Proceedings of the 2013 Workshop on
Complex Systems Modelling and Simulation

CoSMoS 2013

Susan Stepney, Paul S. Andrews
Editors

CoSMoS 2013

Luniver Press
2013

Published by Luniver Press
Frome BA11 6TT United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

CoSMoS 2013

Copyright (©) Luniver Press 2013

All rights reserved. This book, or parts thereof, may not be reproduced
in any form or by any means, electronic or mechanical, including photo-
copying, recording or by any information storage and retrieval system,
without permission in writing from the copyright holder.

ISBN-10: 1-905986-39-4
ISBN-13: 978-1-905986-39-2

While every attempt is made to ensure that the information in this
publication is correct, no liability can be accepted by the authors or
publishers for loss, damage or injury caused by any errors in, or omission
from, the information given.

Preface

The CoSMoS workshops series has been organised to disseminate best
practice in complex systems modelling and simulation, with its genesis
in the similarly-named CoSMoS research project, a four year EPSRC
funded research project at the Universities of York and Kent in the
UK. Funding for the CoSMoS project has now completed, but we have
continued to run the workshop series as a forum for research examining
all aspects of the modelling and simulation of complex systems. To allow
authors the space to describe their systems in depth we put no stringent
page limit on the submissions.

We are pleased to be running the sixth CoSMoS workshop as a satel-
lite event at the 12th International Conference on Unconventional Com-
putation and Natural Computation (UCNC 2013) at the Universita degli
Studi di Milano-Bicocca, Milan, Italy. UCNC explores all aspects of un-
conventional and natural computation, an area rich in the inherent com-
plexity within systems, providing a natural complement to the issues
addressed by the CoSMoS workshop.

The main session of the workshop is based on seven accepted full
paper submissions:

Barr et al. describe an algorithm for efficient simulation of a kind of
unconventional computation: quantum random walks on graphs.
Evora et al. describe an analysis technique applied to the output from
a complex Smart Grid system simulation, used to aid the decision

making process.

Fehér et al. describe a more abstract approach to transforming Simulink
models that should aid model reuse.

Garnett examines “tipping points”, the rapid flipping of a complex
system from one quasi-stable state to another, in the context of the
banking sector acquisitions and mergers.

Li et al. use ideas from the CoSMoS approach to repurpose a simula-
tion to apply to a different domain.

Stepney describes how the ODD protocol can be used to help present
CoSMoS simulation experiments in a format that aids their repro-
ducibility.

Tao & Liu examine self-organisation in complex healthcare systems,
using an Autonomy-Oriented Computing approach.

Our thanks go to all the contributors for their hard work in getting
these papers prepared and revised. All submissions received multiple re-
views, and we thank the programme committee for their prompt, exten-
sive and in-depth reviews. We would also like to extend a special thanks

vi

to the organising committee of UCNC 2013 for enabling our workshop to
be co-located with this conference. We hope that readers will enjoy this
set of papers, and come away with insight on the state of the art, and
some understanding of current progress in complex systems modelling
and simulation.

vii
Programme Committee

Paul Andrews, University of York, UK

Jim Bown, University of Abertay, Dundee, UK

Tim Clarke, University of York, UK

Jose Evora, University of Las Palmas de Gran Canaria, Las Palmas,
Spain

Philip Garnett, Durham University, UK

Viv Kendon, University of Leeds, UK

Fiona Polack, University of York, UK

Benjamin Russell, University of York, UK

Adam Sampson, University of Abertay, Dundee, UK
Steve Smith, University of York, UK

Susan Stepney, University of York, UK

Alan Winfield, University of the West of England, UK

viii

Table of Contents

CoSMoS 2013

Simulation methods for quantum walks on graphs applied to
perfect state transfer and formal language recognition 1
Katie Barr, Toby Fleming, Viv Kendon

Decision support for Complex Systems: a Smart Grid case 21
Jose Evora, Jose Juan Hernandez, Mario Hernandez

Flattening Virtual Simulink Subsystems with Graph

Transformation 39
Péter Fehér, Tamds Mészdros, Pieter J. Mosterman, Ldszlo

Lengyel

Bursting a Bubble: Abstract Banking Demographics to
Understand Tipping Points? 61
Philip Garnett

Understanding tissue morphology: model repurposing using the
COSMOS PrOCESS .« vt vttt et e e et et 73
Ye Li, Adam Sampson, James Bown, Yusuf Deeni

CoSMoS simulation experiment reproducibility and the ODD
Protocol . ..o 93
Susan Stepney

Understanding Self-Organized Regularities: AOC-Based
Modeling of Complex Healthcare Systems 109
Li Tao, Jiming Liu

Simulation methods for quantum
walks on graphs applied to perfect
state transfer and formal language

recognition

Katie Barr, Toby Fleming, Viv Kendon

School of Physics and Astronomy, E C Stoner Building, University of Leeds,
Leeds, LLS2 9JT, UK

Abstract. We describe an algorithm which automates the gen-
eration of appropriate shift and coin operators for a discrete
time quantum walk, given the adjacency matrix of the graph
over which the walk is run. This gives researchers the freedom
to numerically investigate any discrete time quantum walk over
graphs of a computationally tractable size by greatly reducing
the time required to initialise a given walk. We then describe
two situations in which the swift initialisation of walks has en-
abled systematic investigations of walks over a large number of
structures. The results of these simulations and their reliabil-
ity, as well as the general suitability of numerical analysis as a
tool for investigating discrete time quantum walks, are briefly
discussed. We also mention specific Python packages which fa-
cilitate our simulations and analysis, motivating the use of high
level programming languages in this context.

1 Introduction

Recently, there has been much interest in the discrete time quantum
walk, due to its applicability in creating efficient quantum algorithms
[1, 27, 32]. The inspiration for the development of these walks came
from the fact that classical random walks have been used to develop new
algorithms which outperform their predecessors. For example, the best
known algorithms to solve the constraint satisfiability problem, where
one determines whether a collection of objects have a certain set of prop-
erties, use the classical random walk [24, 26]. It was therefore natural,
given that quantum algorithms have been shown to outperform known
classical algorithms, particularly at searching [12] and factorization [28],
to develop a quantum version of the random walk as an algorithmic tool.

2 Katie Barr et al.

Whilst this strongly motivates the development of algorithms based on
quantum principles, in order to attain their efficiency in practice these
algorithms would have to be run on a quantum computer.

Discrete time quantum walks are an example of a composite quantum
system. In this case it is composed of two systems which correspond to
the structure the walker traverses and the degrees of freedom introduced
for performing a ‘quantum coin flip.” Composite quantum systems swiftly
increase in size as degrees of freedom are added to their sub-systems,
so accurate simulations can be difficult. Quantum walks are theoretical
models which can be exactly simulated in some cases. In general they
can be simulated with a high degree of precision. Exact analytical results
concerning these walks are very difficult to obtain, so they are particu-
larly suited to numerical simulation. While quantum walks on simple or
regular structures are easy to simulate up to computationally tractable
sizes [16], simulations over arbitrary graphs require customised operators
at each node of different degree.

In this paper we describe a simple algorithm to generate time evolu-
tion operators for the discrete time quantum walk over arbitrary struc-
tures. This has greatly facilitated the authors’ own investigations into
the discrete time quantum walk in a variety of contexts, in one case
extending their applicability, and hence constitutes a significant contri-
bution to the theory of discrete time quantum walks. We start in Section
2 by defining discrete time quantum walks over a given graph structure.
In Section 3 we describe the algorithm. We then outline two specific
applications of the discrete time quantum walk and the simulations we
performed. The first, in Section 4.1 is a brute force search for perfect
state transfer over structures having certain properties. The second, de-
scribed in Section 4.2 applies the quantum walk to language acceptance
problems, interpreting acceptance as the walker being at a specific node
after a set number of timesteps.

2 Quantum walks

All purely quantum states are represented by a complex state vector,
the components of which are called amplitudes. The time evolution is
represented by unitary operators, which fulfil the criteria Ul Tyt =1
where U' is the conjugate transpose, otherwise known as the adjoint,
of U. A discrete time quantum walk evolves over an arbitrary graph
structure G = {E,V} where V is a set of nodes and E is a set of edges
of the form (i,j) where 4,5 € V. The adjacency matrix Ag of G has
ones in the entries (7,7) if node 4 is connected to node j, and zeroes
elsewhere. The number of nodes is denoted |V|. The number of edges

Simulation methods for quantum walks on graphs 3

incident on a given node is called the degree of that node and is denoted
|v]. The quantum walk model used in this paper assumes that the graph
is undirected, so for every (i,j) € E we have that (j,7) € E, but there
are models of quantum walks which used directed graphs [21, 33].

The time evolution of the walk is determined by a unitary operator
U = SC with S being a shift operation, and C being a ‘coin’ operation.
The coin operation is required in order to guarantee unitary, that is to say
validly quantum, evolution. To see the role of the coin operator, consider
a walk on a line. In contrast with the classical coin, which definitely sends
the walker either left or right, the quantum coin sends the walker both
left and right in proportions depending on the precise choice of coin. The
coin operator acts on the nodes of the graph, each node has a set of coin
states, each coin state indicating the edge along which amplitude arrived
at the node. There can be a different coin operator at each node, and to
get the operator over the entire graph, the direct sum of the individual
operators is required. The coin operator controls which node amplitude
is directed to in the next step of the walk, as the coin state also specifies
which edge amplitude should leave by.

The shift operator acts such that S|v, c) = |w, d), so moves amplitude
from the ¢*" coin state of v to the d*" coin state of w [17], where ¢ and
d label the ends of the edge between nodes v and w. There is a one
to one correspondence between edges (v, w) and coin states (¢, d). This
bijection guarantees the existence of a consistent labelling scheme for
the coin states at each node.

The state of the walker after T steps is
(T) =Y aye(T)o,c) (1)

where a,,. € C is called the amplitude of the walker at position v in
coin state ¢ and |v, ¢) denotes a basis state on node v with coin state c.
The probability of the walker being found at node v after T steps is the
summation over coin states at v, p(v,t) = .. |v,¢;|>. The state of the
quantum walker is simply a complex vector, and for numerical analysis
the time evolution operators are represented by complex unitary matrices
which are not generally sparse.

An example coin operator, which was used heavily in the applications
described in Section 4 below, is the Grover operator:

4 Katie Barr et al.

2—lv| 2 2
[v] [v] [v]
2 2—|v] 2
[v] [v] [v]
Gl = (2)
2 2 . 2=y
[v] [v] [v]

Where |v] is the dimension of the node we are operating at (the degree
of that node in the graph), and the operator is a |v| X |v| matrix.

As mentioned in the introduction, the discrete time quantum walk
is a composite system, its state describes both the coin state and the
position of the walker. This state must have basis states which describe
every possible position and coin state, so the number of required states
increases quickly with the number of nodes of the graph and connections
between them. It is the size of the state vector describing the walker, cou-
pled with the matrix multiplication required to evolve it, which makes
the simulation of quantum walks, or indeed any large quantum system, a
nontrivial computational task. Due to the degrees of freedom introduced
by the coin space, the discrete time quantum walk is very difficult to
investigate analytically. Some cases on regular lattices have been solved
exactly using path counting and Fourier space techniques. The case of
the walk on the line was solved by Ambainis et al [2], the hypercube
was treated by Moore and Russell [22] and then Kempe [15], and higher
dimensional lattices were treated by Gottlieb et al in [11]. General solu-
tions for walks over arbitrary structures have not yet been attempted. In
cases where the initial states and entries in the coin operator are repre-
sented by numbers which can be handled exactly by the simulation, such
as those in the Grover operator with the walker initially localised in a
specific coin state of a given node, they can be exactly simulated. In gen-
eral, exact simulations are rare, only being possible for a small number
of timesteps or in cases where the evolution is periodic. Our own simula-
tions coupled with subsequent analytic work for a few exactly solvable,
highly symmetric, cases indicate that the walks can be simulated to a
very high degree of precision for at least 100 timesteps. Much longer
walks can be simulated [16] but eventually numerical accuracy may be-
come an issue. Their difficulty in being treated analytically coupled with
their suitability for numerical investigation is why, thus far, the vast ma-
jority of results concerning the discrete time quantum walk have been
obtained numerically [18; 20, 29, 31]. This contrasts with the case of
the continuous time walk where numerical methods are less suitable, as

Simulation methods for quantum walks on graphs 5

numerical integration is required to simulate the time evolution. These
walks are, however more amenable to analytic techniques [5, 6, 19, 25].
As they obey the Schrédinger equation their evolution can be written
in terms of the eigensystems of their Hamiltonian, which is either the
adjacency matrix or Laplacian of their graph structure. In cases where
the eigenvalues and vectors have simple expressions, it is easy to write
out the full time evolution of the walk for a given initial state.

3 Algorithm to generate a quantum walk from the
adjacency matrix of a graph

The problem solved by the algorithm outlined in this section can be
stated thus: Given the adjacency matrix of a graph, generate appropri-
ate time evolution operators to simulate a discrete time quantum walk
over that structure. Mathematically, this corresponds to performing the
appropriate matrix tensor product operations. As should be clear from
the definition of a quantum walk, two such operators are required, the
coin operator C, and the shift operator S. The coin operator is simpler
to generate, so we discuss this first.

3.1 Generating the coin operation

The coin operator acts locally on each node of the graph. Due to the
structure and ordering of the direct sum, we know that the operator will
be represented by a block diagonal matrix, with each block acting on a
different node of the graph, and the block’s dimension will be equal to
the degree of that node. In order to generate the operator, the relevant
coin acting at each node is generated, and then we must ensure that it is
placed in the appropriate position in the large coin matrix. To do this, the
degree of each node is required, and this can be found easily by taking
the sum of the row representing that node in the adjacency matrix.
Then the operations at each node must be specified, and there is a large
amount of freedom here. The simplest case is to have coins of the same
type operate at each node. For example, the Grover or DFT operators of
appropriate dimensions can be specified easily. In some walks discussed
below, different types of coin are used at different nodes. Exceptions for
nodes of a specific degree, or even for specific nodes, can easily be added.
A very simple example of generating the coin operation can be given if
we consider a cycle of two nodes, which in standard notation is referred
to as Cy and is depicted in Figure 1. Using the two dimensional DFT
operator, also known as the Hadamard, at both nodes gives rise to the
following coin operator:

6 Katie Barr et al.

Fig. 1. The cycle of two nodes

1100
10\ 1 /11\ 1 [1-100

C‘(01>®\@(11)_\/§ 0011 ®)
00 1-1

3.2 Generating the shift operation

In order to ensure that the consistent labelling scheme required to guar-
antee unitarity of the walk is taken into account, care must be taken
in generating the shift operator. For each node, we need not only the
degree, but the indices of the other nodes it is joined to. In Python it
is easy to generate a list of these by looping over the relevant row in
the adjacency matrix Ag, and this list can then be used to specify the
ordering of the coin states at that node. This list has the form:

list_-1 = ([¢, 4, k], [{, m]...[v, w))

where the index of each entry specifies which node the nodes i, j, k etc.
are attached to. It is also useful to create another list:

list2 = [0,3,5...]

specifying the index of the first coin state for each node. So the nth entry
of list_1 tells us which nodes node n is joined to, and the corresponding
entry of list_2 tells us which coin state joins n to the first entry list_1 [n].
The dimension of the shift operator is simply the sum of the number of
coin states at each node. At a given node v, which corresponds to the
row/column numbered v in Ag, the correct permutation between coin
states is the most difficult part to find. The algorithm can be described
thus:

Simulation methods for quantum walks on graphs 7

Initialise list_1: an empty list of length |V|
Initialise list_2: an empty list of length |V]

Set coin_state_counter to zero

For v < |V|
For z < |v]
If Agv][z] == 1

Append = to list_1[v]
list. 2 [v] = coin_state_counter
Add |v| to coin_state_counter
shift dimension = coin_state_counter
Initialise shift operator, a square array of size shift
dimension
For v < |V|
// The first coin state, a,, at the node v is list_2[v]
a, = list_2[v]
For z < |v]
// The node a, +z joins to, j, is given by
// list_1[v][z]
Jj = list_1[v][x]
a; = list_2[j]

For y < |ji
// Find the coin state of j which joins to
// node v
When list_1[j][y] ==v

b=y

shift|a, + z][a; +b] =1

In Figure 2 the relations between the values used by this algorithm
are shown schematically. Performing this routine for each node of the
graph gives half of the shift operator. For each nonzero entry (i,7) in
the array simply populate the corresponding entry (j,¢) and we have the
required permutation matrix.

This routine can be used to generate an appropriate shift operator
for any standard adjacency matrix, that is, any whose entries are only
zeroes and ones, including those which contain self loops. More care must

8 Katie Barr et al.

Fig. 2. Relation between nodes (bold capitals), edge labels (bold lower case)
and book keeping quantities for a pair of nodes on an arbitrary graph structure.
The dashed line at node j indicates that there are possibly other edges

be taken if we wish to generate shift operators for graphs with multiple
connections between edges, but the principles remain the same. Clearly,
the size of the structure which can be simulated depends on the available
memory. The authors have been able to use the functions created using
the above routine to run walks over graphs with more than 7500 nodes for
approximately 100 timesteps in less than five minutes using a standard
desktop computer. Currently simulations of quantum walks on regular
graphs, which can be simulated in a much more compact way, cannot
have more than 102 sites. The limits imposed by memory considerations
for the size of quantum walk we can classically simulate are discussed in
more detail and for a variety of situations in [16].

Once the appropriate shift and coin operators have been created, the
only things left to be specified are the number of timesteps the walk
should be run for, the initial state of the walker and the information we
would like to gain about the walk.

3.3 Example

Before moving onto the applications of this algorithm, we illustrate it
for the simple case of the walk on the line. Clearly it is not possible to
simulate a walk on an infinite line, but analytic proofs of the asymptotic
behaviour can be found in [2]. For simplicity, we illustrate the first two
steps of the walk using the Hadamard operator (used in Equation 3),
shown in Figure 3. If the walker is initially localised at a single node
then this walk takes place over five nodes of the line. To account for the
extra coin states which would occur were the line infinite, we add self

Simulation methods for quantum walks on graphs 9

loops to the ends of the line of length five. The adjacency matrix for a
line with five nodes is then:

11000
10100
01010 (4)
00101
00011

This requires the shift operator:

0100000000
1000000000
0001000000
0010000000
0000010000 5
0000100000 (5)
0000000100
0000001000
0000000001
0000000010

As the protocol for generating the shift is identical for each node on
the line, we only need to describe how to generate the shift for a single
node, call this v. Say the first coin state of this node is called a_; and
the second is called a1, which join to nodes v —1 and v+ 1 respectively.
The coin state a_; moves amplitude to coin state a;; of node v — 1 as
it has come from the node in the +1 direction, with the corresponding
situation for node v + 1. Coin state a_; of v is joined to coin state of
a41 of v — 1 by finding the index of a_; in the shift operator. Using the
bookkeeping lists it is easy to find out which node a_; should join to,
and we use them again to find out what the index of the correct coin
state at that node should be in the shift operator.

On the line a two dimensional coin is required at each node, inducing
the following operator over five nodes:

10 Katie Barr et al.

Fig. 3. The first two steps of the walk on the line

|
— =
o O

S o oo O~ OOo
\
I

DO OO R LR OO OO
[N e N ee)

|
= =
OO OO oo

SO R OOO O OO
OO DO OO OO

|
I
— 000000 oo

Sl

[N}

SO OO OO OO
O OO OO o oo

e}

OO OO oo

o O O O

o O

\

I

Starting at the center of the node in the ‘moving left’ state, after the
first coin flip we have:

A IOREA®) ™

So after the shift operation equal portions of the amplitude have
moved to the nodes to the left and right of the origin. In the second
step half of the amplitude returns to the central node, with the rest
propagating in the left and right directions, as in Figure 3. The fact that
some amplitude goes away from the origin at each step is the reason why
the quantum walk propagates linearly with the number of timesteps 7',
rather than with /7 in the classical case.

As there are an infinite number of possible graphs with an arbitrary
number of nodes and edges, and uncountably infinite coin operators, it

Simulation methods for quantum walks on graphs 11

is not possible to numerically study every possible walk. It is therefore
necessary to narrow down the number of parameters that can be varied
by choosing particular types of walk to study. These choices will depend
on the reason why we are simulating the walk, and we now turn to two
applications which could not have been investigated in a timely fashion
without automated generation of the time evolution operators.

4 Applications

With code capable of generating appropriate shift and coin operators
from an adjacency matrix, any discrete time quantum walk of reasonable
size can be simulated. In this section, two applications of the outlined al-
gorithm are described and the results briefly discussed. Both applications
facilitate investigations into areas of current interest, namely perfect
state transfer and the interpretation of quantum walks as quantum com-
puters. The following numerical work was implemented in Python2.6,
using built in functions from the math and numpy modules in addition
to our own and the ones mentioned specifically below.

4.1 Perfect state transfer over small structures

In [4] we undertook a systematic investigation of quantum walks over
specific types of small structures in order to find out which structures
admit a particular type of quantum transport called perfect state trans-
fer. In this case the ‘state’ is described by the wavefunction, usually
denoted ¢ but here denoted 1)) = >, v c|v,c) to clarify that the
state specifies both the position and coin states. The problem then is to
find out how and when the entire state can be transported from one node
of the graph to another. Therefore perfect state transfer is deterministic
transport from some node v to another node w, and occurs after 1" steps
when the following condition is met:

> (w,d|(SC) v, c) = 1. (8)
c,d
It is clear from this definition that we are not concerned about whether
the configuration of coin states at node w is the same as they were at
node v, which enables perfect state transfer between nodes of different
degrees. The summation is over coin states only, as typically in perfect
state transfer scenarios the state is localised at a specific node.
The structures we investigated were based on small cycles, specifically
Cy, Cg and Cg. This choice was based on the fact that these cycles were
known to admit perfect state transfer between antipodal nodes under

12 Katie Barr et al.

certain conditions [30]. Up to four nodes were added to each cycle, in
the way described in [4]. In the case of Cy his gave rise to 1042 graphs
to test, of which many were isomorphic. Due to the fact that we ran our
simulations from the same node of the graph each time, it was necessary
to test the isomorphic cases too, this effectively tested between different
pairs of nodes in the graph. Simulations were then run for three types
of coin operator for 100 timesteps, using 1500 initial states. The initial
states always had the walker initially localised at a specific node, and
the coin states were chosen randomly such that they were uniformly
distributed according to the Haar measure [23], this ensures all possible
states have equal probabilities of arising. Using the formulae from [23]
and a random number generator to obtain the necessary parameters,
these initial states are easy to generate.

