical to try to enumerate all the issues that affect the
mapping of domain concepts through to implementation. Furthermore,
for many mappings, the consequences of design decisions are hard to
analyse or assess. Thus, the practical validation requirement is to record
the identified design decisions, assumptions, omissions, abstractions and
simplifications, and any known effects on the simulation. This allows an
informed assessment of results. For a critical simulation (e.g. if someone
were ill-advisedly to attempt to use the simulation evidence unsupported
by laboratory evidence, to develop a new cancer intervention), we would
need to take more care in identifying, and analysing the effects of these

128 Polack et al.

issues. To date, we have not undertaken such a critical or high-impact
simulation, but we have identified a range of critical systems engineering
techniques that could be used to challenge models and identify assump-
tions [17].

3.5 Simulation engineering

The engineering quality of a complex systems simulation does not receive
much attention in scientific literature, though there is some coverage in
conventional simulation literature (e.g. [4]). In complex domains, initia-
tives on documenting scientific simulation, such as ODD [5, 10], focus
on making code and parameter settings available, not on ascertaining
whether the model is rational and the code verified. We cannot easily
measure the quality of software, especially where the software imple-
ments a complex system; we need alternative ways to develop confidence
in the quality of the simulator as an artifact. One important issue con-
cerning software quality is the need to understand whether observed (e.g.
emergent) behaviours of the simulation are artifacts of the implementa-
tion or consequences of the represented domain concepts.

The validity argument strategy (Strategy 1, Figure 2) makes explicit
the need to validate the implementation, whilst the elaboration of Claim
1.2 (Figure 5) makes the approach taken to software quality explicit. An
advantage of the argumentation approach is that explicit statements are
open, and can thus be challenged or discussed.

The rationale for the software engineering validation strategies used
here is based on an understanding of software engineering methods. Con-
ventional methods work from known requirements that have been dis-
cussed and agreed with clients. Here, requirements relating to the sub-
ject of simulation are addressed by domain modelling, and validated in
the expansion of Claim 1.1. The software engineering strategy relates to
quality requirements: that the implementation is fit for purpose and the
results can be understood in the context of the domain. This requires us
to validate the implementation against the domain model. Conventional
software engineering proposes seamlessness (described briefly in Section
2.2) as a traceable way of moving from abstract models to code. Seam-
lessness is aided by adhering to the same paradigm and semantics for
modelling and implementation, thus reducing opportunities for misinter-
pretation. Claim 1.2.1 appeals directly to our use of the CoSMoS process
to support the claim of seamless development from domain to platform
models. A similar style, of appeal to a particular development method, is
used when considering the artifact quality in safety case argumentation.
More specifically, in [7], we describe a reasonably seamless implementa-
tion process from the domain models, in which we amend the semantics

Exploring the suitability of a prostate simulation 129

of diagrammatic modelling notations to provide a good representation of
the domain and a clean mapping to the code design. A complete argu-
ment of software engineering quality would systematically address each
concept in the abstract (domain) models and show how these are seam-
lessly developed. The argument would be strengthened if the seamless
approach were supported by model-driven engineering techniques, and
specifically by developing and supporting domain specific languages.

Note that CoSMoS (see Section 1.2) uses the process of domain mod-
elling to cement the relationship between developers and researchers (the
clients), to clarify the scope and levels of the simulation, and to deter-
mine the purpose of simulation. Close collaboration is an important con-
tributor to quality, as it opens the development models and process to
continual challenge. Challenges come from both developers and domain
experts; developers should highlight inadequacies of the software, as well
as asking naive questions about the domain.

The second aspect of software engineering in Strategy 1.2 is verifi-
cation: the demonstration that the system works as intended, through
testing and/or formal analysis. Testing of complex systems simulations is
interesting, since, even if we know what results are expected (which is not
always the case), the results are often non-deterministic: multiple runs
and statistical analysis of data results are needed to establish whether,
with some likelihood, the results of the simulation are in line with those
from laboratory experiments. In the validity argument summarised here,
there is thus a close link between the software engineering claims and
Claim 1.3 concerning the consistency of results from the domain and the
simulator.

For conventional software testing, programming environments (e.g.
Eclipse or NetBeans for Java) provide programming support such as
built-in debugging and analysis tools: in the prostate cell model, use
of Java and the JCSP library means that verification support is avail-
able. However, more efficient process-oriented languages such as occam-m
lack environmental support. In partial compensation, occam-7 has com-
piler support for safe programming idioms (e.g. avoiding deadlock). The
foundations of JCSP and occam-7 in the CSP formal language make it
amenable to some formal analysis of programs — protocols are particu-
larly well suited to CSP analysis.

Neither formal analysis nor testing is sufficient to eliminate errors in
design and implementation; they must be complemented by calibration
[19]. There can be a fine line between a desired emergent behaviour
and the consequences of a bug in a design or a program; the simulation
developers as well as the domain experts must be confident that the
observed behaviours are not artifacts of a faulty simulator.

130 Polack et al.

A common problem with calibration is achieving appropriate simula-
tion scales. We would investigate whether we need biological-scale num-
bers, or whether it is sufficient to simply to initialise a simulation with
biologically-realistic proportions of each type of cell — in other words, can
we achieve biologically-valid results on systems with the right propor-
tions of components but the wrong numbers of components? Emergence
of desired behaviour is sometimes scale-dependent, so this is an impor-
tant area of analysis. In the prostate cell model, an additional factor
relating to scale and calibration is the eventual focus on cancer-causing
mutability and heritability: the agent-based simulation approach to sim-
ulation was chosen specifically to allow modelling of rare mutation, and
a valid simulator must have sufficient numbers of cells to accommodate
low probability events.

The activity of calibration draws on the whole development and doc-
umentation of the simulator, and fundamentally relies on the close col-
laboration built up in the development of the simulator. It must also
take account of the validity of calibration data. Laboratory data may
be from many specimens, different tissue types, even different species,
measured to differing levels of accuracy. In cell-level systems, it is usu-
ally possible to estimate numbers and proportions of cells, and, to some
extent, how these values change over time. For the prostate cell model,
we do have biologically-robust data; however, the domain experts and
developers need to be constantly alert to data problems (e.g. data from
human patients vs. data from laboratory cell-lines).

The calibration of our simulator will, in itself, achieve the purpose of
the first phase of the simulation project: to replicate observed propor-
tions of cells in the normal prostate (Section 1.2). Once calibration is
complete, we intend to construct a calibration argument pattern.

4 Summary and Conclusions

We have presented aspects of the validation of the prostate cell model
simulator (described in [7]), showing how an understanding of the fitness
for purpose and limitations of a simulator for use as a research tool can
be captured. The meaning of validation in the context of complex system
simulation is summarised, along with the argumentation approach used
here.

The argument structure is summarised using GSN, and represents the
mutual understanding of the sufficiency of the simulation at a particular
point in the development; the argument will be developed as the study
proceeds. This argument is specific to this simulator development for
this domain, this group of domain experts and these developers.

Exploring the suitability of a prostate simulation 131

4.1 Further work

The immediate next steps are to complete the recording of the fitness
for purpose argument, as described in Sections 2 and 3.2. The argument
will develop as the simulator development and calibration progresses,
and as the research moves into exploration of the prostate cell division
and differentiation and cancer neogenesis.

Our research on validity argumentation uses the prostate cell sim-
ulation and other complex systems simulations (e.g. [8, 9]) to establish
the commonalities and differences between validity arguments and estab-
lished argumentation uses such as safety case and dependency argumen-
tation. In particular, we can draw on safety case argumentation research,
including recent work on side arguments and the justification of strate-
gies and claim inter-dependency. We also intend to develop tool support
for simulation validation, focusing on argumentation structures and on
linkage to supporting evidence, context, justifications and assumptions.
Tool development will provide a definition of the variant GSN notation
used for validity arguments, along with guidance on constructing and
reviewing validity arguments.

As the body of simulation validation work grows, it is apparent that
there are many generic issues to be addressed: for example, Section 3.4
has identified the problems of discretisation of continuous features such
as time, space and gradients, and related problems such as the difficulty
of matching spatial simulation results to aspatial data (see also [2]).
As generic problems are identified, they need analysing, to understand
what effects they have on the accuracy of simulation, and whether the
effects are general or specific to certain sorts of simulation or questions
explored through simulation. We anticipate that argument patterns will
help document the connotations for validity of these generic problems.

Acknowledgements

This work is supported by a Programme Grant (to N. J. Maitland) from
Yorkshire Cancer Research, by TRANSIT (EPSRC grant EP/F032749/1)
through the York Centre for Complex Systems Analysis, and by CoSMoS
(EPSRC grant EP/E053505/1). We would like to thank the members of
the Cancer Research Unit in York for their invaluable input of time and
expertise.

References

[1] R. Alexander. Using Simulation for Systems of Systems Hazard Analysis.
PhD thesis, Department of Computer Science, University of York, 2007.

132

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Polack et al.