As we were looking for perfect state transfer to a specific node, the
output from the simulation was simply a list of the structures, initial
states, timesteps and probabilities for all cases where the probability
was greater than 0.99. Further analysis of the walks returned by the
simulation revealed that, in fact, perfect state transfer only occurred
when the probability of the walker being at the designated node cal-
culated using Python was exactly equal to one. This analysis was per-
formed in MAPLE, by using it to solve for initial states such that perfect
state transfer occurred on the graph investigated after the number of
timesteps suggested by the Python simulations. Using MAPLE we were
able to solve the relevant equations so we can be sure of this conclusion.
MAPLE is not suitable for brute force searching, but it is simple to ver-
ify results highlighted by searches using their built in equation solving
routines. Our approach to the analysis eliminates the possibility that ini-
tial states close to, but not identical to those tested gave rise to perfect
state transfer on the graphs highlighted by the Python simulations. De-
spite preliminary investigations suggesting that increasing the number
of initial states beyond our selected number did not affect the results,
it is still possible that some cases of perfect state transfer were missed,
however, as all previously known cases were identified by the simulation,
this seems unlikely. Due to the infinite number of possible initial states,
it is not possible to verify numerically that no initial state gives rise to
a particular form of transport.

The overall conclusion from the simulations was that perfect state
transfer is extremely rare, and the properties which preserve it are similar
regardless of whether the graph is based on Cy4, Cs or Cs. However, some
of the structures, shown in Figure 4, were found to admit perfect state
transfer and could be generalised into families of graphs. The results for
these infinite families were verified analytically. The robustness of this

Simulation methods for quantum walks on graphs 13

O .4
K; + K K>+ P, s+ C, ‘\‘

Fig. 4. The three families. The nodes highlighted with open dots indicate the
initial and target nodes, due to the symmetry of the graphs, it does not matter
which is which.

transfer and the transport properties of continuous time walks over these
graphs were also examined. The continuous time walk also had perfect,
or very high amplitude, state transfer and in one case it was possible to
write down an analytic expression for the time evolution of the walk.
Python has many sophisticated packages which greatly facilitated
further analysis of the graphs created. In particular, the networkx pack-
age can convert adjacency matrices, created as numpy arrays, into specific
graph data structures. These can be tested for isomorphisms, which could
then be removed. The isomorphic cases were needed for the perfect state
transfer investigations, to simplify the simulation by allowing the walker
to always start at the same node, in which case isomorphic graphs can
give rise to different walk dynamics. For some purposes, such as visualis-
ing each graph created, removing the isomorphisms makes the problem
far more tractable. With the isomorphisms removed we had 63 graphs
from the original 1042 based on Cjy. Finding graph isomorphisms is a no-
toriously tricky problem in computer science, as of yet we do not know
what complexity class the problem is contained in. In general, the prob-
lem is NP-complete [9], but this can vary depending on the particular
graphs being tested. There are many algorithms to test for graph isomor-
phism, some better suited to some graphs than others, and we used the
VF2 algorithm [10] as it is conveniently implemented using networkx.
Due to the relatively small size of our graphs, the isomorphism test is
very quick. The networkx package also allows for automated visualisa-
tion of the graphs created, using its specialised graph data structure.
There is a choice of visualisation options, which distribute the nodes in
different ways, some examples of which can be seen in Figure 5.

4.2 Language recognisers

Quantum walks are known to be universal for quantum computation,
because given appropriate graph structures and coin operators (in the
discrete time case, the result also holds for the continuous time case)

14 Katie Barr et al.

Fig. 5. Automated visualisation of a graph structure using networkx and vari-
ous options for node distribution: a) standard b) random distribution of nodes
¢) nodes positioned on a circle

they can be used to simulate a universal gate set either using a single
walker [8, 20] or multiple walkers [7]. In [3] we showed two ways in which
they can be used to solve language recognition problems. These walks
required a graph structure that was specified as a function of the length of
the input, so having pre built functions to generate the shift operation
from the adjacency matrix greatly facilitated the investigation of the
walks for inputs of arbitrary lengths. The adjacency matrices of these
graphs could be automatically generated easily using simple sequences,
once a numbering scheme for the nodes of the graphs was decided on.
A schematic diagram of the graph structure of a language accepting
graph with a spatially distributed input can be seen in Figure 6. Coin
operators designed in [20] to propagate amplitude forwards were used.
The input specifies how the walk should be initialised, see Figure 6 for
an example with a binary input alphabet. The setup described has a
specific accepting node, so the probability of the walker being at this
node after a specified number of timesteps determined whether or not
the input was accepted by the walk.

The language recognition properties of the walks were verified by
testing them on every binary string up to length 16. These strings were
easy to generate using the Python itertools package. The probability
of accepting each string was plotted against the Jaro distance [13, 14]
between that string and the string of the appropriate length in the lan-
guage accepted by the walk. The Jaro distance of strings w; and ws:

0 ifm=0
= { 3+ o+ 22 ot Y

with m being the number of matching characters, characters which occur
in both strings, in the same order, within a distance which is determined
by the length of the strings. The value ¢, the number of transpositions,
is found by dividing the number of characters which differ by sequence
order by 2. The three parts to the equation calculate the ratios of the

Simulation methods for quantum walks on graphs 15

abab abab abab
A0 a0 ees @00@ .0 0«0 a—Input
fHif " Trre ot
. =]
3 ° o
gs
QO
° aQ
. . EJ'_
. 5'
L L] :

.Accepting Node

Fig. 6. Basic setup of a graph which enables quantum walks to accept for-
mal languages by processing each input symbol simultaneously. The dotted
segments join to graph structures whose form depends on which language the
walk accepts.

number of matching characters to the lengths of w; and ws and then the
ratio of non-transpositions to matching characters.

Whilst 65532 strings were tested and verified to have the desired
properties, for clarity only the first 200 were plotted. The Jaro distance
was selected as it is always between zero and one, with equal strings
having distance one, so can easily be plotted against probability. An
example of such a plot can be seen in Figure 7 (a), and, as required, the
points where both curves go to one indicate indices of strings from the
language accepted by the walk.

Some walks developed in [3] are particularly suitable for recognising
languages which contain at most one word of each length. This is be-
cause the graph structure and coin operator, most notably the Grover
operator, can then be specified to check for this specific word. By pro-
cessing each input symbol simultaneously, this can be done in small
number of timesteps. The walks were shown to accept the regular lan-
guage Lq, = {(ab)™m € N} = (ab)* and the context-free languages
Leg = {a™b"|m € N}. The method can easily be used to accept the
context sensitive language Lgp. = {a™b™c™|m € N} if the model is ex-
tended to process inputs from alphabets with more than two symbols.
The authors have since used variations of the graphs from [3] to prove
the language acceptance properties via induction. Also, we have since

16 Katie Barr et al.

[
o

i
i -

100
String index
a) b)

Fig. 7. Results from a walk accepting a) Leq and b) Leven showing the prob-
ability of accepting a given string (black) and the Jaro distance between that
string and one from L4 of an appropriate size

used this type of walk to accept languages with more than one string of
each length with bounded error, namely Le,en, = {a,b}*a, though the
probability of accepting words not in this language is generally much
higher, as can be seen in Figure 7 (b).

Whilst much further work is needed regarding these walks, they offer
a novel way to consider quantum computation, in particular by allowing
‘quantum inputs,” whereby instead of a specific word, the initial state is a
superposition of words. Preliminary investigations suggest that the walks
can also be interpreted as performing a type of quantum state discrim-
ination, suggesting links between formal language theory and quantum
metrology which could provide novel insights into both fields.

5 Discussion

We have described an algorithm which generates the operators required
for the simulation of discrete time quantum walks over arbitrary struc-
tures, provided with the adjacency matrix for that structure. This has
allowed the authors to investigate a large range of such walks over irregu-
lar structures to a very high degree of precision. The algorithm presented
would not allow for efficient simulation of walks over regular structures,
as in the case of regular graphs direct specification of the shift operation
is possible. This bypasses the need for multiplication of large matrices,
hence greatly reducing the complexity of the simulation.

Additionally, the algorithms are not optimal if we wish to simulate
quantum walks over large structures, where the walker is initially lo-
calised. That is because the code takes into account the entire structure,
whereas the number of timesteps limits the proportion of the structure

Simulation methods for quantum walks on graphs 17

that the walker can have traversed at a given time. To efficiently simulate
these walks, an iterative process, specifying only the portion of the struc-
ture that the walker can have reached rather than the entire adjacency
matrix, is preferable. In light of this, the applications we have presented,
using irregular structures and, in one case initially delocalised walkers,
are particularly suited to the approach we have taken to the generation
of the walks. Whilst clearly numerical simulation of models representing
physical systems will always have shortcomings, the fact that our fur-
ther analysis strongly corroborated the results of the simulations justifies
the validity of simulation in the context of research into discrete time
quantum walks.

Acknowledgements

KB is funded by the UK Engineering and Physical Sciences Research
Council. VK was funded by a UK Royal Society University Research
Fellowship.

References

[1] Andris Ambainis. Quantum walk algorithm for element distinctness. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 22-31. IEEE Computer Society, 2004.

[2] Andris Ambainis, Eric Bach, Ashwin Nayak, Ashvin Vishwanath, and
John Watrous. One-dimensional quantum walks. In Proceedings of the
thirty-third annual ACM symposium on Theory of computing, pages 37—
49. ACM, 2001.

[3] Barr, K. and Kendon, V. Formal languages analysed by discrete time
quantum walks. arXiw preprint:1209.5238, 2012.

[4] Barr, K., Proctor, T., Allen, D., and Kendon, V. Periodicity and per-
fect state transfer in quantum walks on three families of graphs. arXiv
preprint:1204.5937v3, 2012.

[5] Milan Basi¢, Marko D Petkovié¢, and Dragan Stevanovié. Perfect state
transfer in integral circulant graphs. Applied Mathematics Letters,
22(7):1117-1121, 2009.

[6] Sougato Bose. Quantum communication through an unmodulated spin
chain. Physical review letters, 91(20):207901, 2003.

[7] A.M. Childs, D. Gosset, and Z. Webb. Universal computation by multi-
particle quantum walk. arXiv preprint arXiv:1205.3782, 2012.

[8] Andrew M Childs. Universal computation by quantum walk. Physical
review letters, 102(18):180501, 2009.

[9] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing,
STOC 71, pages 151-158, New York, NY, USA, 1971. ACM.

18

[10]

[11]

[12]

[13]

[14]
[15]

[16]
[17]

[18]

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

[27]

Katie Barr et al.

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A
(sub) graph isomorphism algorithm for matching large graphs. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 26(10):1367—
1372, 2004.

Alex D Gottlieb, Svante Janson, and Petra F Scudo. Convergence of
coined quantum walks on Ry. Infinite Dimensional Analysis, Quantum
Probability and Related Topics, 8(01):129-140, 2005.

Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 212-219. ACM, 1996.

Matthew A Jaro. Advances in record-linkage methodology as applied to
matching the 1985 census of tampa, florida. Journal of the American
Statistical Association, 84(406):414-420, 1989.

Matthew A Jaro. Probabilistic linkage of large public health data files.
Statistics in medicine, 14(5-7):491-498, 1995.

Julia Kempe. Discrete quantum walks hit exponentially faster. Probability
theory and related fields, 133(2):215-235, 2005.

V. Kendon. Where to quantum walk. arXiv preprint:1107.3795, 2011.
Viv Kendon. Quantum walks on general graphs. International Journal
of Quantum Information, 4(05):791-805, 2006.

Viv Kendon and Ben Tregenna. Decoherence can be useful in quantum
walks. Physical Review A, 67(4):042315, 2003.

Vivien M Kendon and Christino Tamon. Perfect state transfer in
quantum walks on graphs. Journal of Computational and Theoretical
Nanoscience, 8(3):422-433, 2011.

Neil B Lovett, Sally Cooper, Matthew Everitt, Matthew Trevers, and
Viv Kendon. Universal quantum computation using the discrete-time
quantum walk. Physical Review A, 81(4):042330, 2010.

Ashley Montanaro. Quantum walks on directed graphs. arXiv preprint
quant-ph/0504116, 2005.

Cristopher Moore and Alexander Russell. Quantum walks on the hy-
percube. In Randomization and Approximation Techniques in Computer
Science, pages 164-178. Springer, 2002.

Kae Nemoto. Generalized coherent states for su (n) systems. Journal of
Physics A: Mathematical and General, 33(17):3493, 2000.

Christos H Papadimitriou. On selecting a satisfying truth assignment.
In Foundations of Computer Science, 1991. Proceedings., 32nd Annual
Symposium on, pages 163-169. IEEE, 1991.

Nitin Saxena, Simone Severini, and Igor E Shparlinski. Parameters of
integral circulant graphs and periodic quantum dynamics. International
Journal of Quantum Information, 5(03):417-430, 2007.

T Schoning. A probabilistic algorithm for k-sat and constraint satisfac-
tion problems. In Foundations of Computer Science, 1999. 40th Annual
Symposium on, pages 410-414. IEEE, 1999.

Shenvi, N., JKempe, J., and Whaley. K. Quantum random-walk search
algorithm. Physical Review A, 67, 2003.

28]

[29]
[30]

31]

32]

[33]

Simulation methods for quantum walks on graphs 19

Peter W Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Foundations of Computer Science, 1994 Proceedings.,
85th Annual Symposium on, pages 124-134. IEEE, 1994.

T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders.
Quantum walks in higher dimensions. J. Phys. A: Math. Gen., 35, 2002.
Ben C Travaglione and Gerald J Milburn. Implementing the quantum
random walk. Physical Review A, 65(3):032310, 2002.

Ben Tregenna, Will Flanagan, Rik Maile, and Viv Kendon. Controlling
discrete quantum walks: coins and initial states. New Journal of Physics,
5(1):83, 2003.

Salvador Elias Venegas-Andraca. Quantum walks for computer scientists.
Synthesis Lectures on Quantum Computing, 1(1):1-119, 2008.

John Watrous. Quantum simulations of classical random walks and
undirected graph connectivity. In Computational Complexity, 1999. Pro-
ceedings. Fourteenth Annual IEEE Conference on, pages 180-187. IEEE,
1999.

20

Katie Barr et al.

Decision support for Complex
Systems: a Smart Grid case

Jose Evora, Jose Juan Hernandez, and Mario Hernandez

STANI, University of Las Palmas de Gran Canaria, Las Palmas, Spain,
jose.evora@siani.es, josejuanhernandez@siani.es,
mhernandez@siani.es

Abstract. Transitioning from traditional power grids to Smart
Grids involves the use of a different approach based on complex
systems to analyse the demand of power grids. This analysis
provides information which supports the decision making when
developing new policies for Smart Grids. These policies are de-
signed and then tested through simulations since it is not possi-
ble to test them directly in a real power grid. Simulation output
data can be analysed using a Business Intelligent approach in
order to find out KPI (Key Performance Indicators) which sup-
port decisions that tune policies. The way in which the results
management should be dealt with is through an OLAP (On-Line
Analytical Processing) approach which enhances the capability
of querying data.

1 Introduction

Climate change, the liberalisation of markets and other new require-
ments are pushing the energy sector towards a new paradigm known as
the smart grid. This paradigm is characterised by the introduction of re-
newable energy sources (RES) in the power grids, new technologies such
as storage mechanisms, massive integration of sensors and decision mak-
ers distributed along the grid or the introduction of a communication
layer for the management and control of these technologies. The smart
grid paradigm is also based on the use of Demand Side Management
(DSM), the objectives of which include the minimisation of the peak
demand and the system operation and planning improvement [3]. The
system complexity is therefore increased and new tools are needed for
the analysis and design of smart grids.

Due to the introduction of DSM in the Smart Grid, it is necessary
to conceive new policies in order to perform this management which
looks after the efficiency of power grids. This efficiency, among other

22 Jose Evora et al.

factors, is related to the efficient use of the energy available at all times,
which fluctuates mainly because of RES. However, Smart Grid policies
which manage power demand require an arduous analysis of individual
consumers and their devices. For this reason, demand requires to be
analysed in a disaggregated manner, leading to the usage of a complex
system approach to represent the power grid.

Since Smart Grid policies need to be thoroughly tested before their
exploitation. The procedure to test these policies is made through sim-
ulations, as it is not possible to experiment them in a real power grid.
Hence, it is necessary to run complex system simulations where the power
grid is represented to test the policies and thus provide feedback about
them.

In figure 1, a first iteration of the life cycle of a policy design for
the Smart Grid is presented. At this level, and taking into account some
high-level considerations about how it should be, a policy is conceived.
In order to find out whether the policy will work well or not it is needed
to perform a test. To this end, Key Performance Indicators (KPI) [6]
must be designed since they are required to support the decision making
process which will modify the policy. These KPI are intended to make
visible information which is hidden in the data provided by simulations.
After this, the simulation must be designed and developed according
to the test requisites. Once the simulation has been executed, results
will be available. As this simulation can correspond to a big power grid
where every single device is represented (complex system approach!),
the results the simulation provides could be huge. This output must
be managed in a way that enables a fast querying system so that KPI
calculations can be performed and used for the decision making process.
This process will involve some changes in the policy design which shall
be tested afterwards when another iteration is initiated.

The complexity of a system from the point of view of Smart Grid sim-
ulations is measured in terms of the amount of entities that are in and
the relationships among them which produce an emergent behaviour.
Therefore, the larger the amount of elements (i.e. entities and relation-
ships) is, the more complex the system is considered. This statement
is totally transportable to the results side. The quantity of results in a
complex system simulation increases proportionally to the increment of

! This representation could be regarded as agent-based. From our point of
view, an element is considered an agent whenever it exhibits intelligence [11].
As devices have a mechanistic behaviour, we do not consider them agents.
However, simulations that include intelligent elements (i.e. people switching
devices in households or units that apply smart grid policies) are considered
agent-based.

Decision support for Complex Systems 23

Smart Grid Policy

Test needing
KPI design
Simulation design

KPI calculation
Result managemen

Simulation
execution

Fig. 1. Life cycle of a Smart Grid policy development

the system complexity. For example, a system that has 10 000 entities
with an average of 5 state variables that have to be exported involves
that, at each time step, the system will be providing 50 000 results. If the
simulation is executed during 2 000 steps, the amount of results provided
at the end of the simulation will be about 100 million items.

In another context of Smart Grids, hot topics are all problems related
to Energy Data Management, such as the collection and exploitation
for business processes of energy consumption data from smart meters
installed in power grids [5]. These two examples correspond to problems
related to the management of huge amounts of data.

When a Smart Grid simulation is performed, the results management
is one of the most important issues as they will feed the design process of
the policy. The experience we have had in this field is that it is not possi-
ble to perform manually a thorough analysis on large amounts of results.
When facing such amounts of data, people usually focus on some details
for a certain amount of entities and then conclusions are extrapolated. It
has been empirically observed that this analysis may cover a very small
percentage of the result set. This implies that many other conclusions
could never be found out and extracted from data remaining hidden.

24 Jose Evora et al.

At this point, the use of tools which assist result analysis must be
considered in order to deal with this issue. Business intelligence (BI) [4]
techniques can play an interesting role in this stage, since it is considered
the set of strategies and tools that focus on administration and knowl-
edge creation through data analysis. Among these strategies, some of
them encourage the use of technologies such as OLAP (On-Line Ana-
lytical Processing) (e.g. Saiku [1]), information visualisation (e.g. Gap-
mind [8]) and all the data mining corpus which helps to identify and
extract hidden or non-evident knowledge (e.g. Weka [9]). These three
groups of technologies are especially important for this kind of decision
making.

In this paper, the problem of dealing with data exploitation will be
further detailed. Then, the OLAP approach to deal with this issue will
be exposed. Finally, an example of a Smart Grid case will be presented
where results of a simulation are managed following the OLAP approach
in order to identify how it helps the decision support when designing
Smart Grid policies.

2 Smart Grid simulation issues

Simulations play a crucial role in the design of Smart Grid policies since
they are a way to test them before their launch. However, the output
provided by the simulations must be managed in a way that allows the
policy designers to make decisions. This section explains the main con-
cerns when analysing results obtained in a Smart Grid simulation. When
facing a simulation of Smart Grids based on a complex system approach,
the results analysis becomes a difficult stage since the amount of entities
is huge.

All systems containing a large amount of entities and relations in
simulation processes provide a large amount of results. The way in which
these data are normally exported is through data files. These data files
are usually designed according to the data that will be managed thus
avoiding the possibility of querying this data beyond what was decided
to export. Therefore, whenever we deem it convenient to extract data,
which was not considered to export at the design phase, a new simulation
must be configured and executed.

In order to exemplify this issue, a disaggregated model of a power grid
system is used. This system only consists of the demand side, which is
disaggregated at the device level. It is precisely at this level where we can
find a layer consisting of heterogeneous elements, since the characteristics
to extract from a radiator are not the same as the ones from a television
(TV). If we want to preserve all variables that are not common to every

Decision support for Complex Systems 25

Simulation
Y I Y Y

o] [om] |

Y

Radiators ‘

Washing Machines

Fig. 2. Structure to export simulation results. Simulation outputs are exported
to several files. Each file is related to the data produced by a device kind.
For example, Radiators file contains information which regards the energy
consumption of these devices

device, it will be necessary to export each device type into a different
data sheet (Figure: 2). At this point, once the data exportation process
has been defined, we can start thinking about querying it. The list below
states some query examples and how they should be dealt with according
to this data exportation structure:

— Querying the consumption of all devices. This query is very
likely to be required. According to our data structure, firstly we cal-
culate the total consumption at each device type. This would involve
opening as many files as device types and making the calculations
to obtain the total consumption per device type. Secondly, those
columns which have the aggregated value at each device type must
be moved into a new sheet where the final calculation would be per-
formed obtaining the query result. The more device types there are,
the trickier this process becomes.

— Querying the consumption of all devices in a specific house-
hold. This process would consist in gathering the columns belonging
to all the devices contained in the household from the data files. Once
they are all together in a new sheet, the query result can be obtained
by adding up.

— Querying the consumption of all devices in a specific dis-
trict. The process to obtain this query is really tricky. Firstly, all the
devices belonging to a specific district must be listed. Next, all the
columns which refer to the devices consumption must be gathered
from the device type sheets following this list. Finally, all gathered
columns can be moved to a new sheet where the query can be ob-
tained.