P. S. Andrews, F. Polack, A. T. Sampson, J. Timmis, L. Scott, and
M. Coles. Simulating biology: towards understanding what the simula-
tion shows. In Workshop on Complex Systems Modelling and Simulation,
pages 93-123. Luniver Press, 2008.

P. S. Andrews, F. A. C. Polack, A. T. Sampson, S. Stepney, and
J. Timmis. The CoSMoS Process, version 0.1. Technical Re-
port YCS-2010-450, Dept of Computer Science, Univ. of York, 2010.
www.cs.york.ac.uk/ftpdir/reports/2010/YCS/453/Y CS-2010-453.pdf.
Osman Balci. Verification, validation, and accreditation. In WSC ’98,
pages 41-48. IEEE Computer Society Press, 1998.

U. Berger, C. Piou, K. Schiffers, and V. Grimm. Competition among
plants: Concepts, individual-based modelling approaches, and a proposal
for a future research strategy. Perspectives in Plant Ecology, Fvolution
and Systematics, 9:121-135, 2008.

D. Bishop-Bailey. Tumour vascularisation: a druggable target. Current
Opinion in Pharmacology, 9:96—-101, 2009.

A. Droop, P. Garnett, F. A. C. Polack, and S. Stepney. Multiple model
simulation: modelling cell division and differentiation in the prostate.
Accepted for CoSMoS Workshop, 2011.

T. Ghetiu, R. D. Alexander, P. S. Andrews, F. A. C. Polack, and J. Bown.
Equivalence arguments for complex systems simulations - a case-study.
In Workshop on Complex Systems Modelling and Simulation, pages 101—
140. Luniver Press, 2009.

T. Ghetiu, F. A.C. Polack, and J. Bown. Argument-driven validation of
computer simulations — a necessity rather than an option. In VALID,
pages 1-4. IEEE, 2010.

V. Grimm. Ten years of individual-based modelling in ecology: what have
we learned and what could we learn in the future? Ecological Modelling,
115(2-3):129-148, 1999.

R. Hawkins, T. Kelly, J. Knight, and P. Graydon. Safety cases — a new
approach to creating clear safety arguments. In SSS’11, pages 3-23.
Springer, 2011.

P. Humphreys. FEztending Ourselves: Computational Science, Empiri-
cism, and Scientific Method. Oxford University Press, New York, 2004.
T. P. Kelly. Arguing safety — a systematic approach to managing safety
cases. PhD thesis, Department of Computer Science, University of York,
1999. YCST 99/05.

S. Kizaka-Kondoh, M. Inoue, H. Harada, and M. Hiraoka. Tumor hypoxia:
A target for selective cancer therapy. Cancer Science, 94(12):1021-1028,
2005.

F. A. C. Polack. Arguing validation of simulations in science. In Workshop
on Complex Systems Modelling and Simulation, pages 51-74. Luniver
Press, 2010.

F. A. C. Polack, P. S. Andrews, T. Ghetiu, M. Read, S. Stepney, J. Tim-
mis, and A. T. Sampson. Reflections on the simulation of complex systems
for science. In ICECCS, pages 276-285. IEEE Press, 2010.

[17]

18]

[19]

[20]

21]

22]

23]

Exploring the suitability of a prostate simulation 133

F. A. C. Polack, P. S. Andrews, and A. T. Sampson. The engineering
of concurrent simulations of complex systems. In CEC, pages 217-224.
IEEE Press, 2009.

F. A. C. Polack, T. Hoverd, A. T. Sampson, S. Stepney, and J. Timmis.
Complex systems models: Engineering simulations. In ALife XI, pages
482-489. MIT press, 2008.

M Read, P. S. Andrews, J. Timmis, and V. Kumar. Techniques for
grounding agent-based simulations in the real domain: a case study in
Experimental Autoimmune Encephalomyelitis. Mathematical and Com-
puter Modelling of Dynamical Systems, 2011. accepted.

R. G. Sargent. Verification and validation of simulation models. In 37th
Winter Simulation Conference, pages 130-143. ACM, 2005.

R. A. Weaver. The Safety of Software — Constructing and Assuring Ar-
guments. PhD thesis, Department of Computer Science, University of
York, 2003. YCST-2004-01.

M. Wheeler, S. Bullock, E. Di Paolo, J. Noble, M. Bedau, P. Husbands,
S. Kirby, and A. Seth. The view from elsewhere: Perspectives on AlLife
modelling. Artificial Life, 8(1):87-100, 2002.

S. P. Wilson, J. A. McDermid, C. H. Pygott, and D. J. Tombs. Assessing
complex computer based systems using the goal structuring notation. In
ICECCS, pages 498-505. IEEE Computer Society, 1996.

134 Polack et al.

Multiscale pairwise approximations
for ecological modelling

Rebecca Mancy, Simon Rogers, and Patrick Prosser

School of Computing Science, University of Glasgow, G12 8QQ
rebecca.mancy@glasgow.ac.uk

Abstract. Spatial aspects of interaction are important for many
complex systems. However, the analytic intractability of spa-
tially explicit simulations makes alternatives that capture key
characteristics of these systems attractive. In ecological mod-
elling, pairwise approximations are often used (e.g. evolutionary
game theory on graphs); however, with one exception, these limit
interactions to nearest neighbours. We develop an alternative to
the multiscale approach of [1] and compare these methods with
one another and a spatially explicit multi-scale simulation.

Spatial effects are known to influence the macroscopic behaviours of a
range of complex systems, including many ecological processes. For ex-
ample, whilst evolutionary processes invariably select against altruism in
non-spatial (mean field) models, they select for altruism under a range
of conditions in spatial models e.g. [2]. A natural modelling paradigm
is that of spatially explicit stochastic models (e.g. probabilistic cellular
automata) but analytic intractability and extended run-times have en-
couraged the development of approximations that benefit from increased
analytic tractability.

1 Pairwise Approximations

Pairwise approximation models have been used to model the behaviours
of complex systems in spatial settings and have been especially produc-
tive in helping answer a range of questions in theoretical biology where
spatial competition between strains is of interest. In this context, the
standard approach considers organisms that live on a network of sites,
with neighbourhoods defined for the processes of dispersal and interac-
tion. Individuals can disperse offspring to sites within a neighbourhood,
or can be influenced by organisms living there.

The idea underpinning pairwise approximations is to trace the pro-
portion of pair types over time. In a model of competitive interactions

136 Mancy et al.

between altruists and egoists, we trace the proportion of altruist-altruist,
altruist-egoist and egoist-egoist neighbour pairs. A differential equation
with respect to time p;; is derived for the proportion of each pair type
1j, and the system solved to find the steady state proportion of ij pairs.
From this, overall proportions of altruists and egoists can be derived to
determine which characteristic is selected.

Given that ecological processes (e.g. seed dispersal) act at a range
of scales, pairwise approximations have been critiqued for limiting inter-
actions to immediate neighbours. In [1], a multiscale pairwise approx-
imation technique is described that accounts for two or more spatial
scales by defining processes on disjoint neighbourhoods. For example,
pair densities at two distances could be denoted by p;; . (close) and p;; ¢
(far). This approach requires a rate equation for each of the pair types at
each of the two interaction distances, so the number of equations grows
linearly with the number of neighbourhoods considered.

2 Alternative Multiscale Approach

We investigate the use of an alternative approach to incorporating a
range of spatial scales into a pairwise approximation on a regular lattice
or random regular graph, as complementary method to direct simula-
tion. Our approach is based on a direct extension of the standard model
and assumes that densities of neighbour types two steps away can be
approximated by calculating the expected densities of strains one step
away from the neighbours of the focal site. In other words, it assumes
that two-step densities can be approximated by averaging over one-step
densities. It can account for an arbitrary number of interaction distances
(number of links) without additional equations and thus more closely
approximates a continuous space model. However, in comparison with
continuous space models, the use of a network means that the model can
represent structures other than Euclidean space, important for modelling
structures such as social networks or heterogeneous environments.

For simplicity, we follow [3] and assume that death occurs at a con-
stant rate d; for each strain 4 (i.e. death is independent of crowding;
c.f. [1]). Each strain ¢ has a total birth rate for each interaction dis-
tance § (rate of offspring production dispersed to that distance), de-
noted b; 5, such that birth rate into a particular site at distance is given
by b;s/ps, where the number of neighbours at distance ¢ is given by
s = f(nﬁ)#lé)l. Note that f(n,d) depends on the network topology
and is used to scale the number of neighbours to avoid double-counting
sites that can be reached via two routes. A full symbol list is shown in
Tab. 1.

Multiscale pairwise approximations for ecological modelling 137

(a) Our approach (b) Ellner (2001)

Fig. 1. (a) Birth rates of species 7 into focal empty site (marked 0) of an 0-i
pair, from the one-step and two-step neighbourhoods and n = 4. Rates are
found by multiplying the birth rate at the appropriate distance b; s by the
local density of sites in state 4, then by the global density of i-0 pairs, pio.
For example, a birth into the empty site from an organism on the LHS two
steps away (not passing through the 7 on the RHS of the known pair), is given
by the sum of birth rates of triples pii0, pi2o, etc. Since we only model pairs
and assume independence from non-immediate neighbours, we approximate
this as piko & Gi|kGk|o, resulting in the sum), g;jxqxjo. (b) Illustration of [1],
here shown with our notation and ¢ denoting one-step neighbourhood and f
denoting two-step neighbourhood (values selected for illustration only). For f,
information about the known ¢ and about the distance from the focal site is
not explicitly used.