Taking these examples into account, it is possible to imagine how
tricky the results management of more complicated queries can get.
Probably, some of these queries are easier to obtain by redefining the
simulation results format and running it again. However, it would also
be really tedious, and depending on the simulation kind, the results may

26 Jose Evora et al.

Households

o
2

Time

Fig. 3. An OLAP example of a cube for a power grid where every energy
consumption is related to a household, device and time

differ from the previous simulation and in the end it would be necessary
to start the result analysis from the beginning.

All these difficulties in querying the output of a simulation could in-
volve that many other queries are not made due to the fact that they
involve a strong and time consuming effort to perform them. Unfortu-
nately, this usually leads to focus on a small subset of variables of the
simulation neglecting much information and wasting too much time in
performing simple queries.

The root of the problem behind the result analysis is that such results
have a multi-dimensional and a multi-scale (namely temporal and spa-
tial) nature which cannot be managed by using conventional data sheets.
The example of the demand disaggregation is multi-dimensional and
multi-scale. Multi-dimensional, since every data (for example, a power
measure) is related to a specific device, location (household, building,
district...) and time. Multi-scale, since the information can be aggre-
gated at different time scales (per hour, per day, per month...) and at
different spatial levels (device, household...).

3 OLAP

On-Line Analytical Processing (OLAP) is a solution used in BI, the
aim of which is to accelerate querying large amounts of data. OLAP
is based on cubes [2](Figure: 3), a multi-dimensional structure where
data is stored. These cubes enable the insertion of data, namely facts,
which are referred to several dimensions. For example, the measure of
power taken from a washing machine can be referred to the device, the
household where the device is and the time. Therefore, in this case, there
would be three dimensions: devices, households and time.

Decision support for Complex Systems 27

Cube
Y Y Y Y
Dimension Fact Measure |[€—-- Indicator
Component Taxonomy
Feature Category
Rule

Fig. 4. An OLAP Cube structure. A cube contains dimensions, facts, measures
and indicators.

The structure of an OLAP cube which addresses our problem is pre-
sented in the figure 4. Every cube consists of dimensions, measures and
indicators. The list below describes every cube component.

— Dimension: it establishes a way to access the data inside the cube.
Every single data is related to some elements such as when and
where it happened. For example, a data of power consumption of a
household would be related to the dimensions household and time.

e Component: it is an element which is related to a dimension.
For example, a dimension which concerns households would be
filled by components which are households.

*x Feature: it is a property of the component. In case the com-
ponents are households, a possible feature could be the num-
ber of square meters there is in each household.

e Taxonomy: it is a way of categorizing a dimension. There are
different ways to categorize the components inside a dimension.
Each of these ways is known as taxonomy. In the example of
the household dimension, a taxonomy could be the size or the
orientation of the facade.

x Category: it is a set of components that satisfy some spe-
cific conditions. For instance, possible categories for the size
taxonomy could be small, medium or big. Therefore, each of
these categories would contain a set of household components
the relationship of which is having a similar size.

28

Jose Evora et al.

Fact

Context State

YN VAR

06/05/2013 HH1 20 135

Fig. 5. A fact consists of context and state. The state is a set of measures
which are related to components through the context

- Rule: it establishes the condition that a component must
meet in order to fall into the category that owns the rule.
In the case of the small category, a possible rule could
be: all the household components the feature of which
number of square meters is below 80m?

— Measure: it provides a semantic to the data inserted in the cube,

e.g. the power of the household mentioned above is just a number.
However, the power measure is what provides the semantic to this
number. A measure is usually related to a metric which enables the
comparison among measures that are in different cubes. In this case,
the metric of the power measure would be Watts.

Indicator: it designates the way in which a measure or a set of
measures are aggregated. For example, the power measure could be
aggregated using an average (AVG) function. This way of aggregat-
ing measures is known as indicator. It is possible to have several
indicators for one measure, i.e. the integral operator over the power
measure would provide a second indicator over this measure which
could be designated as energy indicator.

Fact: it relates the measures of a cube with the dimensions. A fact
indicates that a certain combination of values (measures) took place
for a specific combination of elements (components). In other words,
a fact can be understood as a relation of a state to a context. The
state is a set of measures and the context consists of components
including time. In figure 5, the state contains 20 (centigrades) and
135 (Watts) as measures. These measures are related to a context
which indicates the time and household where those measures were
taken.

Decision support for Complex Systems 29

Scenario

District i

Household

[poice [}

Fig. 6. Scenario composition. Several districts which contain several house-
holds and each household contains several devices.

4 An OLAP Smart Grid example

In this section, all concepts exposed previously will be used in a practical
case. Assuming that a new Smart Grid policy is to be tuned, several
simulations of power grid demand will be performed. To make decisions,
these simulations must focus on the power demand and the temperature
at the residential sector. Therefore, the scenario for those simulations
consists of several districts with households (Figure: 6). Each household
contains several devices and calculates the internal temperature.

To this end, several cubes have been designed so as to analyse the
data coming from the simulation: first of all, the household cube which
contains the facts regarding the temperature and, secondly, one cube
per device type (TVs, Radiators and Washing Machines, among others)
which contain facts about the devices. Since there are many kinds of
devices in a household, in this example we are going to focus on two of
them: TVs and radiators.

There are two dimensions in the household (HH) cube: one mea-
sure and one indicator (Figure: 7). The Time dimension is common to
all cubes and configures a standard way of categorizing the timeline.
Household dimension contains the households transformed into compo-
nents which are described by features. The temperature of the household
is the only measure that this cube is going to store and it will be ag-
gregated using an average criteria according to the designation of the
indicator.

The household dimension contains a taxonomy which concerns the
locations (Figure: 8). This taxonomy is categorized following several lev-
els: country, city and district. For instance, two household components
have been included, both of which contain a feature which is their lo-

30 Jose Evora et al.

HH
Cube
Y A Y Y
Time HH Temperature Temperature
Dimension Dimension Measure AVG Indicator

Fig. 7. Household cube. This cube contains two dimensions: time and house-
hold. Each fact will relate every temperature measure to a time and a house-
hold

HH
Dimension
Location HH ref 1212 HH ref 1213
Taxonomy Component Component
Spain England Location Location
Category Category feature UMT feature UMT
Madrid London
Category Category
District 1 District 10
Category Category

Fig. 8. Household dimension. This dimension contains a taxonomy that clas-
sifies the components in districts according to their location feature

cation using UTM coordinates. Therefore, these location features allow
the dimension to identify which district each household is located in.

The TV and Radiator cases are exposed in order to demonstrate why
devices must be disaggregated into separated cubes. The main reason for
this separation is due to the fact that both devices do not share the same
features and, therefore, their classification methods are different. This
separation enhances the capacity of making queries since it is possible
to filter components by features that are only present in a specific kind
of device.

The TV cube registers data about power consumption as well as the
TV mode (off, standby and on) (Figure: 9). Every set of measures (power
and mode) is related to three dimensions: time, household and TV. Time
and household dimensions are exactly the same dimensions as the ones
detailed above. The TV dimension contains information about the TVs

Decision support for Complex Systems 31

TV
Cube
Y Y Y i Y Y Y
Time % HH Mode € Mode Power €] Power AVG
Dimension Dimension Dimension Measure Indicator Measure Indicator

Fig.9. TV cube. This cube contains three dimensions: time, TV and house-
hold. Therefore, each fact will relate a power and mode measures to a time
and a TV which is located in a specific household

TV
Dimension
Techonology TV ref 3212 TV ref 3213
Taxonomy Component Component
LED LCD Tech. feature Tech. feature
Category Category LED LCD
i i
h 4 A J
Tech. feature Tech. feature
= LED Rule =LCD Rule

Fig. 10. TV dimension. In this case, the presented dimension has a taxonomy
which classifies TV components according to their technology

in a component format. Furthermore, there are two indicators which are
responsible for aggregating measures: the mode indicator, which per-
forms a calculation that provides the percentage of TVs that are turned
on, and the power indicator, which aggregates the power measures reg-
istered using an average formula.

The TV dimension, like the household dimension, focuses on spe-
cific features related to TV components (Figure: 10). In this case, the
possibility of filtering TVs using a technological criteria is considered
relevant. Therefore, two categories have been created so as to separate
LED televisions from LCD televisions. This information will allow us to
compare the consumption among the different TV technologies. Hence,
TV components contain the technology feature which will be used to
calculate whether a TV belongs to the LED or LCD category by using
the rules that are related to these categories.

The radiator cube stores measures related to both the power con-
sumption and the thermostat level (Figure: 11). These measures are
related to three dimensions, as in the case of the TV cube. In this case,

32 Jose Evora et al.

Radiator
Cube
Y Y Y i Y Y Y
Time Radiator HH Thermostat | | Thermostat Power _|Power AVG
Dimension Dimension Dimension Measure Indicator Measure Indicator

Fig. 11. Radiator cube. This cube contains three dimensions, as in the case
of the TV cube. However, the measures are different since, in this case, the
thermostat level of the radiator is stored. As it can be observed, devices are
heterogeneous. This is the reason why devices have been separated according
to a type criteria

apart from time and household dimensions, a new dimension has been
designed: radiator dimension. This dimension contains components that
represent radiators and their features. In addition, there are two indi-
cators which aggregate the measures. On the one hand, the thermostat
indicator aggregates the measures stored using a gradient function which
shows big changes in the thermostat level in short periods of time. On
the other hand, the power indicator aggregates the power measures using
an average formula like in the TV cube.

The radiator dimension focuses on specific features which concern
radiator components (Figure: 12). Since radiators are usually considered
big consumers, a taxonomy to classify them into two groups has been
designed. Indeed, this taxonomy will allow us to find out the amount of
radiator components which are in what we consider a small consumer
category (under 1kW installed power) or a big consumer category (over
1kW). Two components belong to this dimension and contain the feature
installed power which is used to perform the classification in the installed
power taxonomy.

4.1 N-Level indicators and Data mining

So far, some mechanisms which allow us to extract information based
on the measures have been presented: indicators. These indicators are
regarded as first level indicators since they are just based on measures.
For this reason, it is possible to define, from first level indicators, a
second level of indicators, which are computations carried out based on
previous level indicators. This idea can be extended to the concept of
N-Level indicators. Introducing this concept, data mining [7] procedures
can be used in order to find out patterns.

An example of this is presented in figure 13. In this case, a data miner
has been designed in order to identify consumption habits which concern

Decision support for Complex Systems 33

Radiator
Dimension
InstalledPower Rad. ref 2212 Rad. ref 2213
Taxonomy Component Component
Big consumer Small consumer| Installed Power Installed Power
Category Category Feature 1.2 kW Feature 0.8 kW
i i
¥ ¥
Over 1 kW Under 1 kW
Rule Rule

Fig.12. Radiator dimension. This dimension is intended to store radiator
components and classify them according to a criteria based on the installed
power. Radiators are thus categorised into small or big consumers according
to this feature

Thermostat > Radiator 3 Consumer 3 Smart Grid
Indicator Miner Habits Policy

Fig. 13. Radiator data miner which intends to identify consumer habits

radiators. Using the thermostat indicator, which calculates the gradient
based on the thermostat level measures, this data miner is able to identify
habits throughout time. Therefore, common patterns of radiator usage
could be identified and used to feed the Smart Grid policy design.

Moving onto low level details, this miner queries, for each radiator,
its thermostat indicator throughout time. Based on this indicator, it uses
techniques to extract habit patterns. These habits can be used by the
policy in order to exert a more personalised control over the demand
which enhances customer quality of service.

The list below presents two other cases where miners can be used in
order to improve the design of a smart grid policy:

— Based on the technology feature of TV components, a miner can cal-
culate the average time to amortise a TV based on a low-consumption
technology by comparing them to the consumption of other techno-
logical kinds. According to these results, a smart grid policy could
subsidise the purchase of TVs with a lower consumption. This kind
of policy applies to other device kinds such as fridges or washing
machines, among others.

— In the household cube, a miner can correlate the temperature and
energy consumption of a household with its isolation features, sup-

34 Jose Evora et al.

20 20 16
18 -

Time (h) [Temp. (2C)| Power(kw)| 10 16 ’ N 14
0 14 0,7 0 14 oA w2
4 13 05 o 4 8 12 16 20 2 12 i o N
8 16 09 10 yal 08

8~
12 19 1,2) PR 08
16 18 09 - Lo 4 o4
20 17 15 B S T s 2 02
24 15 09 0 0 0
o 4 8 12 16 2 2 o 4 8 12 16 2 24
a) b) c)

Fig. 14. Visual representations of both temperature (temp) and power

posing the information is available. Based on this correlation, the
improvement of household isolation could be proposed.

4.2 Information visualisation

Information visualisation is the use of visual representations of data
which step up the human cognition [10]. This is an important stage
when analysing data since a proper visualisation may reveal information
that could not be possible to extract using other visual representations.
Figure 14 presents different visual representations which are discussed
in the paragraph below.

Part a in figure 14 presents the data in a table format. From there, it
is cognitively difficult to extract temperature or power trends throughout
the day, especially when there are many rows. In order to deal with this
issue, both series can be represented in separated charts to enable the
extraction of trends (part b). These trends can be extracted at each
series but relational effects among them are neglected. However, part ¢
represents both individual trends and relational effects among them. It
is possible to extrapolate the relation among high temperatures and high
consumption at noon.

The example presented in the section is a simple case which intends
to provide insights of what is known as information visualisation. In this
case, the representation required to show the information correctly is too
evident. However, there are cases in which finding out the proper way to
represent the information requires a deeper study.

4.3 Decision making

Using this approach to perform the simulation analysis enhances the
capability of making decisions. The way in which the data is structured
facilitates the interaction. From now on, queries can be as complex as

Decision support for Complex Systems 35

needed in order to find out interesting conclusions which feed the decision
making at the Smart Grid policy design. This structure is to be consumed
using information visualisation patterns which could reveal interesting
information that cannot be detected simply by analysing numbers.

In the previous example, important information can be extracted to
be used in the Smart Grid policy design. The list below summarises some
of the most relevant information:

— Differences among districts: Using the household dimension, it
is possible to find differences among the districts located in the same
city or, even, among cities. These differences can be noted in the
way in which power is consumed, the devices are used or the tem-
perature in the households. All of this could help in the design of a
policy which provides enough flexibility in order to deal with these
differences without losing efficiency when applied.

— TV case: it is possible to compare the differences in the consumption
related to the TV technology. However, the TV dimension can be
designed to take into account other aspects such as labelling and
size. For instance, the labelling taxonomy could give information
about whether it is worth promoting a Smart Grid policy which
would subsidise the purchase of new high efficiency TVs.

— Radiators: using N-Level indicators allows us to identify consump-
tion patterns that can be used to design more efficient Smart Grid
policies which take into account customer usage. In other words,
those patterns may be identified in order to build an intelligent con-
trol. On the one hand, this control could take note of the customer
timetable in order to look after the quality of service. On the other
hand, this control could take into account the grid state in order to
reduce or increase consumption dynamically.

5 Conclusions and outlook

Transitioning from classical power grids to Smart Grids conveys a huge
set of decisions to make. Among others, some of the most important are
related to the management of demand. Therefore, an important analysis
on the demand in a disaggregated manner is needed. This disaggregation
involves the understanding of the power grid as a complex system.
Since consumption management policies in the context of the Smart
Grids are not possible to experiment directly on the infrastructure, it is
necessary to simulate them in order to make decisions. The complexity
of the power grid system when it is disaggregated is so high that the
results that the simulations return are huge. At this level, we have found

36 Jose Evora et al.

out that the way in which those results are handled is crucial for making
decisions.

Using an OLAP approach has been really helpful as much important
information hidden among the data results was discovered. Information
visualisation studies have definitely been useful so as to detect relational
effects among variables. These effects can be further studied so that
modifications on the Smart Grid policy take them into account. Another
important strategy to extract information which is hidden or not evident
is data mining. Thanks to data mining, consumption patterns can be
identified and used to modify the Smart Grid policy in order to take
care of the quality of service.

OLAP solutions can be used in many other environments since they
are meant to facilitate decision supporting at management positions. We
have identified heterogeneous environments such as metrics to program
code, product selling and public information systems. In other simulation
environments, this method of data analysis can be really interesting, e.g.
a set of simulations which run different configurations using the same
scenario. Indeed, using an OLAP solution would make it possible to
compare all of these configurations with each other.

6 Acknowledgment

This work has been partially supported by Agencia Canaria de Investi-
gacién, Innovacién y Sociedad de la Informacién of Canary Islands Au-
tonomic Government thanks to the PhD grant funding assigned to José
Evora with reference TESIS20100095 and also the project “Framework
para la Simulacién de la Gestién de Mercado y Técnica de Redes Eléctricas
Insulares basado en Agentes Inteligentes. Caso de la Red Eléctrica de
Gran Canaria”, with reference SolSub200801000137.

References

[1] Saiku. http://analytical-labs.com/.

[2] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Ware-
housing and OLAP Technology. ACM Sigmod Record, 26(1), 1997.

[3] A. Gabaldon, A. Molina, C. Roldan, J.A. Fuentes, E. Gomez, 1J Ramirez-
Rosado, P. Lara, JA Dominguez, E. Garcia-Garrido, and E. Tarancon.
Assessment and simulation of demand-side management potential in ur-
ban power distribution networks. In Power Tech Conference Proceedings,
2003 IEEFE Bologna, volume 4. IEEE, 2003.

[4] H. P. Luhn. A business intelligence system. IBM Journal of Research
and Development, 2(4):314-319, Oct.

[11]

Decision support for Complex Systems 37

Torben Bach Pedersen, Wolfgang Lehner, and Gregor Hackenbroich. Re-
port on the First International Workshop on Energy Management Data.
Sigmod Record, 42(1), 2013.

Eric T. Peterson. The big book of Key Performance Indicator. 2006.
Anand Rajamaran, Jure Keskovec, and Jeffrey D. Ullman. Mining of
Massive Datasets. Cambridge University Press, 2011.

Hans Rosling, Ola Rosling, and Anna Rosling. Gapminder. http://www.
gapminder.org/.

The university of Waikato. Weka. http://www.cs.waikato.ac.nz/ml/weka/.
Colin Ware. Information Visualization: Perception for Design. Morgan
Kaufmann Publishers Inc, 2012.

Michael Wooldridge. An Introduction to MultiAgent Systems - Second
Edition. John Wiley and Sons, 2009.

38

Jose Evora et al.

Flattening Virtual Simulink
Subsystems with Graph
Transformation

Péter Fehér', Tamés Mészaros', Pieter J. Mosterman?, and
L4szl6 Lengyel!

! Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Budapest, Hungary
{feher.peter, mesztam, lengyel}@aut.bme.hu
2 Design Automation Department, MathWorks
Natick, MA, USA

pieter.mosterman@mathworks.com

Abstract. Nowadays embedded systems are often modeled us-
ing MATLAB® | Simulink® and Stateflow® to simulate their
behavior and facilitate design space exploration. As design pro-
gresses, models are increasingly elaborated by gradually adding
implementation detail. An important elaboration is the execu-
tion order of the elements in a model. This execution order is
based on a sorted list of all semantic relevant model elements.
Therefore, it is fundamental to remove model elements that
only have a syntactic implication such as hierarchical levels with
no semantic bearing. The corresponding language construct in
Simulink is the virtual subsystem. Thus, to create an implemen-
tation or to execute a model, Simulink performs a flattening
model transformation that eliminates virtual subsystems. The
work presented in this paper raises the level of abstraction of the
model transformation by modeling the transformation itself in
order to unlock the potential for reuse, platform independence,
etc.. To this end, the transformation is implemented by apply-
ing graph transformation methods. An analysis of the solution
shows the transformation model is proper (e.g., it terminates).

1 Introduction

Advances in electronics miniaturization combined with an understand-
ing of computing are driving an ever-increasing complexity of technical

40 Péter Fehér et al.

systems of truly all sorts (consumer electronics, defense, aerospace, au-
tomotive industry, etc.). Not only does the increasing capability of elec-
tronics enable more extensive logic to be implemented, the robustness
and efficiency in communication protocols that it supports has been the
driver of ever more network connected systems. The corresponding sys-
tems operate at the confluence of cyberspace, the physical world, and
human participation. Recently, these systems have been termed Cyber-
Physical Systems [1].

Raising the level of abstraction is an important tool to manage the
enormous complexity of such Cyber-Physical Systems. To this end, Model-
Based Design (e.g. [22], [21], [27]) introduces levels of abstraction in the
form of computational models with executable semantics. At the various
levels of abstraction, only concerns pertinent to the particular design task
are included while implementation aspects are deferred to be addressed
in more detailed models. Throughout the design of the embedded sys-
tem part of a Cyber-Physical System, these models are then elaborated
to include increasing implementation detail. The elaboration terminates
when a level of detail is arrived at from which an implementation can be
automatically generated. The implementation may be either in software
by generating C code or in hardware by generating HDL.

The support for abstractions is important in formulating a design
problem in the problem space. The design then concentrates on trans-
forming the problem formulation into a solution formulation. In this
context, it is of great value that the original problem formulation can be
void of solution aspects. This is why domain-specific modeling is becom-
ing increasingly popular to describe complex systems. It is a powerful,
but still understandable technique. Its main strength lies in the appli-
cation of the domain-specific languages. A domain-specific language is a
specialized language that can be tailored to a certain problem domain;
therefore, it is more efficient, than the general purpose languages that
often are tailored to a solution domain (and domain specific in that
sense) [18] [17].

Modern model transformation approaches are becoming increasingly
valuable in software development because of the ability to capture do-
main knowledge in a declarative manner. This enables various steps in
the software development to be specified separate from one another with
apparent advantages such as reuse. In embedded system design, the com-
putational functionality that is ultimately embedded moves through a
series of design stages where different software representations are used.
For example, before generating the code that is to run on the final target,
code may be generated that includes additional monitoring functional-
ity. As another example, the software representation may be designed in

Flattening Virtual Simulink Subsystems 41

floating point data types before being transformed into fixed point data
types.