Figure 1 illustrates rate derivation for one-step and two-step neigh-
bourhoods, and leads to the following differential equation for p;; (the
full system includes equations for pg;, poo and p;; where i # j; three-step
neighbourhoods etc. are derived similarly).

. bs —1)b;
3Dii = pm‘(T’f + %(Jﬂo)

—1 bi -1 zbi
+ po; <(n m) 2 giji + & H)Z = Zqim%m)— dipii
k

Before using this approach in applied contexts, it is important to
explore any differences between our approach and that of [1], as well
as differences in qualitative or quantitative predictions between this ap-
proach and spatially explicit stochastic simulations. This poster presents
the results of these tests to establish the conditions under which this ap-
proximation is appropriate, as well as the effect of different functional
forms for f(n,d) for different network topologies.

138 Mancy et al.

Table 1. Symbols used (nh = neighbourhood)

Symbol Explanation Symbol Explanation
n (ne) No. (close) neighbours s No. sites at distance ¢
d; Death rate strain bi,s (bi,c) Birth rate to dist. §
(close nh)
pij (pij,e) Global density (close) ¢;; (gij,) Density of ¢ in (close)
i-j pairs nh of a j

Acknowledgements This work was supported by an EPSRC PhD stu-
dentship.

References

[1] S. Ellner. Pair Approximation for Lattice Models with Multiple Interaction
Scales. Journal of Theoretical Biology, 210(4):435-447, June 2001.

[2] Laurent Lehmann and Frangois Rousset. How life history and demogra-
phy promote or inhibit the evolution of helping behaviours. Philosophical
Transactions of the Royal Society B: Biological Sciences, 365(1553):2599—
2617, September 2010.

[3] M. van Baalen and D. Rand. The Unit of Selection in Viscous Populations
and the Evolution of Altruism. Journal of Theoretical Biology, 193(4):631—
648, August 1998.

Developing an 2n stlico tool to
explore the mechanisms behind
mucosal lymphoid tissue formation

Kieran Alden'?, Paul S. Andrews?, Jon Timmis*3,
Henrique Veiga-Fernandes?, and Mark Coles'

1 Centre for Immunology and Infection, Hull York Medical School and
Department of Biology, University of York, UK
2 Department of Computer Science, Deramore Lane, University of York, UK
3 Department of Electronics, Heslington, University of York, UK
4 Immunology Unit, Institute of Molecular Medicine,
University of Lisbon, Portugal

Peyer’s Patches are secondary lymphoid organs which play a vital
role in facilitating an immune response within the intestine. These form
during embryonic development. Interestingly these patches develop ran-
domly along the length of the mid-gut, varying in size, location and
number. With traditional experimental techniques failing to explain this
variability, we propose that by integrating available in vivo imaging data,
gene expression analysis and gene knock-out data into an in silico model,
we can accurately simulate lymphoid tissue formation in the mouse, per-
mitting an exploration of the molecular, cellular and biophysical mech-
anisms involved.

Our poster describes how we have applied the CoSMoS framework in
our approach, through the development of the domain and platform mod-
els in collaboration with experimental immunologists to implementation
of an agent-based simulation and validation against available laboratory
results. We show initial results revealing there is no statistical significant
difference between the cell behaviour observed experimentally with that
replicated by the model. With this assured, we then examine how the
model captures the behaviour that emerges from cellular interactions, the
formation of Peyer’s Patches. We show that our model is more efficient
at producing patches than has been seen in vivo. Although the model
therefore does not correctly capture the observed emergent behaviour,
we now have the opportunity to make use of the model to investigate the
discrepancy. With the model created using such a principled framework,
the abstraction can be examined in collaboration with domain experts
in the hope of determining if this can be explained by the necessary
inclusion of assumptions or by a gap in our biological understanding.

140 Alden et al.

Harnessing emergent properties in
artificial distributed networks: an
experimental framework

George Eleftherakis!, Ognen Paunovski!,
Konstantinos Rousis!, and Anthony J. Cowling?

! South-East European Research Centre,

24 Proxenou Koromila, 54622 Thessaloniki, Greece
{geleftherakis, ogpaunovski,konrousis}@seerc.org
2 Computer Science Department, University of Sheffield
Regent Court, 211 Portobello, Sheffield, UK
A.Cowling@dcs.shef.ac.uk

In many domains centralized architectures have been replaced by
decentralized approaches which are able to offer significant advantages
in utilization of network resources. Nevertheless, the increased demand
and complexity of applications and services operating within distributed
environments has demonstrated the need for more efficient, robust and
adaptive solutions which will operate without manual configuration and
management. Systems are getting increasingly complex and we will in-
evitably reach the point where humans will not be able to cope with it;
both due to resource and capability limitations. It is for such situations
that humans turn to nature for inspiration. A multitude of useful, typ-
ically self-*, properties can be observed to emerge by natural complex
systems such as ant colonies and bird flocks. The ability to guide and
use these emergent processes could prove very valuable since emergence
is considered to be the basis for a variety of very useful phenomena in-
cluding self-organization, self-optimization, adaptation as well as other
beneficial properties encountered in complex systems. Incorporating such
behaviours in artificial distributed networks (ADNs) could offer signifi-
cant benefits to the development and performance of the system, making
it highly available, scalable and robust. Having even partial control of
this process, however, proves to be extremely difficult.

During the last few years there is an ongoing effort, from both Com-
plex Systems and Multi-Agent Systems research communities, to tackle
the problem of engineering emergence either in general or situated in a
specific domain. Fromm [1] claims that the problem of engineering emer-
gence equals to the problem of science in general. He proceeds with apply-
ing a variety of classical scientific methods on this problem and reaches
the conclusion that an “intelligent design” based on the classic scientific

142 Eleftherakis et al.

method is needed [1]. Stepney, Polack and Turner [2, 3] approach emer-
gence engineering via rule migration, as a means of translating high level
designs to low level implementations which exhibit emergent behaviour
via upward causation. Welch et al [4] have presented promising results
on emergence engineering by using basic engineering principles and an
innovative computational architecture based on occam-7.

We believe that generic claims of engineering emergence are impossi-
ble to make and we doubt that a generic “one size fits all” solution can or
will be provided soon, if ever. We propose the study of each specific do-
main separately, in an attempt to identify generic patterns and guidelines
which could assist on introducing desired emergent properties. Previous
work on our framework for studying emergence in a disciplined way,
allowed us to gain insight of the causal relations between microscopic
and macroscopic levels. In a second phase we aim to develop systems
which exploit desired emergent properties, focusing on ADNs, aiming in
the long term to provide designers and engineers with tools, models and
patterns. Towards this direction and in an attempt to put forward several
ideas on how to approach and revise engineering practices when dealing
with systems which exhibit emergence, we devised an abstract process
which we followed throughout our experimentations. Figure 1 depicts
our experience on engineering ADNs which exploit emergent phenom-
ena, as a successor to our framework for studying emergence. It is an
abstract and laborious process of experimentation, attempting to pro-
vide a disciplined approach on harnessing emergent properties as a means
of providing desired behaviours to complex systems.

We define as a starting point the analysis of a system to be built
and the separation of the desired properties of that system in two cat-
egories: the first includes functionality we want to develop by following
standard (software) engineering processes and methodologies and the
other consists of desired properties which are considered to be related
with emergent phenomena (e.g. self-adaptability). The next step consists
of modelling the so called “normal” behaviour as a multi-agent system
(MAS). The abstract model can be afterwards refined to a more for-
mal and less ambiguous model such as an extended FSM. At this stage,
the use of validation and verification techniques is strongly encouraged.
Proper verification of the standard system model can ensure at later
stages that the presence or absence of particular emergent properties is
the effect of the “planted”, emergence design, and not due to bugs and
design flaws on the standard model.

The next step is to design, through a process of experimentation,
the additions and modifications to the MAS model, which may lead to
the appearance of the desired emergent phenomena. As already argued,

Harnessing emergent properties in distributed networks 143

System
Description

Analysis‘-------------

|
|
|
A4 |
|
|
|
|
|
" m m =m = m
|
Normal Emergent "
Behaviour Behaviour .
Design Design : Evaluation

«nnmnnnpnn o PUED"

[L
| |
| |
gi [] [] m
= | | 5
8 n n (]
S T =l " = %
©) Individual Environment Communication M Planted Environment Communicationl onciisions E
's Entity m Individual Additions Additions = [
Behaviour ehaviour . m
S 'Bllllll E EEu u ® Andlysis g
73
's S A Modelling s
- =
S = s
3 6 ITERATION Execution Q
g = Data
o
<
SEhnm Modelling))
Standard Simulation/
Animation