Today Simulink® [4] is a popular tool for control system design in
industry. Therefore, applying model transformations for embedded soft-
ware design purposes on Simulink models renders the developed technol-
ogy easily adaptable and adoptable by industry. However, currently it is
impossible to define and model declarative model transformations inside
the Simulink environment. Therefore, a modeling and model processing
framework is applied. The Visual Modeling and Transformation System
(VMTS) [10] [7] framework has been prepared to be able to communicate
with the Simulink environment. In this manner, with the help of modeled
model transformation, problems can be solved at the most appropriate
abstraction level. In this case the most appropriate abstraction level
means that the required model optimization, modification, or traversing
can be expressed in the Simulink domain. Thus Simulink users can use
their well-known entities to define the required processing. This is the
fundamental premise of Computer Automated Multiparadigm Modeling;
to use the most appropriate formalism for representing a problem at the
most appropriate level of abstraction [23] [24].

While operating at a given level of abstraction, two further mecha-
nisms are often employed to scale system complexity: partitioning and
hierarchy [20]. In the Simulink environment, hierarchy is supported as a
purely syntactic construct by virtual subsystems and as a construct with
semantic implications by nonvirtual subsystems. These subsystems are
represented as blocks with input and output ports that are used to con-
nect subsystem blocks. Subsystem blocks may contain other subsystem
bocks or primitive blocks that represent behavior without being able to
be further decomposed.

Before a Simulink model is executed, the engine creates an execution
list with an order in which all of the blocks are executed. The execu-
tion list is computed from the sorted list, which is also generated by
the Simulink engine based on the control and data dependencies that
determine how the different blocks can follow each other in an overall
execution. To create this list, the semantically superfluous hierarchical
layers have to be flattened. So, the virtual subsystems that are only
graphical syntax and that have no bearing on execution semantics are
flattened before the sorted list is generated [5] [16].

This paper focuses on a novel solution to flattening virtual subsys-
tems in Simulink models. This approach is based on a model transfor-
mation created in VMTS. Using model transformation to solve this issue
helps raise the abstraction level of the transformation from the frequently
used API programming to the level of software modeling. The solution

42 Péter Fehér et al.

possesses all the advantageous characteristic of the model transforma-
tion, for example, it is reusable, transparent, and platform independent.
The different attributes of the transformation are also examined in detail
in this paper.

The remainder of the paper is organized as follows. Section 2 intro-
duces related work. Section 3 briefly presents the VMTS and its graph
rewriting-based model transformation capabilities. The basics of the
communication between Simulink and VMTS are discussed in Section 4.
Next, Section 5 introduces the flattening transformation. In Section 6,
the properties of the flattening transformation are examined. Next, in
Section 7, an example Simulink model is processed with the presented
flattener transformation. Finally, concluding remarks presented.

2 Related Work

In [8] a formal description is given about a translation process that can
convert a well-defined subset of Simulink block diagram models and
Stateflow® [6] state transition diagram models into a standard form
of hybrid automata [9]. This transformation is implemented with graph
transformation. As a result, different verification tools for hybrid au-
tomata can operate on the industry-standard Simulink and Stateflow
models.

To specify program transformation such as program optimizers, other
work [13] developed a successful method. This method can be uniformly
applied to analysis and transformation. The underlying technological
solution is based on graph transformation.

Since the design patterns are valuable parts of the different phases
of the software development, there is a necessity to specify them on
a high level of abstraction instead of capturing this information infor-
mally. Other work [28] uses different graph transformation to support
this necessity. With the help of this approach the design patterns can be
specified on a higher abstraction level.

Another algorithm that works with Simulink models is presented in
[14]. This algorithm is introduced for mapping discrete-time Simulink
models to Lustre programs. Here, the transformation is not formally
modeled as a declarative graph transformation, though.

In other related work [11], a new data model for tool integration is
presented. This approach extends existing data models by an abstract
graph model. Here, the manipulation is based on model transformation
as formal graph transformations.

The work presented in this paper is different in that it does not ad-
dress any semantic complications. A purely syntactic model transforma-

Flattening Virtual Simulink Subsystems 43

tion is developed. Moreover, in contrast to the aforementioned exogenous
transformations, the transformation developed in the work in this paper
is endogenous (i.e., no change of formalism) [19]. Finally, there are no re-
strictions to the Simulink modeling formalism necessary as the presented
work applies to the full set of Simulink blocks.

In [26] and [15] novel approaches are proposed to represent Simulink
models as directed, sparse graphs. Each subsystem graph is added to the
highest layer graph.

3 VMTS, The Modeling Framework

The Visual Modeling and Transformation System (VMTS) is a gen-
eral purpose metamodeling environment supporting an arbitrary num-
ber of metamodel levels. Models in VMTS are represented as directed,
attributed graphs. The edges of the graphs are also attributed. The visu-
alization of models is supported by the VMTS Presentation Framework
(VPF) [25]. VPF is a highly customizable presentation layer built on
domain-specific plugins, which can be defined in a declarative manner.

VMTS is also a transformation system. It uses a graph rewriting-
based model transformation approach or a template-based text genera-
tion. Templates are used mainly to produce textual output from model
definitions in an efficient way, while graph transformation can describe
transformations in a visual and formal way.

In VMTS the Left-Hand Side (LHS) and the Right-Hand Side (RHS)
of the transformation are represented together. In this manner, the trans-
formation itself can be more expressive. In order to distinguish the LHS
from the RHS in the presentation layer, the VMTS uses different colors.
The elements represented with blue color are created by the transforma-
tion rule. This means that if the LHS and the RHS would be depicted
in two separated graphs, these elements would be only part of the RHS
graph. Similarly, the red color indicates that the given element will be
deleted by the transformation rule. The yellow color is used when an
edge between two elements will be replaced. In this case the type and
the attributes of the edge will not change. The gray background means
that the element will be modified. With the help of these colors, the
transformation process is easily understandable. There is always an op-
tion to apply imperative constraints to each element, but this is not
depicted separately.

The control flow language of the VMTS [12] contains exactly one start
state and one or more end state objects. The applicable rules are defined
in the rule containers. The rule containers determine which transforma-
tion rule must be applied at the given control flow state. This means that

44 Péter Fehér et al.

> ®

TagVirtualSubsystem [1]
A Matlah ToglirualSubsystem |

FlattenSubsystem_Step10 FlattenSubsystem_Stepl
RW Matich Fiotrener ConnectBlocks RW Matich Flatrener Ger OutEdges
FlattenSubsystem_Step9 FlattenSubsystem_Step2
RW Matioh Fiatrener Delers Subsysee RW Matiob_Flartener OutBlock

m

FlattenSubsystem_Step8 FlattenSubsystem_Step3
RW Matioh_Flattener_Delets ContEdge RW Matioh Flattener GetdilEdges
FlattenSubsystem_Step7 FlattenSubsystem_Stepd
RW Matioh_Fiattener Rootleve! R Matioh Flattener DeleteEdges
FlattenSubsystem_Step6 FlattenSubsystem_Step5
RW Matioh_Fiattener Parentlevel RW Matioh Flattener lnBlock

Fig. 1. The control flow of the TRANSFLATTENER transformation

exactly one rule belongs to each rule container. The application number
of the rule can also be defined here. By default, the VMTS tries to find
just one match for the LHS of the transformation rule. However, if the
IsExhaustive attribute of the rule container is set to true, then the rule
will be applied repeatedly as long as its LHS pattern can be found in the
model. Figure 1 depicts an example control flow model; actually this is
the control flow of the flattening transformation, which will be presented
in detail in Section 5.

The edges are used to determine the sequence of the rule contain-
ers. The control flow follows an edge in order of the result of the rule
application. In VMTS, the edge to be followed in case of successful rule
application is depicted with a solid gray flow edge and in case of a failed
rule application with a dashed gray flow edge. Solid black flow edges
represent the edges that can be followed in both cases.

Flattening Virtual Simulink Subsystems 45

4 Communication between Simulink® and VMTS

Since the model is created in Simulink, which is part of the MATLAB®
[3] environment and the transformation is created in another system
(VMTS) there is a need to establish a communication method between
the two systems.

To be able to represent Simulink models in VMTS, the metamodel of
the Simulink languages, which are organized in various different libraries
(also called blocksets), is required. Since in Simulink there is no hard
boundary between the different languages, that is, a given block can
be connected to almost everything else, a common Simulink metamodel
was created. This metamodel contains all the elements of the Simulink
library. The generation of this metamodel consists of the following two
steps.

First, a core metamodel was created that contains the Block element,
which is the common ancestor of all the nodes in Simulink models, and
a descendant Subsystem node, which expresses the common ancestor of
Simulink Subsystems. This metamodel also contains the Signal edge and
a Containment edge to reflect containment hierarchy between nodes.

Then, by programmatically traversing the base Simulink library, this
metamodel has been extended with the other nodes found in the different
specialized libraries. For each Simulink element, exactly one node was
generated. This resulted in several hundred new metamodel elements.

In addition to the metamodel, the VMTS must be prepared to read
and write Simulink models. Thus, a new kind of data exchange layer
was generated for communicating with MATLAB. To modify Simulink
models, the P/Invoke technology [2] has been chosen. This has the ad-
vantage that the MATLAB interpreter can be called directly through
DLL calls, instead of manipulating the textual model (mdl extension)
files. This way the VMTS is independent of file format changes, and
the changes performed on the VMTS model can be made visible, live
during the transformation execution, on the Simulink diagrams as well.
Furthermore, the values that are only available during simulation time
of a Simulink model can be accessed also.

5 The Flattening Transformation

This section introduces and discusses the details of the transformation
TRANSFLATTENER. The transformation is created in VMTS. As it was
mentioned before, its goal is to process Simulink models and flatten its
virtual subsystems.

46 Péter Fehér et al.

For a better understanding the final control flow is presented first,
which is shown in Fig. 1. This model defines how the transformation
rules follow each other.

At first, the transformation checks if there is a virtual Subsystem
block in the model. So the RW_MATLAB_TAGVIRTUALSUBSYSTEM trans-
formation rule attempts to match a simple Subsystem block that has the
IsVirtualSubsystem attribute set to true. If the transformation engine
does not find a match for this rule, then there is no virtual Subsystem
in the model, thus the transformation terminates. Otherwise, the trans-
formation steps into the loop, which processes this Subsystem.

In Simulink, a block cannot be directly connected to a block on a
different hierarchical level. When a block is moved out from a Subsystem,
it loses all its edges automatically. This means that the transformation
must take into account the connections between the blocks, and must
take care of creating the necessary edges. Moreover, when a Subsystem
is flattened, the Inport and Outport blocks of the Subsystem are deleted.
So the transformation also must ensure that the blocks connected to the
appropriate ports will be connected to each other after the processing.

The Inport and Outport blocks represent the input and output ports
of the Subsystem. Each port of the Subsystem is associated with an
appropriate block in the Subsystem. For example if a Subsystem has
two input ports and three output ports, then there are two Inport and
three Outport blocks in the Subsystem, and these blocks have a reference
number to the port they belong to. This behavior is presented in Fig. 8.

In the aforementioned loop, which is responsible for processing the
virtual Subsystem, the first applied rule is the RW_MATLAB_FLATTENER-
_GET_OUTEDGES transformation rule. It is depicted in Fig. 2. In order
to handle the deletion of the ports this rule matches the outgoing edges
of a Subsystem, and deletes them if a match is found. In the meantime,
the identifier of the block connected to the Outport port of the Subsystem
(the toNode in Fig. 2) and the port number that the edge is connected
to are stored in the appropriate Outport block (the endNode in Fig. 2).

After processing outgoing edges from all Subsystem type nodes, the
transformation moves to the next transformation rule: RW_MATLAB_-
FLATTENER_OUTBLOCK (Fig. 3). This rule matches blocks that have
outgoing edges to an Qutport block and if a match is found deletes
the edge connecting them. It also copies the information stored in the
Outport block into the other one (the simpleNode in Fig. 3) and extends
it with the port number where the edge starts. This way this block knows
all the information about the edges the transformation must create after
the block is moved out of the Subsystem. This information consists of
the followings:

Flattening Virtual Simulink Subsystems

virtuaSubsystem =]

CommonlyUsedBlocks_Subsystem

outgoingEdge

toNode [|
Block
Model 0)

Model 0,

endNode B
CommanlyUsedBlocks_Outl

Modei 0

Fig.2. The transformation rule
RW_MATLAB_FLATTENER_GET_-
OUTEDGES

virtualSubsystem B

CommontyUsedBlocks_Subsyst=m

Model 0,

simpleBlock | |

Fig. 4. The transformation
rule RW_MATLAB_FLATTENER._-
GETALLEDGES

virtualSubsystem

S|

CommeniylsedBlocks_Subsysiem

Model 0f

simpleNode |
Block

lsstEdge

Model 0]

Fig.3. The transformation rule
RW _MATLAB_FLATTENER_OUT-
Brock

fromMode| || incomingEdge [virtualSubsystem B8
Block CommaonlylisedBlocks_Subsystem
Model 0 Modei 0)

startNode =]

CommanlyUsecBlocks_Inl

Model 0,

Fig.5. The transformation rule
RW _MATLAB_FLATTENER_IN-
BLock

The port number the edge starts,

— The identifier the edge is connected to,

— The port number the edge ends,
The necessary attributes of the edge.

In the previous two steps the transformation focused on the blocks
connected to the Out ports and Outport blocks of the Subsystem. The
next rule embodies the same functionality with every block in the Sub-
system. The RW_MATLAB_FLATTENER_GETALLEDGES rule is depicted
in Fig. 4. It does not differentiate based on the type of the block, which
means that it matches Inport blocks as well as the blocks processed pre-
viously (i.e., the ones connected to the Outport blocks). The reason for
this is the possibility that a block may have multiple outgoing edges
and the transformation needs information about every edge. The rule is
matched for every element in the Subsystem exactly once and stores all

information about their outgoing edges.

47

48 Péter Fehér et al.

After the first three rules of the loop, every block of the Subsystem
knows the relevant information of their outgoing edges. Moreover, the
blocks connected to the Outport blocks know which blocks are connected
to the appropriate Out port as well. This means that the transforma-
tion can delete the edges inside the Subsystem, so if a block is moved
out of it, then no dangling edges remains. The rule RW_MATLAB_FLAT-
TENER_DELETEEDGES simply does that (i.e., deletes the edges between
the blocks of the Subsystem).

In the next step the transformation deals with the blocks connected to
In ports. The transformation rule RW_MATLAB_FLATTENER_INBLOCK
is shown in Fig. 5. It matches the incoming edges of Subsystem nodes
and if a match is found deletes them. As it has been mentioned, the
RW_MATLAB_FLATTENER_GETALLEDGES rule matches Inport blocks
as well, so these elements know the necessary information about their
edges. In this manner the current rule can copy this information to the
blocks connected to the appropriate In ports. The information is also
extended with the port number of the edge directed from the block to
the Subsystem. Upon completion of this rule the blocks connecting to
the Subsystem know the characteristic of the edges the transformation
must create after the Subsystem is deleted.

At this point the blocks related to the Subsystem store the necessary
information about their outgoing edges. The transformation also deleted
the edges connecting to the Subsystem and the ones between its blocks.
This means that the blocks are ready to be moved to a higher hierarchical
level. The higher hierarchical layer means the Subsystem containing the
Subsystem that is actually processed, if there is any. In case there is not,
then the root layer is the higher layer. The transformation rule RW _-
MATLAB_FLATTENER_PARENTLEVEL looks for the parent Subsystem. If
it finds a match, then the blocks contained by the processed Subsystem,
except the In and Out ones, are replaced into the parent. The rule is
depicted in Fig. 6. If the processed Subsystem still contains elements
besides the Inport and Outport blocks after this rule, then it means, that
the Subsystem is not contained by anything, it is at the root level. So
the RW_MATLAB_FLATTENER_ROOTLEVEL rule must delete only the
Containment typed edges between the Subsystem and its blocks. In this
manner the blocks are not contained by anything, they are moved to the
root level as well.

Next, the transformation can safely delete the Subsystem. However,
it cannot leave any dangling edges, so if it was contained by another
Subsystem, then the transformation must delete the Containment edge
after which the Subsystem is deleted.

Flattening Virtual Simulink Subsystems 49

parentSubsystem =]

CommeniyUsedBlocks_subsystem

Model 0,

virtualSubsystem B simpleBlock] fromNode £ newkdge simpleNode[|
CommonlyUsedBlocks _Subsystem Block
Modei 0, Mode! 0 M ! M i

Fig.6. The transformation rule Fig.7. The transformation rule
RW _MATLAB_FLATTENER_PAR- RW _MATLAB_FLATTENER_CON-
ENTLEVEL NECTBLOCKS

Finally, the transformation must recreate the edges between the mov-
ed blocks. This is based on the information stored in the blocks. The
transformation rule RW_MATLAB_FLATTENER_CONNECTBLOCKS cre-
ates the necessary edges (Fig. 7). The block storing the information is
the source block; the identifier provides the target block. The appropriate
ports are also saved along with other relevant information.

With this rule the loop ends and the transformation returns to the
RW _MATLAB_FLATTENER_TAGVIRTUALSUBSYSTEM transformation ru-
le, which checks for another virtual Subsystem. If there is one, then the
engine steps into the loop again, otherwise it terminates.

The next section discusses the formal analysis of this transformation.

6 Analysis of the Transformation

The previous section has presented the transformation TRANSFLAT-
TENER and its rules. Before its usage, it is advisable to perform the
analysis of the transformation definition, which is the subject of this
section. First, the functionality of the transformation is examined and
then its further attributes, such as correctness and termination, are ver-
ified.

The coverage of Proposition 1 and Proposition 2 is depicted in Fig. 8.
This picture may also help illustrate the relation of the different blocks.

Definition 6.1. The inner elements of a Subsystem are all elements,
except the Inport and Outport typed blocks, contained by the Subsystem.

Proposition 6.1. After the transformation TRANSFLATTENER, the in-
ner elements of the processed Subsystem are connected if and only if they
were connected before the transformation.

50 Péter Fehér et al.

Block connected
Inport block In port
Bap B1apo O to the In port

I5ubsystem | n

=S,

Prop 1. Mogei o) Prop 2.

Prop 2.

Block connected
Outport block Out port
EI0utp u port Ml to the Out port

Fig. 8. The structure of a subsystem

Proof. Three transformation rules (RW_MATLAB_FLATTENER_OUTBL-
O0CK, RW_MATLAB_FLATTENER_GETALLEDGES and RW_MATLAB_F'L-
ATTENER_CONNECTBLOCKS are responsible for the connection between
the blocks. First, the RW_MATLAB_FLATTENER_OUTBLOCK deletes the
edges pointing to the different Outport blocks, which represent the Out
ports of the Subsystem. The rule also stores the identifiers of the blocks
that had an edge pointing from the same Out port. (The identifiers of
these blocks are already stored in the Out block because of the RW _-
MATLAB_FLATTENER_GET_OUTEDGES rule.) Next, the RW_MATLAB_-
FLATTENER_-GETALLEDGES stores for each block the identifier of those
blocks that the given block has an edge pointing to. It also stores the de-
tails of the edges, that is, from which port point to which port. The rule
examines every block exactly once. Next, the other rules of the transfor-
mation place the elements onto a higher level in the hierarchy. Since it
is not possible in Simulink that elements in different hierarchy level are
directly connected, it is ensured that after the replacing there is no edge
pointing to or from the moved block. The transformation also deletes all
edges between the inner elements to avoid the dangling edges. Finally,
when the elements of the Subsystem are already placed onto a higher hier-
archical level, the RW_MATLAB_FLATTENER_-CONNECTBLOCKS creates
the edges based on the stored information for each block. Since this is
the only rule that generates edges and does this based on the stored
information in the different blocks, there will be no new edges between
the inner elements of the Subsystem. Note that the information about
the edges is stored for each and every inner element that has outgoing
edges, thus these edges will be regenerated.

In this manner the inner elements of the Subsystem are connected if
and only if they were connected before the transformation execution. 0O

Flattening Virtual Simulink Subsystems 51

In order to not change the functionality of a Simulink model it is
required that a block is reachable from another block if and only if it
was reachable before the transformation.

Since the transformation cannot modify the functionality of a pro-
cessed model, the following are required by the transformation:

— Let o denote the set of blocks outside of the Subsystem that have
an outgoing edge to a given In port. Let i denote the set of inner
elements that are connected to the Inport block related to the given
In port. With this notation, after the transformation all elements in
o must have an edge pointing to all elements in 1.

— Regarding the Out ports we can state the same requirements. Let
o denote the set of blocks outside of the Subsystem that have an
incoming edge from a given Out port; and ¢ denote the set of inner
elements that are connected to the Outport block related to the given
Out port. In this case, after the transformation all elements in 7 must
have an outgoing edge to all elements in o.

Proposition 6.2. After the transformation TRANSFLATTENER leaves
the ports of the processed Subsystem the functionality of the Simulink
model does not change.

Proof. The RW_MATLAB_FLATTENER_GET_OUTEDGES and the RW _-
MATLAB_FLATTENER_OUTBLOCK transformation rules are responsible
for not changing the functionality of the model when the Out ports are
removed. First, the RW_MATLAB_FLATTENER_GET_OUTEDGES rule st-
ores information in each Out block. This information contains the iden-
tifier of the blocks to which any edges point from the appropriate Out
port. Moreover, the port attributes of these edges are also stored. The
rule also deletes these edges. Next, the RW_MATLAB_FLATTENER_OUT-
BLoOCK attempts to match those edges that are pointing from one of the
inner elements of the Subsystem to one of the Outport blocks. For every
match, the rule deletes the edge and copies the information stored in
the Outport block to the matched element. It also extends this informa-
tion with the number of the port from where the matched edge starts.
With the help of these two transformation rules it is ensured that the
blocks that have outgoing edges to one of the Outport blocks possess
the proper information. The proper information means the identifiers of
the block, where the edges from the appropriate Out port point to. The
edges based on this information will be recreated by the RW_MATLAB _-
FLATTENER_CONNECTBLOCKS rule after the elements are placed to a
higher hierarchical layer.

To ensure that the functionality of the model remains the same
in case of the In ports, two rules are needed as well. These rules are

52 Péter Fehér et al.

the RW_MATLAB_FLATTENER_GETALLEDGES and the RW_MATLAB _-
FLATTENER_INBLOCK. As it was described in the proof of the Propo-
sition 1, the RW_MATLAB_FLATTENER_GETALLEDGES rule stores for
each and every block, so for the Inport blocks as well, to which port
of which blocks it has outgoing edges. Next, the RW_MATLAB_FLAT-
TENER_INBLOCK matches each edge that points from a block outside of
the Subsystem to one of its In ports. The rule deletes this edge, since after
deleting the Subsystem there cannot be any dangling edge. The rule also
copies the stored information from the appropriate Inport blocks to the
matched block and extends it with the number of the port the matched
edge starts from. With the help of these two transformation rules it is en-
sured that the blocks, which have outgoing edges to one of the In ports,
have the information, where the appropriate Inport block has outgoing
edges. The edges based on this information will be created by the RW _-
MATLAB_FLATTENER_CONNECTBLOCKS transformation rule after the
elements are placed into a higher hierarchical layer.