System Model
Modelling &
Implementation

Extended Simulation
System Model Model

Fig. 1. An abstract process for engineering emergent properties in complex
systems.

there cannot be strict or specific guidelines for this step; depending on
the domain and the type of emergence expected, different patterns can
be utilized to form an initial hypothesis. These additions, combined with

144 Eleftherakis et al.

the standard model, form the extended system model. This model is then
refined, translated or implemented in order to serve as a simulation model
on which experiments can be run. After simulating and analyzing the
results we have to reach some conclusions regarding our hypothesis. The
last step consists of comparing and evaluating the conclusions against
the initial hypothesis. At this stage, there is either a conjecture that the
hypothesis is sound so the desired functionality can be implemented or
the hypothesis is disproved in which case another iteration starts at step
5.

Currently, we are in an ongoing phase of experimentation, following
the proposed framework, whereby we attempt to refine our hypotheses
and conjecture them with supporting simulation results. The core of our
hypothesis is that by introducing biologically inspired properties in an
ADN we will be able to meet global level, non functional, requirements
such as availability, adaptability, and robustness, among others.

References

[1] Jochen Fromm. On engineering and emergence. Technical Report
nlin.AO/0601002, Distributed Systems Group, Kassel University, Jan
2006.

[2] Susan Stepney, Fiona Polack, and Heather Turner. Engineering emergence.
In ICECCS 06 Proceedings of the 11th IEEE International Conference on
Engineering of Compler Computer Systems, pages 89-97, 2006.

[3] Heather Turner, Susan Stepney, and Fiona Polack. Rule migration: Ex-
ploring a design framework for emergence. International Journal of Un-
conventional Computing, 3(1):49-66, 2007.

[4] Peter H. Welch, Kurt C. Wallnau, and Mark Klein. Engineering emergence:
an occam-pi adventure. In CPA 2009 Proceedings of the 32nd Communi-
cating Process Architectures Conference, 2009.

Simulating cellular automata using
Go

Sarah Clayton, Neil Urquhart, and Jon Kerridge

School of Computing, Edinburgh Napier University,
Merchiston Campus, Edinburgh EH10 5DT.

Abstract. In this poster we discuss the implementation of Con-
way’s Game of life, written in Google’s Go programming lan-
guage. Although this lacks many of the facilities of established
concurrent CSP based languages, enough are available to create
a simple cellular automata simulation running tens of thousands
of concurrent processes correctly and robustly. The Game of Life
is a well known cellular automaton. Its implementation provides
a useful means of comparing Go to other languages.

1 Introduction

The Go programming language [6] was released by Google in 2009. To
summarise the authors, its stated aims are: to provide simple concur-
rency using coroutines and channel communication; to maximise the
potential of multicore processors and network distributed systems; to
compile to machine code while providing garbage collection and reflec-
tion facilities [4].

Go’s history is described in [9]. Its ancestors are Bell Lab’s Newsqueak
concurrent language, which inspired further concurrent languages such
as Alef and the Limbo language running on the Inferno operating system.

Many of the constructs available in occam-pi [1] and JCSP [10] are
missing in Go, however in this paper we will show that simple simulations
such as Conway’s Game of Life [3] can still be very simply implemented,
and easily scaled upwards.

2 Language architecture

Like occam-pi, Go uses a lightweight thread system to run processes
[7]. Go assigns a number of coroutines (termed goroutines) to a set
of threads, and then automatically moves them to another, runnable,

146 Clayton et al.

thread should one of them block for any reason. Each goroutine is as-
signed a stack of a few kilobytes for memory, with more allocated from a
segmented stack at runtime if needed. Stack segments are allocated and
freed automatically. This allows for the creation of hundreds of thousands
of goroutines, without the resource costs and programming complexity
inherent with threads, using a memory model that also allows for auto-
matic garbage collection [5].

There are no direct equivalents with CSP semantic constructs in Go.
To an extent some Go language features can stand in for some of these
constructs, but are not completely analoguous. A brief overview is given
in Table 1:

occam-pi Go nearest equivalent

Barriers WaitGroup

Protocols no

Channel ends no

Channels Channels are first class objects but implicitly shared

Parallel composition|no - each process is launched individually using
the go keyword

Choice select statement

Prioritised choice |no

Table 1. Comparison between occam-pi and Go language facilities

WaitGroups provide some synchronisation facilities, but the synchro-
nisation operation is not atomic. This creates the risk of deadlock, requir-
ing extra care in their use. Choice between ready guards is implemented
using the select statement, that uses a pseudorandom choice mechanism.
This is meant to ensure fairness on individual choices but makes it harder
to guarantee fairness for the system as a whole.