It can thus be stated that after eliminating the ports of the Subsystem
the functionality of the Simulink model does not change. a

Consequence of Proposition 2: The number of the edges in the
Simulink model changes as follows: > (—s; — fi + (si * fi)) + D (—S0 —
lo+ (50 %1,)), where s; stands for the number of edges going into the i*"
In port of the Subsystem, f; means the number of edges going out from
the it" Inport block, s, stands for the number of edges going out from
the ot® Out port of the Subsystem and I, means the number of edges
going into the o' Outport block.

Proposition 6.3. Proposition 1 and Proposition 2 together state that
all inner elements of the processed Subsystem are connected if and only
if they were connected before the iteration and the functionality of the
model does not change. Considering the two propositions it can be stated,
that the functionality of the model does not change after the Subsystem
is flattened.

Proof. The proof follows from the proofs of Proposition 1 and Proposi-
tion 2. 0

Proposition 6.4. Fach iteration of the transformation TRANSFLAT-
TENER moves the inner elements of the processed Subsystem exactly one
level higher.

Proof. The RW_MATLAB_FLATTENER_PARENTLEVEL and the RW_M-
ATLAB_FLATTENER_ROOTLEVEL transformation rules are responsible
for this behavior. The RW_MATLAB_FLATTENER_PARENTLEVEL atte-
mpts to find a match, where the processed Subsystem is a child element

Flattening Virtual Simulink Subsystems 53

of another Subsystem. If such a match is found then the rule deletes
the Containment edge between the processed Subsystem and its inner
elements and also creates a Containment edge between the parent Sub-
system and the aforementioned inner elements. If there is no match for
this rule, then it can be stated that the processed Subsystem is at the
root level. So the RW_MATLAB_FLATTENER_ROOTLEVEL rule simply
deletes the Containment edges of the processed Subsystem. This means
that its inner elements are moved to the root level. Neither of these two
transformation rules match for the Inport and Outport blocks of the Sub-
system. O

Definition 6.2. The execution hierarchical layers are layers created not
for purely graphical purpose, but have a bearing on execution semantics.

This means that since the wvirtual Subsystems are created to help
organize and understand the models and do not have any additional
role, the ezxecution hierarchical layers are created only by nonvirtual
Subsystems.

Proposition 6.5. The transformation TRANSFLATTENER does not mo-
ve elements between execution hierarchical layers.

Proof. The RW_MATLAB_TAGVIRTUALSUBSYSTEM is the first rule of
the transformation. The rule attempts to match virtual Subsystems. At
the beginning of each iteration, a virtual Subsystem is tagged as the
Subsystem under processing. As a consequence, only the elements of a
virtual Subsystem are modified during the actual iteration. As a conse-
quence none of the objects of a non-virtual Subsystem are moved to a
higher hierarchical level. O

Proposition 6.6. The transformation TRANSFLATTENER flattens all
virtual Subsystems.

Proof. The RW_MATLAB_TAGVIRTUALSUBSYSTEM transformation rule
is the first rule of the iteration: This rule expresses the loop condition. At
each time the rule is evaluated, it attempts to match a virtual Subsystem.
If such a match is found then the found Subsystem will be processed.
The other rules of the iteration move the inner elements of this Sub-
system onto a higher hierarchical layer and also delete this Subsystem.
None of the rules creates any type of Subsystems. This means that ev-
ery iteration decreases the number of virtual Subsystems by one in the
model. The iteration continuous till the RW_MATLAB_TAGVIRTUAL-
SUBSYSTEM cannot find a successful match anymore. This means there
are no remaining virtual Subsystems in the model.]

54 Péter Fehér et al.

Proposition 6.7. The transformation TRANSFLATTENER always ter-
manates.

Proof. To examine the termination of the transformation the following
must be checked:

— The control flow cannot go into an infinite loop,
— The transformation rules, which are applied exhaustively, terminate
in finite steps.

The control flow terminates if the RW_MATLAB_TAGVIRTUALSUB-
SYSTEM rule cannot find a match. This happens if and only if there are no
virtual Subsystems in the model. In case there is no virtual Subsystem in
the model at the starting point, the transformation terminates without
stepping into the iteration. Otherwise a match is found and the transfor-
mation steps into the loop. Proposition 6 states that the transformation
flattens all virtual Subsystem. Since in Simulink the Subsystems cannot
be recursively defined (i.e. the containment loops are forbidden) there
are finitely many Subsystems in the model. This means that after finite
number of iteration there will be no remaining virtual Subsystems in the
model, so the RW_MATLAB_TAGVIRTUALSUBSYSTEM rule cannot find
a successful match anymore, thus the control flow terminates.

In the transformation each rule is applied exhaustively except the
RW_MATLAB_TAGVIRTUALSUBSYSTEM rule. The exhaustively applied
rules must be checked whether they terminate in finite steps:

— RW_MATLAB_FLATTENER_GET_OUTEDGES rule: This rule matches
an edge between the Out port of a Subsystem and other blocks. If
a match is found the rule deletes this edge. This means that every
application of the rule reduces the number of edges between the Out
ports and other blocks, thus after finites steps it cannot be applied
anymore.

— RW_MATLAB_FLATTENER_OUTBLOCK rule: This rule works by the
same principle. The only difference between the two rules is that this
one attempts to match an edge between an inner element and the
Outport block of the Subsystem. The deletion of the matched edge,
without creating any new, ensures its termination.

— RW_MATLAB_FLATTENER_GETALLEDGES rule: This rule marks the
matched block at each application. After several steps there is no re-
maining unmarked inner element in the Subsystem. Since there is a
condition in the LHS of the rule that the block cannot be marked
before the rule is applied, the system cannot find a match.

— RW_MATLAB_FLATTENER_-DELETEEDGES rule: The rule simply ma-
tches an edge between the blocks of the Subsystem and if a match

Flattening Virtual Simulink Subsystems 55

is found deletes it. After finite steps there are no edges left between
the blocks, and the rule cannot be applied.

— RW_MATLAB_FLATTENER_INBLOCK rule: This rule is equivalent to
the RW_MATLAB_FLATTENER_GET_OUTEDGES, but this one oper-
ates between the In ports and the Subsystem. It deletes the matched
edges as well, therefore cannot be applied after a certain number of
steps.

— RW_MATLAB_FLATTENER_-PARENTLEVEL rule: The rule matches
and deletes the containment edge between an inner element and the
actual Subsystem. It is irrelevant that it creates a new edge between
the parent Subsystem and the inner elements, since the LHS of the
rule checks containment edges between the actual Subsystem and
other blocks. This ensures that the rule cannot be applied indefi-
nitely.

— RW_MATLAB_FLATTENER_ROOTLEVEL rule: The rule simply del-
etes the containment edge between the actual Subsystem and its
inner element. The deletion of the matched item without creating
any new items ensures its termination.

— RW_MATLAB_FLATTENER_DELETE_CONTEDGE rule: The principle
is the same. The rule attempts to match a containment edge between
the actual Subsystem and a parent one. If it succeeds, then it deletes
this edge.

— RW_MATLAB_FLATTENER_DELETE_SUBSYSTEM rule: The rule del-
etes the actual Subsystem. The LHS checks that the Subsystem must
be marked. This marking occurs in the RW_MATLAB_TAGVIRTUAL-
SUBSYSTEM rule, which is applied exactly once before every iteration.
In this manner there is only one element that can be a match for
this rule.

— RW_MATLAB_FLATTENER_CONNECTBLOCKS rule: The rule match-
es blocks that store information about edges to create. After the
rule creates such an edge, it removes the information from the block.
Since the RW_MATLAB_FLATTENER_-GETALLEDGES rule was ap-
plied for a finite number of times and this is the only transformation
rule that stores information about the edges to create, the RW _-
MATLAB_FLATTENER_CONNECTBLOCKS rule will be applied for a
finite number of times as well.

Since both the control flow and the transformation rule terminate
after finite number of steps, the transformation terminates as well. 0O
7 Experimental Results

The presented model transformation was applied on different Simulink
models. One of these source models is depicted in Fig. 9. The root level is

56 Péter Fehér et al.

shown in Fig. 9(a). This model contains a virtual Subsystem with one In
port and two Out ports. The inner structure of this Subsystem is shown
in Fig. 9(b). It can be seen, that each Inport/Outport block relates to
exactly one In/Out port. This hierarchical layer also contains a virtual
Subsytem, which is presented in Fig. 9(c).

After the transformation TRANSFLATTENER terminates, the struc-
ture of the model changes, as it is shown in Fig. 10. All inner elements
were moved to the next level, and eventually, since the model did not
contain any non-virtual Subsystem, to the root level. The Subsystem
blocks were deleted with their In- and Outport blocks. The connection
within the blocks were correctly maintained. The example also demon-
strates that the transformation handles well when an Out port of a
virtual Subsystem is connected to multiple blocks. In this manner, the
transformation did not change the functionality of the source model.

The transformation was examined on simpler and more complex mod-
els as well, and the results always were found to be correct by inspection.

8 Conclusions and Future Works

As a popular tool for the design of embedded control systems, indus-
try relies on Simulink models to support a level of abstraction much
above the embedded implementation in, for example, C code. Design
relies heavily on model elaboration to increasingly add detail to the de-
sign models. Such elaboration is a form of model transformation that
currently is implemented in software as part of the Simulink code base
or as external functionality based on the Simulink model API.

Part of the elaboration is removing hierarchical structures that have
only a syntactic effect such as flattening of syntactic hierarchical lay-
ers. In this paper a detailed model transformation-based solution has
been presented for flattening virtual subsystems in Simulink models.
The approach enables taking advantage of benefits of modeled model
transformation such as reusability and platform independence. In this
manner, the abstraction level of the model transformation problem can
be raised. Besides the transformation details, its formal analysis has been
also discussed.

The transformation was implemented in the Visual Modeling and
Transformation System. Therefore the modeling framework and its com-
munication with the Simulink environment were briefly introduced as
well.

Future work intends to study whether with the help of this transfor-
mation, the sorted list and the execution list can also be implemented

Flattening Virtual Simulink Subsystems

-

B Complex* = | B i)
File Edit View 3Simulation Format Teols Help
hbEeE& » = [i00 [Nomal ~
Sine Wave In =
Minhlax py— Scope
Clodk

Ready 100% oded5

(a) The root level of the Simulink® model
B Complex/Subsystem * = | B i

File Edit View Simulation Format Tools Help

Died& T > 100 [Nomal -l BB e RET

Convert
ne?

Data Type Conversion

Ready 100% oded5
(b) The model contained by the fist Subsystem
ril Complex/Subsystem/Subsystem * l == &r

File Edit View 5Simulation Format Tools Help

beE&E 4 3 100 |Nomal

15 @ =3

In1 Qutl

P
Lt

line2D
Product

Producti

Caonstant

Ready 100% oded5

(c) The containment of the nested Subsystem

Fig. 9. The example Simulink® model

57

58 Péter Fehér et al.

W Complex* = | B |

File Edit View Simulation Format Tools Help

D&) > 100 [Nomal ~|| B @S BRER®

ubsystem_Subsystem_Abs

bsystem_Subsystem_Produc{

Subsystem_Subsystem_Froduct
Subsystem_Subsystem_Product2
Subsystem_Subsystem_Canstant UbsEIem_SubsysiEm_Frocs

Ready 100% oded5

Fig. 10. The model after the TRANSFLATTENER transformation

via model transformation. In this manner the abstraction level could be
raised even further and more benefits unlocked.

9 Acknowledgments

This work was partially supported by the European Union and the Eu-
ropean Social Fund through project FuturICT.hu (grant no.: TMOP-
4.2.2.C-11/1/KONV-2012-0013).

References

[1] PCAST document. http://varma.ece.cmu.edu/InfoCPS/Readings.html,
2007.

[2] An introduction to P/Invoke and marshaling on the Microsoft .NET com-
pact framework. http://msdn.microsoft.com/en-us/library/aa446536.aspx,
2012.

[3] MATLAB® user’s guide. http://www.mathworks.com/help/matlab/index.
html, Sep 2012.

[4] Simulink®. http://www.mathworks.com/simulink/, 2012.

[5] Simulink® users manual. http://www.mathworks.com/help/simulink/
index.html, 2012.

[6] Stateflow® user’s guide. www.imec.be/elela/HK19/background /stateflow_
users_guide.pdf, 2012.

[7] VMTS website. http://vmts.aut.bme.hu/, 2012.

[8] Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic translation
of simulink/stateflow models to hybrid automata using graph transfor-
mations. FElectron. Notes Theor. Comput. Sci., 109:43-56, dec 2004.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

Flattening Virtual Simulink Subsystems 59

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. THEORETICAL COMPUTER SCIENCE, 138:3-34,
1995.

L. Angyal, M. Asztalos, L. Lengyel, T. Levendovszky, I. Madari, G. Mezei,
T. Mszros, L. Siroki, and T. Vajk. Towards a fast, efficient and cus-
tomizable domain-specific modeling framework. In Software Engineering.
ACTA Press, 2009.

Raul Camposano Ansgar Bredenfeld. Tool integration and construction
using generated graph-based design representations. In Design Automa-
tion, 1995. DAC ’95. 32nd Conference on, pages 94-99, 1995.

Mrk Asztalos and Istvn Madari. An improved model transformation
language. In Automation and Applied Computer Science Workshop 2009,
2009.

Uwe Amann. How to uniformly specify program analysis and transforma-
tion with graph rewrite systems. In Compiler Construction (CC), pages
121-135. Springer, 1996.

Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, and Stavros
Tripakis. Translating discrete-time simulink to lustre. In In: Third In-
ternational ACM Conference on Embedded Software, Lecture Notes in
Computer Science, pages 84-99. Springer, 2003.

Florian Deissenboeck, Benjamin Hummel, Elmar Jiirgens, Bernhard
Schéatz, Stefan Wagner, Jean-Frangois Girard, and Stefan Teuchert. Clone
detection in automotive model-based development. In Proceedings of the
30th international conference on Software engineering, ICSE 08, pages
603-612, New York, NY, USA, 2008. ACM.

P. Fehr, P. J. Mosterman, T. Mszros, and L. Lengyel. Processing simulink
models with graph rewriting-based model transformation. Model Driven
Engineering Languages and Systems (MODELS 12) - Tutorials, 2012.
M. Fowler. Domain Specific Languages. The Addison-Wesley Signature
Series. Addison-Wesley, 2010.

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: En-
abling Full Code Generation. Wiley, 2008.

Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. A taxonomy
of model transformation. In Proc. Dagstuhl Seminar on ”Language
Engineering for Model-Driven Software Development”. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl. Elec-
tronic, 2005.

P. J. Mosterman, J. Sztipanovits, and S. Engell. Computer-automated
multiparadigm modeling in control systems technology. Control Systems
Technology, IEEE Transactions on, 12(2):223-234, march 2004.

Pieter J. Mosterman, Jason Ghidella, and Jon Friedman. Model-based
design for system integration. In The Second CDEN International Con-
ference on Design Education, Innovation, and Practice, pages TB3-1—
TB3-10, 2005.

60

22]

23]

[24]

[25]

[26]

[27]

[28]

Péter Fehér et al.

Pieter J. Mosterman, Sameer Prabhu, and Tom Erkkinen. An industrial
embedded control system design process. In Proceedings of The Inaugural
CDEN Design Conference (CDEN’04), pages 02B6—-1-02B6-11, 2004.
Pieter J. Mosterman and Hans Vangheluwe. Computer automated multi-
paradigm modeling in control system design. IEEE Transactions on Con-
trol System Technology, 12:65—70, 2000.

Pieter J. Mosterman and Hans Vangheluwe. An introduction to computer
automated multi-paradigm modeling, 2004.

Tams Mszros, Gergely Mezei, and Tihamr Levendovszky. A flexible,
declarative presentation framework for domain-specific modeling. In Pro-
ceedings of the working conference on Advanced visual interfaces, AVI 08,
pages 309-312, New York, NY, USA, 2008. ACM.

Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H. Pham, Jafar M. Al-
Kofahi, and Tien N. Nguyen. Accurate and efficient structural charac-
teristic feature extraction for clone detection. In Proceedings of the 12th
International Conference on Fundamental Approaches to Software Engi-
neering: Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, FASE ’09, pages 440-455, Berlin,
Heidelberg, 2009. Springer-Verlag.

G. Nicolescu and P.J. Mosterman. Model-Based Design for Embedded
Systems. Computational Analysis, Synthesis, and Design of Dynamic
Models Series. CRC Press, 2010.

Ansgar Radermacher. Support for design patterns through graph trans-
formation tools. In In Applications of Graph Transformation with Indus-
trial Relevance (Intl. Workshop AGTIVE99, Proceedings), LNCS 1779,
pages 111-126. Springer, 1998.

Bursting a Bubble: Abstract
Banking Demographics to
Understand Tipping Points?

Philip Garnett

Department of Anthropology, Durham University, Dawson Building, South
Road, Durham, DH1 3LE. UK philip.garnett@durham.ac.uk

Abstract. It has become popular to describe the behaviour
of certain systems as “undergoing a tipping point”. This is nor-
mally used as a description of a system that has rapidly changed
from an apparently stable state to a new state with little or no
warning. A wide range of complex systems can display tipping
point behaviour, from climate systems to populations of people.
Here we present preliminary work of using the British banking
sector from 1559 to 2012 as a case study for the modelling of
complex systems that show tipping point behaviour. We present
a description of an abstract population model of the banking
system. Once implemented we hope to use this model to test
our assumptions about how systems undergo tipping points. In
the future it might also help determine what the key drivers of
the population trends seen in the British banking sector are, and
what the possible implications were of past legislative interven-
tions.

1 Introduction

The term tipping point is often used to describe a system that has un-
dergone a rapid change in state. It is often applied when aspects of the
change in state were not predictable before hand, such as the potential
for very occurrence of the state change, the exact timing, or the nature
of the final system state [3, 9]. We are interested in developing models
and simulations of systems that could potentially experience a tipping
point, avoiding the ever present danger of programming the tipping point
into the model (and therefore the resulting simulation if implemented).
Current best practise of building a simulation of this kind dictates that
the system is simplified into a number of key interacting components.
This is a difficult step as in a truly complex system it is difficult to iden-
tify the key causal components for an observed behaviour. Our informed

62 Philip Garnett

opinions of what is or is not important might be very accurate, but may
also be focused on the wrong part of the system altogether. Once iden-
tified these components are then given simplified versions of their real
behaviour, the simulation is then started from a suitable initial condi-
tion and the resultant system behaviour observed. However, the very
nature of the modelling process biases the modeller towards selecting
components of the larger system being modelled that have at least the
potential to produce desired behaviour. This is somewhat inevitable as a
modeller is not going to included bits of a system that he/she believes to
be irrelevant. The process therefore has an aspect of self-selection. In our
case as researchers we look for systems that display what we consider to
be tipping point behaviour. We then, in the background of already hav-
ing decided that the system has displayed what we define as a “tipping
point”, make assumptions about the behaviour of the components of
that system. When the model is then built care is taken not to build the
solution into the model, but it is impossible to operate in a completely
unbiased way.

What the current best practice does give us is some indication of
how good our assumptions about a system are. If we have identified
likely key system components that when given reasonable behaviours do
go on to produce the system behaviour that we are interested in seeing,
then we have at the very least learnt something about our understanding
of that system. This understanding can be compared with that of other
researchers, and also considered in the wider background of the field of
study. In short, we can make some assessment of how good we think that
model is and how good we think its underlying assumptions are. This
knowledge of the model can then be taken into account when the model
is used. Models of tipping points have an additional problem that often
we have only one example of a system going through a tipping point.
Therefore we don’t have a good understanding of how that system truly
behaves; we do not know what constitutes its normal state. Therefore
when making assumptions about key components and key behaviours we
do so with the additional assumption that it can go through a tipping
point. Therefore it would be helpful to the modelling process that the
modeller had no knowledge of what we define as a tipping point.

In this paper we approach this from a slightly different angle. Rather
than commissioning a modeller (free of the burden of ‘tipping point’
knowledge) to build a model of a system with only information that
does not give away that it is capable of undergoing a tipping point,
and then observing what they determine as important components and
behaviours. We have chosen a model system where the important deter-
minates of the global behaviour are not clear, but what is clear is that the

Bursting a Bubble 63

system has the potentail to undergo a tipping point. We have collected
detailed population data on the banks present in British banking system
from 1559 to 2012. The data includes useful demographic data, including
the size of population of banks for each year, the number of bank fail-
ures, the number of bank creations, and also the number of mergers. Not
only do we have the number of mergers but we are also able to track the
flow of banks into one another by acquisition. The data suggests that in
terms of population the banking sector undergoes a tipping point during
this time period, but importantly it’s a tipping point that we have so far
being unable to satisfactorily discover the basis of. We therefore believe
that we know a lot about the system, its components and behaviours,
but we do not know which behaviours are producing the observed tipping
point. Is this an opportunity to develop a simulation of a complex system
and learn something about the modelling process itself, but also about
the extent of our understanding of the banking system. The historical
nature of the data also allows us to make predictions about how the
population of banks could have responded to changes to the regulation
of the sector, allowing the testing of alternative regulatory interventions.
Once fully implemented we might also be able to predicted the effect of
present day interventions on the future banking populaiton.

We have made extensive use of the CoSMoS process [1] to guide
the development of a number of different simulations of biological and
behavioural systems [6-8]. This paper applies the CoSMoS process to
building an abstract model of the population demographics of the British
banking sector from from 1600 to 2012. We focus on the first step of this
process where assumptions are made about what parts of the British
banking sector need to be included in the model.

2 Background

2.1 CoSMoS Process: The modelling lifecycle

The CoSMoS process used for this work is described in full by Andrews et
al. [1], and used is the same as used in our earlier work [6-8]. Summarised
in figure 1, the version of the process used here contains the following
components (summarised from [1], and the description of the process is
taken from [7]):

Research Context: the overall scientific Research Context. This in-
cludes the motivation for doing the research, the questions to be
addressed, and the requirements for success.

Domain Model: conceptual “top-down” model of the real world sys-
tem to be simulated. The Domain Model is developed in conjunction

64 Philip Garnett

Domain Platform
Model Model
Domain Research
Context
A 4
Results Simulation
Model < Platform

Fig. 1. The components of the CoSMoS process [1, fig.2.1]. Arrows indicate the
main information flows during the development of the different components.
There is no prescribed route through the process, in so far as going back a
step at any point in the process is allowed and often useful.

with the domain experts, with its scope determined by the Research
Context. The model may explicitly include various emergent prop-
erties of the system.

Platform Model: a “bottom up” model of how the real world system
is to be cast into a simulation. This includes: the system boundary,
what parts of the the Domain Model are being simulated; simplify-
ing assumptions or abstractions; assumptions made due to lack of
information from the domain experts; removal of emergent proper-
ties (properties that should be consequences of the simulation, rather
than explicitly implemented in it).

Simulation Platform: the executable implementation. The develop-
ment of the simulator from the Platform Model is a standard soft-
ware engineering process.

Results Model: a “top down” conceptual model of the simulated world.
This model is compared with the Domain Model in order to test var-
ious hypotheses. This part of the process is on-going research.

This work focuses on determined what parts of the Domain, the
British banking sector, are included in the domain model. This is a par-
ticularly important part of the process for this model as we do not have
a clear understanding of what causes the observed behaviour, but we be-
lieve we have a reasonable understanding of how the system is operating
(on one level at least, Sect. 3).

Bursting a Bubble 65

3 The Research Context

The British banking sector is one of the oldest and most developed in
the world. Starting in the 1550s it reached its maximal population of
1100 banks in 1810 before steadily declining to its current level of about
100 banks. Figure 2 shows data for the number of banks through time.
The black line is the actual number, the long-dashed line is a exponen-
tial fit indicating a 2.7% increase year on year in the number of banks.
The dashed-dotted line is a super exponential increase where an addi-
tional scaling factor is introduced to improve the fit to the real data.
The short-dashed line as an exponential decrease of 1.5% year on year.
Broadly the real data matches a exponential increase until the maximal
population, after which the population decreases exponentially. The su-
per exponential fit is interesting because these are often seen in situations
where positive feedback is operating — perhaps indicating that creation
of banks promoted the creation of more banks, discussed in Sect. 3.1.
The last 200 years of the banking sector may have been dominated by a
change in legislation and is discussed in Sect. 3.2.

3.1 The Banking Sector Pre 1810

The period of exponentially increasing numbers of banks could have a
number of possible causes. During this time banks operated as partner-
ships; each bank had a number of partners and they brought with them
the money that could be invested. During this period banks were limited
to a maximum of six partners. This builds into the system a mechanism
for the growth in the number of banks via an increasing population of
available partners. Its is reasonable to assume that during this period
of sustained economic growth there was a requirement for more banks,
not only that there would also have been a supply of potential partners
that wanted to invest money to make money. As the number of new
potential partners increased so did the number of banks. The fact that
the real growth of banks more closely matches a super exponential curve
is interesting as it suggests that there was an element of positive feed-
back in the system. One possible explanation for this feedback is that
people believed that there was money to be made in banking and there-
fore looked for opportunities to set up banks. They saw others making
money by setting up banks and therefore copied that behaviour. Posi-
tive feedbacks (or herd behaviour) in financial systems can turn out to
be unstable [2, 5, 11], creating a bubble that is destined to burst at some
point in the future, and could be one possible cause for the eventual
decline in the number banks.

66 Philip Garnett

British Bank Population

1200
A
1000 / k
800
£ 600
=]
Q
© 400
200
.
O e
S R KRS G R S - o R SRS I I CRR
TG T N e T T QT T T T T) P
Year
Total Bank Population Super Exp Fit Exp Decrease Exp Fit

Fig. 2. The changing number of banks through time from 1559 to 2012. The
black line is the actual number, the long-dashed line is a exponential fit in-
dicating a 2.7% increase year on year in the number of banks. The dashed-
dotted line is a super exponential increase where an additional scaling factor
is introduced to improve the fit to the real data. The short-dashed line as an
exponential decrease of 1.5% year on year.

3.2 The Banking Sector Post 1810

Post 1810 the number of banks starts to decline exponentially year on
year. The actual date of the decline is interesting as it is close to a
number of potentially significant historical events. The Napoleonic Wars
ran from 1803-1815 and are likely to have been a source of economic
disruption; there was also a significant financial crisis in 1825 [10]. Of
particular interest is the Amalgamation Movement that describes a long
peroid of banking history. In 1825 the rules governing banks changed and
banks were able to expand via amalgamation, allowing the formaiton of
joint stock banks [12]. This could explain a lot of the changes in the
population of banks post 1810 as we have evidence that banks were
rapidly increasing in size via amalgamation during this period, essentially
by copying the behaviour of other banks in the population [4, 12]. The
Amalgamation Movement was brought to a halt in 1925 is it was feared
that the population of banks would fall too low [12].

There is evidence for a number of underlying processes at work in
the British banking sector that might account for many of the trends

Bursting a Bubble 67

seen in the changing population of banks. A long period of growth in
the British economy coupled with a restrictive policy limiting the size of
banks suggests a mechanism for the expansion of the bank population.
Add to that an interest in forming banks to make money increasing the
population beyond what is strictly required and we are starting to iden-
tify possible components and behaviours to explain the growth in the
population of banks. At some point (perhaps due to internal pressure or
external drivers) new rules are introduced into the banking system that
allow banks to increase in size via merging together. Once the rules are
changed there follows a long period of bank amalgamation that results
in an exponential decrease in the population of banks and dominating its
development for the next 200 years. This poses a number of questions.
Can we develop an abstract model of banking demographics and then im-
plement a simulation based on these these basic rules? What behaviours
will we observe using this simulation and how do they compare to the
real banking population data? In order to see the observed tipping point
in the banking system will we have to drive the system externally, or
would the model require much more fine-grained detail about the econ-
omy and individual banks to reproduce the population trends through
time?

4 The Domain Model: the banking sector

We intend to develop an agent-based model of an abstract banking sector
based on the components and behaviours identified from studying the
British banking sector. From the domain we can determine a number of
key components to the model, we can also develop simplified behaviours
for the components. These components and behaviours will be mapped to
“agents” in the model and ultimately implemented in the simulation. We
intend to evolve the components and their possible behaviours starting
from a very simple initial set. This is to see how the introduction of
new components affects the results from the simulations, allowing us
to incrementally develop our understanding of the abstracted banking
system.

Figure 3 shows the domain class diagram. A description of the agents
(and their starting behaviours) and other components of the initial sys-
tem follows:

Partners: Prior to 1825 Partners are central to the banking sector as
they are the source of funds in the system. Agents representing Part-
ners will have the following behaviours. New Partners enter into a
pool of Partners; from here they can either join an existing Bank (ini-
tiated by the Bank) or form a new Bank. Existing Partners in a Bank

68

Philip Garnett

Population Partner Pool
Bank: Pop Partner: Pool

1.

0.r 0.
Bank Partner
0.."| Date: Formation A Date: DOB

=T

'
-
-3

Fig. 3. Domain class diagram showing the relationship between the Bank and
Partner classes. The Population starts with 0 Banks, supply of money causes
the creation of Partners which are held in the Partner Pool. Banks are created
by Partners and held in the Population. A Partner can be in only one Bank,
each Bank can have a maximum of 6 Partners. A Bank can contain 0 or more
acquired Banks.

can decide to leave their current Bank and form a new one; they
can either do this individually or as a group. Partners can exit the
population. Figures 4 and 5 represent the behaviour of the Partners.

Banks: Banks are container for Partners. A Banks can contain between

1 and 6 Partners. A Bank with less than 6 Partners can attempt to
attract new Partners. Banks can also acquire other Banks to increase
in size, they are therefore a contaion for Banks. A number of possible
behaviours could be tested here. Including the effect of keeping the
6 Partner limit, this limit would block any merger of Banks that
resulted in more than 6 Partners. Alternatively the Partners of the
acquired banks could either exit the population, or return to the
pool of Partners. Banks can only be formed by Partners and do not
arise spontaneously. Banks can fail and exit the population, or they
if a Bank's only Partner exits the population the Bank leaves too.
Figure 6 shows the activity diagram for the basic bank behaviours.
The size of a Bank could be determined by the number of Partners,
the number of acuired Banks or a combination of both.

GDP: The simulation needs a method for introducing new Partners

into the system. The population of Partners is increased in line with
growth in estimated United Kingdom (UK) Gross Domestic Product
(GDP).

Bursting a Bubble 69

Created

Fig. 4. State Diagram for the the Partners. Partners can occupy two different
states, in the general pool of Partners, or in a Bank. The Partners can leave the
simulation from both the In Bank state and the In Pool state.

D)

leave bank

join back

leave pop.

leave pop.

Fig. 5. Activity diagram for the Partners. The behaviours of the Partners drive
the initial model.

There are few key differences between the domain model for the ini-
tial simulator implimentation and the domain. Firstly, Partners remain
key to the formation of Banks throughout the simulation. In the real
system post 1825, banks are not only owned by partners. We are making
this alteration to the system to see if the changes that bring about the
Amalgamation Movement are responsible for the declining population
of banks. There is an approximate 10 year cap between the start of the
decline of banks and the 1825 change in regulation, suggesting that the
relationship between the obversed decline and the regulation is not clear.
If the change in regulation had not been made what would the banking

70 Philip Garnett

created

fail: leave pop

— » Cumﬁlete Acauisitinn

success
. Acquired bank |
e leaves population,

acquired:
leave pop

A‘rtemﬁ Acauis'ﬂinn

Fig. 6. Activity diagram for the Banks. Banks are formed by one or more
Partner. Banks will also be able to acquire, or be acquired, by other banks.
Acuired banks leave the general population but remain ‘in side’ the acquiring
Bank.

sector look like based on our simple rules? Initially we will not introduce
any external drivers to the system, such as economic disruption or reg-
ulatory change. This domain model represents the base model for the
system to which additional processes will be added.

4.1 Drivers of Change

As it stands our domain model describes two distinct behaviours that
look to dominate the simulated banking system at two different periods
of time. During the early part of the development of the banking sector,
from 1600s to 1810 the system is driven by the behaviour of partners.
The supply of partners into the system should drive the formation of new
banks, the growth phase. In the second time period, merger and acquisi-
tion dominate the system, the decline in population and the rise of super
banks (banks that have acquired large numbers of other banks). These
two systems are similar in some respects, they are both about generating
sucessful banks that are as large as possible. In the case of the partner
model, banks (created by partners) attempt to grow by attracting new
partners from the pool. In the second phase, banks grow more by ac-
quiring other banks. Modelling the swtich between these two methods
of growth of banks present a challenge, and is largerly dependant on our
assumptions about the evolution of the real banking system.

One possibility is to allow both behaviours to operate in parallel.
Under this system it would be interesting to see under what conditions
the behaviour of the simulation changes and how sensitive it is. When

Bursting a Bubble 71

there is an abundence of available Partners (stable money supply, con-
dition of economic growth), is possible to produce a simulation where
growth by attracting Partners from the pool dominates? However, if the
economic conditions became more difficult (unstable money supply, poor
or no economic growth), would a swtich to merger and acquisition be-
haviour take place? How stable would this switching be, and would the
banks need to have the possibility of copying “successful” members of
the population (follow the herd) for the behaviour to diffuse through-
out the population? This would suggest that regulatory change might
have legitimised a behaviour that was already starting to occur in the
population of banks. Alternatively, to achieve the two distinct phases of
population change might require external influence, indicating that the
second phase was in response to regulation. What would be the effect of
initially only allowing merger if the limit on six partners is respected?

5 Discussion

Developing a model and simulation of a tipping point is challenging as
it is hard to take an unbiased view of a system as the system is often
of interest because it seems to display tipping point behaviour. Here we
approach a system, the population demography of the British banking
sector, that appears to display tipping point behaviour but where the
exact cause is unclear. We have identified the key aspects of the bank-
ing system for inclusion in the model that could be responsible for the
general population trends seen in the population. The initial model is
a highly simplified version of the real system. This is deliberate and is
an attempt to produce a null model for the banking sector, with much
of the complexity removed, that is still capable of matching the general
trends. This model could be used to test the effect of internal drivers
on the population of banks, but also if external drivers are required to
match the general population trends.

We also hope to gain insight into modelling tipping points. The bank-
ing system appears to undergo a tipping point in its population in around
1810. Using the simulation we can test if when we model the components
of the system as we assume them to work if the modelled system can
undergo tipping points. We are also able to test the effect of introduced
legislation on the behaviour of the modelled banking system. The two
phase nature of the system could potentially help us understand how
population of organisations might flip bewtween two possible but dis-
tinct behaviours. Under what conditions this flips occur and how often
they occur. It is also possible that tipping points could be caused by
behaviours no longer happening, forcing a system into one behaviour.

72

Philip Garnett

Acknowledgements

We gratefully acknowledge the financial support from the Leverhulme
Trust who funds the Tipping Point project based in the Institute of
Hazard, Risk and Resilience at Durham University. We would also like
to thank the developers of the CoSMoS process. We also thank Dr Simon
Mollan and Prof. Ranald Michie for useful discussions about how banks
work.

References

[1]

(8]

[9]

[10]

[11]

[12]

Paul S Andrews, Fiona A C Polack, Adam T Sampson, Susan Stepney,
and Jon Timmis. The CoSMoS Process version 0.1: A process for the
modelling and simulation of complex systems. Technical report, Univer-
sity of York, 2010.

Sushil Bikhchandani and Sunil Sharma. Herd behavior in financial mar-
kets. IMF Staff papers, pages 279-310, 2000.

William A Brock. Tipping Points , Abrupt Opinion Changes , and Punc-
tuated Policy Change by. PhD thesis, University of Wisconsin, 2004.
Paul J DiMaggio and Walter W Powell. The Iron Cage Revisited: Institu-
tional Isomorphism and Collective Rationality in Organizational Fields.
American Sociological Review, 48(2):147-160, April 1983.

Robert P Flood and Robert J Hodrick. Asset Price Volatility, Bubbles,
and Process Switching. The Journal of Finance, 41(4):pp. 831-842, 1986.
Philip Garnett. Going Around Again: Modelling Standing Ovations with
a Flexible Agent-based Simulation Framework. In Paul Read Mark Step-
ney Susan Andrews, editor, Complex Systems Simulation and Modelling
Workshop, pages 27—46, Orleans, France, 2012. Luniver Press.

Philip Garnett, Susan Stepney, Francesca Day, and Ottoline Leyser. Us-
ing the CoSMoS Process to Enhance an Executable Model of Auxin
Transport Canalisation. In S Stepney, P Welch, P. S. Andrews, and A. T
Sampson, editors, CoSMoS 2010, pages 9-32, 2010.

Philip Garnett, Susan Stepney, and Ottoline Leyser. Towards an Exe-
cutable Model of Auxin Transport Canalisation. In Susan Stepney, Fiona
Polack, and Peter Welch, editors, Cosmos 2008 Complex Systems Mod-
elling and Simulation, pages 63-91. Luniver Press, 2008.

Malcolm Gladwell. The Tipping Point: How Little Things Can Make a
Big Difference. Little Brown, 2000.

L Neal. The financial crisis of 1825 and the restructuring of the British
financial system. Review-Federal Reserve Bank of Saint Louis, 80:53-76,
1998.

Didier Sornette. Why stock markets crash: critical events in complex
financial systems. Princeton University Press, 2004.

J Sykes. The Amalgamation Movement in English Banking, 1825-192).
P.S. King and Son Ltd, London, 1926.

Understanding tissue morphology:
model repurposing using the
CoSMoS process

Ye Li, Adam Sampson, James Bown, and Yusuf Deeni

University of Abertay Dundee, DD1 1HG, UK,
ats@offog.org

Abstract. Drawing inspiration from the CoSMoS project struc-
ture, we consider the assumptions made during the design and
implementation of a software simulation of physical interactions
during the formation of vascular structures from endothelial
cells. We show how the abstract physical model and its software
implementation can be adapted for a different problem — the
growth of cancerous tissue under varying physical conditions. By
identifying the changes that must be made to adapt the model
to its new context, along with the gaps in our knowledge of the
domain that must be filled by wet-lab experimentation when re-
calibrating the model, we maintain confidence in the repurposed
model and achieve a satisfactory degree of model reuse.

1 Introduction

The CoSMoS process [1, 11] describes a principled approach to scientific
modelling and simulation: it provides a structure for managing and doc-
umenting the iterative development of a simulation, and gives scientists
and simulation developers tools to reason — with an appropriate balance
of confidence and scepticism — about how their simulation’s results relate
to the domain under study. CoSMoS is an agile approach based upon a
pattern language: a user may organise their project entirely following the
CoSMoS principles, or they may integrate some of the CoSMoS patterns
as appropriate into an existing project.

Reusability of software components is a key concern of software en-
gineering. Reusable components can — ideally — avoid the difficulty and
expense of developing and validating substantial amounts of new soft-
ware. But software developed for one purpose may not be reusable for
a different purpose without substantial modification. In particular, a
simulation component developed for one in silico experiment may rely

74 Ye Li et al.

on assumptions (parameter values, model simplifications, etc.) that are
only valid within the context of that experiment. Adapting such a com-
ponent for reuse in a different context requires careful consideration of
the assumptions made during its design.

In this paper, we use the general structure of projects outlined by
CoSMosS to organise our thinking around how a model of physical inter-
actions among cells can be adapted from one context — the formation of
vascular structures from endothelial cells — to a different context — the
effects of cancer treatment drugs on the growth of spheroid structures of
cells. Neither of these projects was initially developed using a CoSMoS
approach. To apply CoSMoS techniques, we must first effectively reverse-
engineer our work to date, and attempt to organise the information we
have about the systems under study and our models and simulations of
them broadly in terms of the CoSMoS project structure. We expect that
this step in itself will prove valuable.

Our objective is specifically to reuse the software components that
implement this physical model within the simulation, as these required
considerable development effort and are critical to the overall perfor-
mance of the simulation. As the modes of physical interaction among
cells are broadly similar between the two models, this seems intuitively
to be an appropriate approach — but identifying and revalidating our
assumptions will help to build our confidence in our simulation’s results,
and enable the future reuse of the physical model in other contexts.

In addition, we are now at the point in the development of our can-
cer model where it is clear that some wet-lab experimentation is re-
quired in order to recalibrate the parameters of the physical model. Since
wet-lab experimentation is expensive and time-consuming (in this case,
time-series imaging requires several days’ commitment from a skilled re-
searcher), we need to be confident that we are obtaining the correct data
from the experiments to support our simulation development.

2 The Original Model: Vascular Formation

2.1 Research Context

The purpose of this simulation is to reproduce the results of an in vitro
experiment from the literature, demonstrating the formation of capillary
structures from endothelial cells [10].

The experiment explores how the physical interactions among the
cells, and their low-level physical properties, affect the larger-scale struc-
tural patterns in the resulting capillary network. The effects of varying
concentrations of growth factors — which have a direct effect on the low-
level physical properties of the cells — are of particular interest.

Understanding tissue morphology 75

2.2 Domain

Microvessels are formed within the body by the aggregation of endothe-
lial cells, which themselves are formed by differentiation from stem cells.
This formation process has three stages [4]:

— cell migration and early network formation;
— network remodelling, where cells connect to each other;
— further differentiation into tubular structures.

For the purposes of this experiment, we are only concerned with the first
stage, which takes place between six and nine hours in vitro [10]. At the
end of this stage, the basic network structure has formed, but cells have
not yet begun to bind to each other or to differentiate further. All cells
are similar in general terms during this stage, although their individual
properties may vary — for example, we would expect to see a roughly
normal distribution of cell sizes.

We believe that in this stage the most significant forces are those
resulting from physical interactions: between pairs of cells, between cells
and their surrounding medium, and between cells and the substrate (Ma-
trigel film [10, p. 1778]). As the surrounding medium is relatively thin
and the interactions with the substrate are strong, there is only limited
potential for cell movement away from the substrate, and 2D imaging can
be used effectively to capture cell positions in real-world systems. Time-
series imagery can be used to characterise cell interactions — for example,
[7] shows physical interactions among stem cells in vitro, including at-
traction between cells, and cell shape changes after differentiation and
binding.

As cells follow growth factor gradients, the density of cells tends to
be higher where there is a higher concentration of growth factors in the
environment. The in vitro experiment examined the effects of an artificial
reduction of growth factor levels across the environment, imaging control
and reduced-factor experiments at 3h intervals.

2.3 Domain Model

Fig. 1 shows the entities within the in wvitro experiment that we are
attempting to reproduce, and their interactions. This includes both the
biological entities under study and their experimental environment. Vas-
cular structures are also included here as an emergent behaviour of the
cells. Note that we have used UML in a rather informal way here, as
we have in later figures — for example, while growth factors are indeed
individual molecules, we would not generally think about them that way
when modelling the system. While the semantics of the diagram are not

76 Ye Li et al.

physically
interacts with
VascularStructure EndothelialCell GrowthFactor
forms affects
physically
interacts with
Substrate

Fig. 1. Domain model: the entities of concern in the domain, shown as a UML
class diagram

applies forces Ellipsoid
’—> position
SimulationWorld direction
growthFactor
_» Substrate
applies forces geometry

Fig. 2. Platform model: the entities of concern in the simulation, shown as a
UML class diagram

correct, it is still useful as a “cartoon” in CoSMoS terms, capturing our
(necessarily limited) understanding of the system in a convenient but
loosely-specified notation.

2.4 Platform Model

Fig. 2 gives an overview of how the domain model has been simplified for
the purposes of the simulation. We have chosen an agent-based modelling
approach, so cells show a direct correspondence between the domain and
platform models. This allows us to define interacting rules for single
cells, and examine both the lower-level properties of individual cells and
the higher-level behaviour of the system as a whole. The simulation
proceeds in discrete timesteps, with all cells updating their positions
and orientations atomically at the end of a timestep.

Understanding tissue morphology 7

torque torque

force

Fig. 3. Idealised ellipsoid cells within the platform model, showing torque and
force

Vascular structures have been removed entirely, as these are the emer-
gent property that we are attempting to reproduce. Other entities have
been simplified, or introduced to allow implementation of the physical
interactions within the system.