3 Implementing phased synchronisation

Despite these disimilarities, it is possible to implement simulations sim-
ilar to those created using occam-pi, using phased synchronisation [2]
and the client-server architecture [12].

The client-server architecture is defined by the relationship between
a client, in this example a cell in the Game of Life, and its server. This
is implemented using channels that are built in at the heart of Go. All
communications are initiated by the client, the server only responds to
requests. This ensures the execution is deadlock free [11]. The phased

Simulating cellular automata using Go 147

synchronisation where all agents discover their environment, blocking
on a barrier until all have completed, before modifying their state, is
implemented using the WaitGroup object.

Although with less sophisticated methods than those described in
[8], the Game of Life was implemented with a fixed number of servers,
acting independently of each other, and in charge of a set number of
cells. Each cell has a channel connection to its local server. During the
discovery phase, it requests information about the state of its neighbours
from the server which replies with the sum of living cells adjacent to it
orthogonally and diagonally. During the modify phase, the cell decides if
it should be born if dead, survive if alive, or die, contingent on the num-
ber of living neighbours. After a cell updates its state, it communicates
this to its server and waits on the modify barrier until all other processes
have completed. This cycle is then repeated. It was possible to create a
100x100 grid, nearly 12,000 Goroutines including servers, that worked
correctly (albeit slowly). This demonstrates that Go provides the same
easy scalability as other CSP based languages. Visualisation was done
using bindings for the GTK library, although OpenGL bindings are also
available.

4 Conclusion

From this initial work we conclude that, as a process oriented program-
ming language, spatial simulations can be robustly and scalably imple-
mented with Google Go, despite the absence of many useful CSP con-
structs in the language. Future work will include experimentation with
network distributed processes using the built in network channel com-
munication facilities provided by the netchan package.

References

[1] F.R.M. Barnes and P.H. Welch. Kent retargettable occam compiler
(kroc), 2009. http://www.cs.kent.ac.uk/projects/ofa/kroc/.

[2] F.R.M. Barnes, P.H. Welch, and A.T. Sampson. Barrier synchronisation
for occam-pi. In H.R. Arabnia, editor, Proceedings of the 2005 Interna-
tional Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’05), pages 173-179. CSREA Press, 2005.

[3] M. Gardner. Mathematical games: The fantastic combinations of john
conway’s new solitaire game life. Scientific American, 223(4):120-123,
1970.

[4] Go Authors. The go programming language. http://golang.org/.

[5] Go Authors. Why goroutines instead of threads? http://golang.org/doc/
go_faq.html#goroutines.

148

(6]

[7]

(8]

[10]

[11]

[12]

Clayton et al.

R. Pike. Go, 2010. http://www.oscon.com/oscon2010/public/schedule/
detail/15464.

C.G. Ritson, A.T. Sampson, and F.R.M. Barnes. Multicore scheduling for
lightweight communicating processes. In J. Field and V.T. Vasconcelos,
editors, Coordination Models and Languages, 11th International Confer-
ence, COORDINATION 2009, Lisboa, Portugal, June 9-12, 2009, pages
163-183. Springer, 2009.

A. Sampson, P.H. Welch, and F. Barnes. Lazy cellular automata with
communicating processes. In J.F. Broenink, H.W. Roebbers, J.P.E.
Sunter, P.H. Welch, and D.C. Wood, editors, Communicating Process
Architectures 2005, pages 165-175. I0S Press, 2005.

A.T. Sampson. Process-oriented patterns for concurrent software engi-
neering. PhD thesis, University of Kent, 2008.

P.H. Welch, N.C. Brown, J. Moores, K. Chalmers, and B. Sputh. Inte-
grating and extending jcsp. In A.A. McEwan, S. Schneider, W. Ifill, and
P. Welch, editors, Communicating Process Architectures 2007. 10S Press,
2007.

P.H. Welch, G.R.R. Justo, and C.J. Willcock. Higher-level paradigms for
deadlock-free high-performance systems. In R. Grebe, J. Hektor, S.C.
Hilton, M.R. Jane, and P.H. Welch, editors, Transputer Applications and
Systems ’93, Proceedings of the 1993 World Transputer Congress, pages
981-1004, 1993.

P.H. Welch, B. Vinter, and F. Barnes. Initial experiences with occam-
pi simulations of blood clotting on the minimum intrusion grid. In
H.R. Arabnia, editor, Proceedings of the 2005 International Confer-
ence on Parallel and Distributed Processing Techniques and Applications
(PDPTA’05), pages 201-207. CSREA Press, 2005.