While cells can take a wide variety of shapes in the real world, we
must model these as simpler shapes in order to practically simulate phys-
ical interactions at realistic scales. Modelling cells as simple spheres sim-
plifies reasoning, but it does so by discarding information about the ori-
entation of the cell, which limits the types of physical interactions that
are possible. Initial prototyping showed that it was difficult to reproduce
vascular formation behaviour using spheroid cells.

We therefore represent cells as ellipsoids. (Fig. 3). The shapes of
cells observed in the in vitro experiment are roughly ellipsoidal (in the
first phase). An ellipsoid has three orthometric semi-axes, which can
be used as a local coordinate system. The rotation of an ellipsoid can
be represented by the change of this local coordinate system, and the
direction of an ellipsoid can be represented by the transformation from
the local coordinate system to the global coordinate system. The position
of the centre of an ellipsoid represents the position of the whole ellipsoid.

We are only interested in simulating the first phase of vascular for-
mation, during which cells do not divide or measurably change their
physical properties. We do not therefore need to simulate cell differenti-
ation or the cell cycle, and can assume that cells’ sizes and shapes are
constant over time.

We assume that the density of cells is even, so forces can be modelled
as acting on the centre of the cell, and changes in cell orientation can be
modelled as torques acting on the cell. This is a modelling convenience

78 Ye Li et al.

...... s /) coNtact force

Fig. 4. An ellipsoidal cell showing potential surfaces, and the vector along
which contact force is computed

and difficult to validate against experimental data, as cell rotations are
hard to distinguish in 2D time-series images.

We model physical interactions between cells in terms of forces be-
tween them. The adhesion force attracts cells to each other; the contact
force repels them and prevents them from overlapping; there is also a
resistance force resulting from cells’ interactions with the surrounding
medium. For each force, there is an corresponding torque that is com-
puted in an analogous way.

The contact force only takes effect when cells are in physical contact;
the greater the overlap, the greater the contact force. As the ellipsoid is
not an isotropic shape, we cannot simply use the distance between two
ellipsoids to calculate the contact force and torque. Instead, we compute
a potential for each interaction: a path-independent potential energy.
In Fig. 4, dotted lines represent potential surfaces around the cell — the
potential is constant for any point on the same surface, although the
distance to the cell centre will vary as a result of the cell shape. The
potential is calculated following Perram and Wertheim’s approach [g],
using the direction, position and length of the semi-axes of the interacting
ellipsoids.

The potential is then transformed into energy using the Hertz for-
mula. The magnitude of the resulting force or torque is the same for
all points on a potential surface; the direction is computed based on the
partial derivative of the energy field towards the centre of the interacting
ellipsoid (Fig. 4).

The adhesion force, however, is modelled as a constant force attract-
ing the centres of every pair of cells in the same way, provided they are

Understanding tissue morphology 79

_—)

cell

substrate %

Fig. 5. Cell-substrate interaction, modelled as interaction with a copy of the
same cell, mirrored in the substrate plane

within a minimum distance of each other. This is the simplest approach
that reproduces the behaviour observed in time-series images of the in
vitro experiments. If cells are beyond the minimum distance they have
no physical interactions; if they are within range, they move towards
each other, until they become close enough to overlap, stopping at the
point at which the adhesion force and contact force balance each other.

The relative strengths of the two forces may be calibrated so that
this balance happens at a potential corresponding to that observed in
cells in wvitro. The potential will depend on the elasticity of the cells,
with higher balancing potential levels indicating more rigid cells. Some
elasticity is necessary to obtain realistic cell interactions: an early pro-
totype of the model used a simpler approximation to the Hertz function
which effectively gave inelastic collisions between cells, and resulted in
cells visibly “bouncing off” each other — which did not match what we
see in time-series images!

As cells move at relatively low speeds within the medium, their ac-
celeration can be approximated as zero — which means the sum of the
forces upon them is also zero:

Z F=0= Fcontact + Fadhesion + Fresistance (1)

We can therefore compute the resistance force in terms of the contact
and adhesion forces — and, from this, compute the velocity of the cell
using Stokes’ law, based on the known size and shape of the cell and
the properties of the medium. The angular velocity can be found using
a similar technique; from these, the position and orientation of the cell
on the next timestep can be computed.

The substrate itself is modelled as a plane. The physical interaction
between a cell and the substrate is modelled as the interaction between
a cell and its mirror image in the plane (Fig. 5). However, the adhesion
force between a cell and its mirror image is scaled up to account for the

80 Ye Li et al.

stronger interactions between cells and the substrate than between cells
and other cells.

The model is dimensionless, being defined in terms of a unit time
(the simulation timestep) and a unit length (the radius of a typical cell).
These two quantities are related, in that computing the velocity of a cell
within the fluid medium depends on both the timestep and the shape of
the cell. However, making an assumption about the maximum velocity of
a cell allows us to find reasonable bounds for one unit knowing the other,
and in our case choosing a unit timestep of 1s gives a physically-plausible
maximum velocity for endothelial cells.

To summarise, we have made the following assumptions when con-
structing the platform model:

— Cells can be represented as ellipsoids.

— Cell size and shape do not change during the experiment.

— Matter is evenly distributed within a cell.

— Only contact force, adhesion force and resistance force are significant.

— Contact force can be computed using the Perram-Wertheim ap-
proach.

— Adhesion force can be modelled as a step function on distance (i.e. the
growth factor gradient does not have a significant effect on attractive
force).

— Contact and adhesion forces balance at a defined point when cells are
in contact, and the strengths of the forces can be calibrated based
on this.

— Cells move at very low speed, so their acceleration approaches zero
and the forces upon them are balanced.

— Resistance force can be computed using Stokes’ law, and the known
properties of the fluid medium.

— Interactions with the substrate can be modelled as interactions with
mirrored cells.

The physical parameters of the model (the unit time and length, and
the constants involved in computing the forces) depend on the following
values:

— the typical size of a cell;

the range of ellipsoidal shapes a cell may adopt;

the mean density of a cell;

— the dynamic viscosity of the fluid medium,;

the maximum speed at which a cell may move in the medium.

Understanding tissue morphology 81

Fig. 6. Visualisation showing cell positions and orientations at the start (left)
and end (right) of the simulation; “unstable” pattern

2.5 Simulation Platform

The simulation implementation follows the structure described in the
platform model (Fig. 2). The simulation world object maintains the set
of agents, and computes and applies the forces among them. In addition,
it provides the ability to import simulation parameters, and to export
the state of the simulation to a file for visualisation and analysis by
external tools.

Model parameters were calibrated as described above. However, test-
ing the simulation with these constants resulted in cells moving unrealis-
tically rapidly. Reducing the strengths of the cohesion force and adhesion
force by an order of magnitude resulted in more realistic cell movement
— but the cause of this has not yet been traced back to the model.

2.6 Results Model

Fig. 6 shows the starting and ending conditions of the simulation. This
certainly resembles the vascular network we are trying to reproduce —
but we need a quantitative measure of this, in order to relate the results
back to the changes in the level of growth factor.

There is a quantised method to describe the pattern of this structure,
which is called the radial distribution function. The radial distribution
function is a tool to describe space distribution of a system that consists
of particles, by describing the chance of finding another particle within
an arbitrary distance from the reference particle. In the form of the

82 Ye Li et al.

L2f A w
|II II Y \j\.\ll\,‘lr |
Lef [rap N bW,
(VW UM n
| ! VA A W I.*-'q|
V

osf | \

0.6 |

sl | |
A
||] |I I| |J
L | N I| L‘I W
| N

=
ia

0 40 & 20 100

Fig. 7. Radial distribution of cells in Fig. 6 (right); X axis is distance between
cells in simulation units, and Y axis is normalised probability of finding another
cell at that distance

distribution curve, normally the X axis is distance, and the Y axis is
the function value. If the function value is bigger than 1.0 at a certain
distance, it means the cell density is higher than average at that distance;
if the function value is smaller than 1.0, it means the cells are more
sparse at this distance. Fig. 7 shows the radial distribution of cells at
the endpoint of the simulation.

The minimum near distance 0 shows that cells tend not to have very
close neighbours; the second minimum near distance 100 shows the typ-
ical size of hole in the net-shaped structure. This minimum corresponds
to the typical net-size in [10], which is determined by the concentration
of growth factor. As the distance from the reference cell increases, the
value of the distribution function varies around 1.0, which means over
longer distances the cells tend to be distributed evenly. Comparing with
the distribution curve obtained from the in vitro experiment [10], we can
say that our physical interaction has similar effects to the growth factor
in the experiment.

If we allow the simulation to continue past the state shown in Fig. 6
— i.e. past the period of time covered in the original model design —
the pattern will collapse into a few large clusters of cells. Fig. 8 shows
the results of an simulation where the physical parameters have been
adjusted to produce a stable pattern that does not collapse; while some
network structure is visible, it is not as clear as the original model. This
is echoed in the radial distribution, shown in Fig. 9, which no longer
shows a clear minimum.

Understanding tissue morphology 83

Fig. 8. Visualisation showing cell positions and orientations at the start (left)
and end (right) of the simulation; “stable” pattern

L L ' L L
200 400 &0] 1000

Fig. 9. Radial distribution of cells in Fig. 8 (right); X axis is distance between
cells in simulation units, and Y axis is normalised probability of finding another
cell at that distance

3 The New Model: Spheroid Growth

3.1 Research Context

As with the vascular development model, our objective is to relate lower-
level physical interactions to higher-level structural behaviours: we want
to explore the effects of

— certain cancer treatment drugs,
— hypoxia (low concentrations of oxygen), and
— different cell lines (types of cell grown for experimental purposes)

84 Ye Li et al.

Fig. 10. 2D side-view image of a three-dimensional spheroid growing within a
gel medium

upon the growth of tumours. This work forms part of a wider programme
of activity developing techniques for cancer drug discovery and develop-
ment [2]. Our domain experts are cancer researchers who are interested
in making use of models and simulations to direct experimentation.

Tumours develop distinctive patterns of cells, which can be classified
by domain experts either manually or using automated image process-
ing. It is specifically these spatial patterns that we are interested in
reproducing within a simulation.

Our existing physical model has already demonstrated the ability
to reproduce spatial patterns of cell growth resulting from physical in-
teractions within an agent-based simulation, and we have existing tools
to visualise and analyse the output from the model. We would like to
reuse as much of this infrastructure — both the model and the simulation
code — as possible to reduce development time, but to do this we must
identify the changes that need to be made by reevaluating our original
assumptions within the new research context.

In addition, we must identify what information necessary for reengi-
neering and calibrating the model needs to be obtained by wet-lab ex-
perimentation. We aim to maximise the value obtained from this exper-
imentation.

3.2 Domain

In the real domain, cancer cells develop and grow into tumours within
surrounding tissue [3]. In the lab, growth experiments may be conducted
on a Petri dish — in which case cells can grow into a flat structure — or
in a larger volume of gel, in which case spheroid structures can form
(Fig. 10).

Understanding tissue morphology 85

Fig.11. HCT-116 (p53+/+) cells, growing on a glass plate, imaged at 6h
intervals. The diameter of the initial cell is 10 pm.

Petri-dish experiments are easier to collect data from, since 2D im-
ages can be taken non-destructively; spheroids must be sectioned before
imaging in order to obtain data at a cellular resolution. A typical Petri-
dish experiment contains around 5,000 cells; a spheroid contains on the
order of 108 cells. A single section through a spheroid is comparable in
size to a Petri-dish experiment.

Experiments are conducted using cell lines: cells grown for experimen-
tal use which have well-understood properties, such as the activation of
particular oncogenes, or the ability to form structures such as spheroids.

The shape and volume of cells varies as they progress through their
developmental cycle (Fig. 11); the rates at which the cycle progresses
varies somewhat among cell lines. The HCT-116 cells we are using typ-
ically have diameter 10 pm immediately after division, and can be ob-
served to grow over a period of approximately 24 h before dividing. Cells
only remain healthy under experimental conditions for a limited period
of time; it is therefore impractical to run experiments for more than 72 h,
and images are typically taken every 6-8h.

Some cancer drugs limit cell growth by arresting the cell cycle at a
particular stage [6]. The progression of the cell cycle within the individ-
ual cells is therefore important when understanding the effects of drugs
upon a tumour: if the cell cycles are synchronised (as can happen under
experimental and in silico conditions), then a drug can arrest many cells
simultaneously, whereas cells at a mix of developmental stages will be
less strongly affected.

For spheroid structures, we are particularly interested in the effects
of hypoxia, which can have a suppressive effect on cell growth [5]. The
high density of cells within a spheroid structure means that cells become
increasingly hypoxic towards the centre of the spheroid.

86 Ye Li et al.

physically
interacts with
Spheroid Cell Oxygen
forms | cycleStage affects
physically
interacts with
Drug
Substrate
affects

Fig. 12. Domain model: the entities of concern in the domain, shown as a
UML class diagram

3.3 Domain Model

Fig. 12 shows the entities within the domain model. While the domain is
substantially different from the previous one, the way cells are modelled
retains a level of similarity, because the emergent behaviour of interest
still results from physical interactions among cells. However, the phys-
ical properties of the cells themselves are somewhat different from our
previous model — in particular, the cells’ properties are known to change
over time, and we are interested in the effects of this on the emergent
properties.

The drugs and hypoxia condition are added to environment condi-
tions, forcing cells to enter or quit certain cell cycle phases. For the
two-dimensional experiment, we still need to consider the substrate. But
for the spheroid experiment, as the tumour cells grow in 3D in agar gel,
we will no longer consider the substrate.

3.4 Platform Model

We know from the domain model that the individual development of the
agents — e.g. the growth of cells over time — will be important to the
behaviours we are trying to replicate, and must be taken into account in
the simulation. As a result, we have chosen again to use an agent-based
modelling approach. Fig. 13 shows the entities within the simulation
platform.

Fig. 14 shows the state machine that models a simplified cell cycle and
drives the behaviour of the simulated cell. This represents the observed
behavioural modes of the cell — growth, reproduction, apoptosis — rather

Understanding tissue morphology 87

applies forces Ellipsoid
" age
cycleState
SimulationWorld extents
position
oxygenConcentration direction
drugConcentration
Substrate
applies forces geometry

Fig. 13. Platform model: the entities of concern in the simulation, shown as a
UML class diagram

Fig. 14. Platform model: simplified cell cycle, shown as a UML state diagram

than the biological markers that would normally be used to describe cell
cycle stages.

In the construction of the physical aspects of this platform model,
we aim to reuse, as far as possible, our previous approach. In order to
evaluate whether this is appropriate, we must reconsider our previous
assumptions, listed in Sect. 2.4, based on our knowledge about the new
research context.

While the physical properties of the cells and medium are somewhat
different, we believe that most assumptions remain valid. One assump-
tion, however, is no longer reasonable: cell size and shape do change
during the simulation. This requires changes to how the interaction po-

88 Ye Li et al.

tentials and their resulting forces and torques are computed, since these
must now take changes to cell size and shape into account.

We must also ensure that we have sufficient information to allow
calibration of the physical parameters. We no longer just need the typical
size and shape of a cell: we need a profile showing how cell size and shape
can change as the cell cycle progresses. This information will need to be
obtained by time-series imaging under the experimental conditions we
wish to simulate, as in Fig. 11. We will then give each simulated cell
an interpolated growth curve based on the measured points. The other
information we need for calibration is available in the literature (e.g. the
dynamic viscosity of the medium).

The choice of timestep size (i.e. unit time in the model) is a concern.
The timestep must be short enough to obtain results at a comparable
temporal resolution to the in vitro experimental data. However, smaller
timesteps require more calculation steps to simulate the same length of
real-world time; the 1s timesteps used in the previous simulation would
result in in silico experiments taking an impractically long time to run
with typical simulation sizes (103-10° cells).

In the in vitro experiment, the typical treatment time is 48 h to 72 h,
and the sampling rate varies with different phrases of the experiment.
For example, in the first 2h, the cells may be imaged every 10 min, then
the time between each sample increases as the experiment goes on. The
simulation timestep does not therefore need to be any less than 10 min,
and 1h would probably be reasonable. The other constants will need to
be adjusted to suit — for example, this results in the simulation’s unit
length being considerably smaller (which does not affect the outcome of
the simulation).

3.5 Simulation Platform

The simulation platform is currently under development, following the
structure described in the platform model. As we have reused the phys-
ical aspects of the platform model, we have similarly been able to reuse
much of the code from the previous simulation platform — with the adap-
tations we have just described.

3.6 Results Model

We are primarily interested in the shape of structure tumour cells can
form. We can expect cell density changes across a slice through the
spheroid. Typically as hypoxia often happens in the centre of spheroids,
the cell density in centre part should be lower than the cell density near

Understanding tissue morphology 89

Fig. 15. Left: Ki67 expression in colorectal carcinoma tissue microarray data.
Right: cell outlines and activity levels automatically identified from the previ-
ous image using Definiens.

the surface of the spheroid. If we slice the tumour tissue, the cell density
should be lowest in the middle of the slice.

We are also interested in the overall shape of the spheroid. There are
existing image analysis tools that can be used for this. We will use them
to extract information from wet-lab experimental imagery, including the
position and direction of all the cells. We will then have directly com-
patible data from both wet-lab experiments and our simulation that can
be analysed using a consistent approach. With this information we may
use methods such as fractal geometry [9] to analyse the overall struc-
ture of both experimental and simulation data. Based on our experience
with our physical model, we expect to be able to obtain reasonably good
correspondence for 2D data — but we suspect that extending the spatial
interactions into three dimensions will require further elaboration of the
model.

4 Conclusion

Through initial analysis guided by the CoSMoS project structure, we
have identified that the physical aspects of the new domain do indeed
have considerable similarities with those of the original domain — so
reuse of the physical model should be appropriate, provided that the
assumptions in the model — which we have explicitly identified — are
reevaluated appropriately within the new context.

90 Ye Li et al.

Other aspects of the two domains are substantially different; for ex-
ample, the cancer simulation requires an implementation of the cell cycle
in order to accurately simulate the effects of different treatments and
environmental conditions, whereas this was unnecessary in the vascular
simulation owing to the initial stage limitation.

We have also identified the gaps in our knowledge about the domain,
necessary to appropriately calibrate the physical model, which must be
filled by web-lab experimentation. This gives us confidence that we are
asking the right questions when conducting experiments in support of
calibration.

What we have ended up with is emphatically not “a CoSMoS project”
— we have simply made use of a few aspects of CoSMoS to structure our
thinking about model reuse. In effect, we have only made use of some of
the large-scale CoSMoS patterns that describe concepts such as “domain
model”, and that in a rather sketchy and informal way — but we feel
that even this first step towards CoSMoS has been valuable in terms of
forcing us to think in a principled way about our existing work. As this
work continues, we intend to make increased use of CoSMoS techniques;
for example, to more effectively structure our interactions with domain
experts during the calibration of the spheroid model. We feel, in general,
that the ability to adopt patterns as appropriate is a significant strength
of the CoSMoS approach in terms of adoption by existing projects — as
it is for other pattern languages.

While it is important to emphasise that this project is still work in
progress, we feel that we have achieved a satisfactory degree of model and
software reuse — and, more importantly, we are confident that this reuse
has been achieved in a way that is appropriate and useful within our new
research context. In the future, we would like to consider strategies and
patterns for this kind of reuse within the CoSMoS process — in particular,
how a validity argument might be constructed and updated as a model
is reused.

In addition, by documenting this process, we now have a framework in
place that would allow us to reuse the physical model within new research
contexts in future projects. Once the cancer cell growth model has been
demonstrated in two dimensions, we plan to extend it to simulate three-
dimensional spheroid structures — which will require further reevaluation
of the physical model, particularly relating to interactions with a gel
medium.

5

Understanding tissue morphology 91

Acknowledgements

The authors would like to thank their colleagues who kindly provided
data and illustrations for this paper. Hilal Khalil ran the experiments
and provided the images in Fig. 11. Fig. 10 appears courtesy of Simon
Langdon. Fig. 15 appears courtesy of Peter Caie.

References

[1]

2]

[4]

(5]

[7]

8]

[10]

[11]

Paul S. Andrews, Fiona A. C. Polack, Adam T. Sampson, Susan Stepney,
and Jon Timmis. The CoSMoS process version 0.1: A process for the
modelling and simulation of complex systems. Technical Report YCS-
2010-453, Department of Computer Science, University of York, March
2010.

James Bown, Paul S. Andrews, Yusuf Deeni, Alexey Goltsov, Michael Id-
owu, Fiona A. C. Polack, Adam T. Sampson, Mark Shovman, and Susan
Stepney. Engineering simulations for cancer systems biology. Current
Drug Targets, 13(14), December 2012.

Antonio Bri, Sonia Albertos, José Luis Subiza, José Lopez Garcia-Asenjo,
and Isabel Bria. The universal dynamics of tumor growth. Biophys J.,
85(5):2948-2961, November 2003.

Judah Folkman and Christian Haudenschild. Angiogenesis in vitro. Na-
ture, 288:551-556, 1980.

A. Kaida and M. Miura. Visualizing the effect of hypoxia on fluorescence
kinetics in living HeLa cells using the fluorescent ubiquitination-based cell
cycle indicator (Fucci). Ezp Cell Res., 318(3):288-297, February 2012.
David O. Morgan. The cell cycle: principles of control. New Science
Press, 2007.

Lane Niles. Human cultured neural stem cells, September 2012.
<https://www.youtube.com/watch?v=x_e3PEJgrFY>.

John. W. Perram, John Rasmussen, Eigil Preestgaard, and Joel L.
Lebowitz. Ellipsoid contact potential: Theory and relation to overlap
potentials. Phys. Rev. E, 54:6565-6572, December 1996.

Anne Savage, Elad Katz, Alistair Eberst, Ruth E. Falconer, Alasdair
Houston, David J. Harrison, and James Bown. Characterising the tumour
morphological response to therapeutic intervention: an ex vivo model. Dis
Model Mech., 6(1):252-260, January 2013.

Guido Serini, Davide Ambrosi, Enrico Giraudo, Andrea Gamba, Luigi
Preziosi, and Federico Bussolino. Modeling the early stages of vascular
network assembly. EMBO J., 22(8):1771-1779, April 2003.

Susan Stepney et al. Engineering simulations as scientific instruments.
Springer, 2013. To appear.

92

Ye Li et al.

CoSMoS simulation experiment
reproducibility and the ODD
protocol

Susan Stepney

Department of Computer Science, University of York, UK

Abstract. CoSMoS is a defined approach for designing, build-
ing, and arguing fit for purpose, a scientifically rigorous simula-
tion of a complex real world system. The ODD (Overview, De-
sign concepts, Details) protocol is a standardised way of describ-
ing simulation models, defined to support reproducibility. This
paper demonstrates that use of the CoSMoS approach to build
a simulation supports the presentation of the simulation results
using the ODD protocol. It does so by presenting a mapping
from the various ODD components, to where the required infor-
mation for those components is located in a CoSMoS project’s
documentation. All the information is present, but is distributed
through the project documentation. Moreover, a project devel-
oped using the CoSMoS approach documents additional infor-
mation, which is necessary not merely for reproducibility, but
for understanding of and confidence in the simulations.

1 Introduction

Computer-based simulation is a key tool in many fields of scientific re-
search. In silico experiments can be used to explore and understand
complex processes, to guide and complement in vitro and in vivo exper-
iments, to suggest new hypotheses to investigate, and to predict results
where experiments are infeasible. Simulation is an attractive, accessible
tool: producing new simulations of simple systems is relatively easy. But
it is also a dangerous tool: simulations are often complex, buggy, and
difficult to relate to the real-world system.

A simulation needs to be both scientifically useful to the researcher,
and scientifically credible to third parties; it needs to have the properties
of a well-designed scientific instrument [4]. The CoSMoS (Complex Sys-
tems Modelling and Simulation infrastructure) project has established
an approach to simulation of complex systems that supports principled

94 Susan Stepney

development of simulations as scientific instruments. The CoSMoS ap-
proach [2, 23] is generic: it does not mandate a particular modelling tech-
nique, or particular implementation language. What it does mandate is
the careful and structured use of models and arguments, to ensure that
the simulation is both well-engineered, and seen to be well-engineered. In
order to help developers through this careful and structured approach,
we have developed a pattern language [22, 23] to help guide development,
promote good simulation engineering practice, and warn of potential pit-
falls.

Since CoSMoS is generic, it can work in harmony with various other
approaches that are used for building scientific simulations. For exam-
ple, there are well-established third party simulation implementation li-
braries and frameworks. NetLogo [26] is a multi-agent programmable
modelling environment used for prototyping multi-agent simulations. It
provides a programming language and user-interface widgets to support
rapid prototyping of relatively simple agent-based simulations. It has a
large user-base and a large library of example simulations. MASON [12],
from George Mason University, is a discrete-event multi-agent simula-
tion library, which can be used as the foundation for Java simulations.
FLaME (Flexible Large-scale Agent Modelling Environment) [6], from
the University of Sheffield, is an agent-based modelling system. From an
extended finite state machine model, FLAME generates a complete agent-
based application, which can be targetted to computing systems ranging
from laptops to super computers. Libraries and frameworks such as these
can be exploited as part of a simulation project being developed with
the CoSMoS approach. They can be used as the implementation basis
of the CoSMoS Simulation Platform (see later) or of a Prototype. Their
integration into the overall project can be argued fit-for-purpose using
the CoSMoS Argumentation approach [15-17]. Thus a CoSMoS user can
benefit from the existing significant investment in such implementation
platforms.

In addition to specific implementation technologies, researchers have
also developed approaches to making the resulting simulations more sci-
entifically acceptable. One essential requirement of a scientific result is
that it be reproducible [18, §22]. This requires sufficient description of
the experimental details that third parties can replicate the setup, and
reproduce the result. If simulation is to be used as a scientific instrument,
credible to the scientific community, then it is necessary for individual
simulation experiments to be described in sufficient detail for their re-
producibility. Grimm and co-workers have devised the ODD (Overview,
Design concepts, Details) protocol [7, 8] as a standard way of describing
simulations using Agent Based Models (ABMs), with the explicit aim

CoSMoS and the ODD protocol 95

domain platform
model model
results simulation
model platform

Fig. 1. Relationship between simulation components; arrows represent flows
of information. These are all framed by the Research Context.

of making them reproducible: “ODD is expected to lead to more com-
plete model descriptions, making ABMs easier to replicate and hence
less easily dismissed as unscientific” [8].

The Open ABM Consortium [13] provides support for the ODD pro-
tocol. It has a discussion forum “to allow the ABM community to col-
laboratively develop this protocol into a widely useable communication
standard for describing ABMs in the social sciences” [11]. As part of its
support, it defines CoMSES (Computational Modeling for SocioEcolog-
ical Science) Modeling Standards, which include (among other things)
the requirement to be “fully documented using the ODD standard for
model documentation, or an equivalent documentation protocol” [14].

In the same way that existing libraries and frameworks can be ex-
ploited by the CoSMoS user for implementation, the existing ODD pro-
tocol can be followed for presenting CoSMoS simulation experiments
and results. This provides the CoSMoS user with a well-established and
recognised means to ensure third party reproducibility of their scientific
simulation results. Contrariwise, it provides the ODD-compliant simu-
lation developer with the broader CoSMoS approach within which to
develop a scientifically credible simulator.

In order to support such reuse of the ODD protocol within CoSMoS,
this paper presents a mapping from the various ODD components, to
where the required information is located in CoSMoS components.

2 CoSMoS in a nutshell

The CoSMoS approach is documented through a pattern language [22,
23]. These patterns are based on a collection of models (figure 1) [3] and
other components. The patterns referenced in this paper are:

Research Context: the statement of the overall scientific context, goals
and scope of the simulation-based research being conducted, includ-

96 Susan Stepney

ing the Simulation Purpose, resources, constraints, assumptions, and
success criteria.

Domain: the part of the real world that is the system of study, that the
simulation project is “about”.

Domain Model: a model encapsulating the scientific understanding of
appropriate aspects of the Domain. It provides the agreed scientific
basis and assumptions for the development of a Simulation Platform;
simulation implementation details are not considered in this model.

Platform Model: a model providing the high level specification of the
Simulation Platform, comprising design and implementation details,
incorporating relevant Domain Model scientific concepts, Research
Context experimental requirements, and implementation constraints
and assumptions.

Simulation Platform: the encoding of the Platform Model into a Cali-
brated software and hardware platform with which various Simulation
Experiments can be performed.

Results Model: a model that encapsulates the understanding of outputs
and results from Simulation Experiments, in Domain terms, enabling
comparison with results from domain experiments.

Simulation Purpose: a component of the Research Context. It docu-
ments the scientific purpose for which the Simulation Platform is
being built and used. The purpose of a simulation exercise is the
single most important concept. Without an agreed purpose, it is im-
possible to scope the research context, or to arrive at a consensus
over fitness for purpose. The purpose of the simulation constrains
the appropriate levels of abstraction for modelling, the appropriate
implementation languages and platform, and the appropriate analy-
sis and interpretation of results. A simulator that is designed for one
purpose may or may not be modifiable for another purpose.

Modelling Approach: a component of the Domain Model and Platform
Model. The choice of an appropriate modelling approach and nota-
tion that can capture the relevant aspects of the Domain and Simu-
lation Purpose in a form that can be implemented in the Simulation
Platform.

Argumentation: the demonstration that the simulation is fit for pur-
pose (as defined in the Simulation Purpose). The fitness-for-purpose
argument exposes the rationale for scientific and engineering cred-
ibility of the simulator, the assumptions made, the limitations in
the purpose and scope of the simulator, and in the potential use of
its results. While CoSMoS’s rigorous model-based approach ensures
that the simulator is fit for purpose as a scientific instrument, the
accompanying argumentation ensures that the simulator is seen to
be fit for purpose.

CoSMoS and the ODD protocol 97

Simulation Experiment: a specific experiment executed on the Simula-
tion Platform. This should be designed and documented by analogy
to a domain experiment, including the hypothesis to be tested, initial
conditions and parameter values, experimental process, and results
analysis.

Data Dictionary: a component of the Domain Model, Platform Model,
Results Model, and Simulation Experiment. It provides a common def-
inition of the modelling data (parameter values such as sizes, scales,
rates) used to build the Simulation Platform, calibration data, and
the experimental data (initial values and results) both from Domain
experiments and the corresponding Simulation Experiments.

Calibration: tuning the Simulation Platform parameter values so that
simulation results match the experimental calibration data provided
in the Data Dictionary [1, 20].

There are many more patterns that make up the CoSMoS approach. The
ones summarised here are those that are relevant to mapping the ODD
protocol.

3 ODD and CoSMoS

The ODD (Overview, Design concepts, Details) protocol was introduced
in [7] and refined in [8] as a standard way of describing simulation models
(particularly in the ecological domain), specifically to aid reproducibility
of implementation of such models. By 2010 the original formulation had
been used in more that 50 publications [8]; experience gained from this
use led to its update.

ODD is more narrowly focussed than CoSMoS: it is concerned with
reproducibility of simulation models from their given descriptions (al-
though a noted side-effect of its use is “a more rigorous formulation of
models” [8]). Hence the ODD protocol information is only part of the
entire CoSMoS model: it is mostly contained in the Platform Model, and
some of the Research Context. ODD explicitly does not cover any Results
Model features of experimentation and sensitivity analysis (it considers
these to be the “methods” part of a description; the ODD protocol cov-
ers only the “materials” part of a standard scientific article [7]). Also,
it is more concerned with the implemented model, so it has only a little
that correspond to Domain Model elements.

In addition to the explicit material noted in the summary below, the
ODD protocol also recommends making the source code available (that
is, the Simulation Platform and Simulation Experiment), and using code
comments to highlight the various parts of the protocol information [7].

98 Susan Stepney

The CoSMoS approach has places for all the information needed to
give an ODD protocol description. This section describes the various
components of the updated ODD protocol (as defined in [8, §3]), and
explains where the corresponding material can be found in a CoSMoS-
based simulation.

ODD quotations in this section are taken from [8].

3.1 ODD: purpose

ODD component: “a concise summary of the overall objectives(s) for
which the model was developed”

CoSMoS location: this maps naturally onto the Simulation Purpose.

Simulation purpose is closely tied to criticality (for example, will the
results be applied directly, or be used to generate hypotheses that can be
tested by other means) and impact (for example, will the results affect
small-scale research, or large scale policy decisions) [15]. If the purpose is
to provide critical evidence for high-impact research, then the approach
to simulation development should access state-of-the-art software engi-
neering methods, argumentation, and documentation approaches; the
simulator and its fitness-for-purpose must be capable of international
expert scrutiny. However, if the purpose is to provide a test-bed for
hunches and a generator of hypotheses, all of which will then be subject
to conventional laboratory analysis and confirmation before publication,
then the development and argumentation need to be just good enough:
internal consensus and internal documentation are sufficient.

3.2 ODD: entities, state variables and scales

This part of the ODD protocol specifies the structure of the modelled
world in terms of its components. Like CoSMoS, ODD claims not to be
wedded to any one implementation approach: “Although the protocol
was designed for [Agent Based Models, it can help with documenting
any large, complex model” [8]. Nevertheless, the terminology in this part
of the ODD protocol is ABM-specific. The Modelling Approach is assumed
to be Agent Based from now on; UML is a notation that may be used
to capture aspects of ABMs [5].

CoSMoS and the ODD protocol 99

Entities

ODD component: “An entity is a distinct or separate object or actor that
behaves as a unit and may interact with other entities or be affected by
external environmental factors.”

[8] distinguishes the following types of entities: (i) agents/individuals;
(ii) spatial units (grid cells); (iii) environment; (iv) collectives (groups of
agents that can have their own group-level identity and behaviours)

CoSMoS location: the implemented entities are captured as part of the
Platform Model; if UML is the notation used, then the entities could be
partially captured as the classes in a class diagram.

Most Platform Model entities are derived from, but may differ from,
those in the Domain Model. For example, simplifications may be made;
platform entities may be surrogates for more complex domain entities.
In particular, the Domain Model may include emergent entities that
are not explicitly included in the Platform Model, since determining
their (hypothesised) emergence may be part of the Simulation Purpose.
Non-implemented emergent entities are distinct from ODD “collectives”,
which are explicitly modelled and implemented hierarchical entities. It is
important to distinguish these cases in order to ensure that the desired
emergent answer is not hard-coded into the simulation. This is one rea-
son why CoSMoS makes a careful distinction between the Domain Model
and Platform Model [3].

There may be additional entities in the Platform Model, such as
implementation-specific entities (such as instrumentation and interface
entities needed to support Simulation Experiments, or proxy entities need-
ed to implement a large-scale distributed simulator). Again, this is a
reason to separate the Domain Model and Platform Model: the scientific
Domain Model is not polluted with implementation details, and may be
an appropriate basis for diverse implementations.

State variables

ODD component: “A state variable or attribute is a variable that dis-
tinguishes an entity from other entities of the same type or category,
or traces how the entity changes over time. ... [they] can contain both
numerical variables and references to behavioural strategies. ...If state
variables have units, they should be provided.”

CoSMoS location: the implemented state variables are captured as part
of the Platform Model. If UML is the notation used, these would be cap-
tured, for example, as the instance variables (for “numerical variables”)

100 Susan Stepney

and methods (for “behavioural strategies”) in a class diagram. The CoS-
MoS Data Dictionary component pattern contains some of the detail,
including the units.

Scales

ODD component: “spatial and temporal scales and extents (the amount
of space and time represented in a simulation), . .. what the model’s units
represent in reality.”

CoSMoS location: this information is documented in the Data Dictio-
nary, both the Domain Model part for physical scales, and the Platform
Model part for any surrogates and abstractions of these scales. Tuning
these and other experimental parameter values, particularly where exper-
imental values refer to Domain entities and the corresponding Platform
Model entities are surrogates, is part of Calibration. The validation of the
mapping from real world units to simulation units, and of the appropri-
ateness of the spatial and temporal discretisation (including spatial grid
size and time-step size) is part of the Argumentation process.

3.3 ODD: process overview and scheduling

ODD component: this covers the dynamical behaviour of the model:
what the agents do, in what order (the order in which state variables
are updated, synchronous or asynchronous, concurrency); the behaviour
of any controller object; how time is modelled (discrete, continuous, or
hybrid).

“one should use pseudo-code to describe the schedule in every detail,
so that the model can be re-implemented from this code.”

CoSMoS location: the Platform Model contains this information, at vari-
ous levels of detail. If UML is the notation used, the highest level model
might be expressed as activity diagrams and state diagrams. Lower level
models, developed on the way to implementation, might be expressed in
pseudo-code.

3.4 ODD: design concepts

The final part of the ODD protocol is a list of specific concepts that need
to be defined for reproducibility. See also [9, ch.5], [19] for further dis-
cussion. These concepts are particularly important for ecological models
where the agents have complex behaviours, where the agents may change

CoSMoS and the ODD protocol 101

their behaviours, and where emergent properties are prominent. Not all
these concepts are important in every CoSMoS simulation, but when
they are, there is a place for them to be captured in the approach, listed
below.

ODD: basic principles

ODD component: the general concepts, theories, hypotheses and mod-
elling approaches underlying the model’s design.

CoSMoS location: these are variously captured in the Research Context
and the Domain (general concepts), the Domain Model (theories and hy-
potheses), and the Modelling Approach. The various components may be
brought together during Argumentation.

ODD: emergence

ODD component: the system level phenomena that emerge from the
individual behaviours, rather than being built in to the model

CoSMoS location: emergent properties are captured in the Domain Model,
and removed from Platform Model. In general, given a hypothesis under
consideration, components in the Domain Model that are outcomes of hy-
pothesised mechanisms, whether emergent or not, should not appear in
the Platform Model, to ensure that the answer is not be explicitly coded
into the Simulation Platform [3]. The Results Model is used to capture
emergent properties of Simulation Experiments; the simulated properties
captured in the results model can be compared to the real-world prop-
erties in the Domain Model.

ODD: adaptation, objectives, learning, prediction

ODD component: the rules the entities have for making decisions and
changing behaviour in response to changes in themselves or the environ-
ment; measures of an entity’s adaptive success (such as fitness, utility),
and the criteria used to measure this success; how entities change their
adaptive traits; how an entity predicts future consequences in order to
make decisions.

102 Susan Stepney

CoSMoS location: the real world versions of these can all be captured
in the Domain Model as a specific kind of entity behaviour or property.
The appropriate abstractions and surrogates are then all captured in
the Platform Model. If UML is the notation used, then a stereotype can
be used to highlight the specific kinds of behaviours and properties of
interest.

ODD: sensing, interaction

ODD component: what state variable values (of itself, and of the envi-
ronment) an entity has access to, that it can exploit to guide or influence
its behaviour; any direct and indirect interactions between agents; rep-
resentation of communications

CoSMoS location: setting the scope of entity interactions, in terms of
sensing capabilities and levels of detail, is part of the Domain Model. The
information access across entities required for simulation is captured in
the Platform Model. If UML is the notation used, then the relationships
between entities (including the environment entity) a class diagram can
document the information they can sense about each other.

ODD: stochasticity

ODD component: how and where randomness is used to model real world
variability that is unimportant to model in detail

CoSMoS location: the Domain Model captures the real world variabil-
ity at some level of abstraction; the Platform Model implements this as
randomness; the Argumentation of the appropriateness of this particular
form of implementation demonstrates that the approximation is fit for
purpose.

ODD: collectives

ODD component: collections of agents that behave as entities in their
own right; which are emergent, and which are explicitly modelled

CoSMoS location: the Platform Model captures explicitly-modelled col-
lectives; emergent collective entities are in the Domain Model but re-
moved from the Platform Model (see the discussion under the emergence
heading earlier in this section).

CoSMoS and the ODD protocol 103
ODD: observation

ODD component: a definition of the data samples collected from the
ABM for testing, understanding, and analysing it.

CoSMoS location: the Platform Model includes specification of the instru-
mentation used to produce the output data; the Data Dictionary (Results
Model component) includes the specification of the output data and its
analysis; the Simulation Experiment includes experiment-specific details.

3.5 ODD: initialisation

ODD component: the initial state of simulation, the number and state
of agents and the environment, at time ¢t = 0.

CoSMoS location: state variable values, and other parameter values, for
specific Simulation Experiments are held in the Data Dictionary.

3.6 ODD: input data

ODD component: the data that drives environmental variables (such as
rainfall or harvesting regimes) [7], imported from external files or models.

CoSMoS location: raw data for specific Simulation Experiments is held
in the Data Dictionary. If the data is produced on the fly by an external
model, that model and its interfaces will be captured, at some level of
abstraction, in the Platform Model. Initialisation data for that model is
also held in the Data Dictionary.

3.7 ODD: submodels

ODD component: the detailed sub-models, mathematical equations, rules,
and parameters that define the processes (§3.3).

CoSMoS location: the Platform Model contains this information, at vari-
ous levels of detail. For components such as mathematical equations, the
Platform Model may contain a reference to where the equation appears in
the Domain Model, plus the extra definitions necessary to implement the
equation under the prevailing model assumptions such as the implemen-
tation of time and space. Parameters are stored in the Data Dictionary.

104 Susan Stepney

4 Summary and Conclusions

As demonstrated, the documentation resulting from a simulation project
developed under the CoSMoS approach contains places for all the infor-
mation needed to document an ABM using the ODD protocol. Hence
CoSMoS can be used to develop ODD-compliant simulations. However,
the material is scattered through several CoSMoS artefacts: the Plat-
form Model and its Data Dictionary; the Research Context and Simulation
Purpose; the Domain Model; the Argumentation; and more. If the ODD
protocol is to be used to present the results of a CoSMoS-developed
Simulation Experiment, then it would be sensible to devise some project
standards that specifically tag the ODD-relevant information in each of
the CoSMoS artefacts.

A CoSMoS project’s artefacts contain much more than the infor-
mation required by the ODD protocol. Specifically, much of the ODD
information is found in the CoSMoS Platform Model, yet much of the in-
formation in the Platform Model is itself derived from the Domain Model.
Additionally, there is information in the Domain Model explicitly not
carried over to the Platform Model: the emergent properties and other
hypothesised outputs of the Simulation Experiments. This extra, crucial,
information has a formal home in the CoSMoS approach.

Furthermore, a key part of the CoSMoS approach is Argumentation:
the explicit demonstration that the simulation is fit for purpose [15-17].
This exposes a difference in the goals of ODD and CoSMoS: use of the
ODD protocol makes simulation experiments more reproducible; use of
the CoSMoS approach additionally helps to ensure that the simulated
world has a clear link to the real world (the experiments make domain
sense), and that the simulator as a scientific instrument is fit for purpose
(the experimental results are credible).

The developers of ODD are not trying to capture everything in
their protocol: in particular, ODD covers only the “materials” part of a
standard scientific article, and not the “methods” part [7]. The ODD
researchers are developing TRACE (Transparent and Comprehensive
Ecological Documentation) [10, 21] for more fully documenting mod-
els and their analyses. The OpenABM CoMSES Modeling Standards
requires that a model “Correctly simulates the processes it claims to
simulate” [14]. Future work for the CoSMoS approach is to demonstrate
how it is compliant with the requirements of TRACE and CoMSES.

CoSMoS and the ODD protocol 105

Acknowledgements

This work is part of the Complex Systems Modelling and Simulation
(CoSMoS) project, partially funded by EPSRC grants EP/E053505/1
and EP/E049419/1. T would like to thank my CoSMoS project col-
leagues, and pattern book [23] co-authors, for providing much of the
raw material on which this paper is based. Particular thanks go to Paul
Andrews, Jim Bown and Fiona Polack, for comments on earlier versions
of this paper. Thanks also to Teodor Ghetiu for bringing the ODD pro-
tocol to the CoSMoS team’s attention.

CoSMoS project documentation is available from the CoSMoS project
website www.cosmos-research.org.

References

[1] Kieran Alden, Mark Read, Jon Timmis, Paul S. Andrews, Henrique
Veiga-Fernandes, and Mark Coles. Spartan: A comprehensive tool for
understanding uncertainty in simulations of biological systems. PLoS
Comput Biol, 9(2):€1002916, 2013.

[2] Paul S. Andrews, Fiona A. C. Polack, Adam T. Sampson, Susan Stepney,
and Jon Timmis. The CoSMoS process, version 0.1: A process for the
modelling and simulation of complex systems. Technical Report YCS-
2010-453, Department of Computer Science, University of York, March
2010.

[3] Paul S. Andrews, Susan Stepney, Tim Hoverd, Fiona A. C. Polack,
Adam T. Sampson, and Jon Timmis. CoSMoS process, models, and
metamodels. In Stepney et al. [25], pages 1-13.

[4] Paul S. Andrews, Susan Stepney, and Jon Timmis. Simulation as a sci-
entific instrument. In Stepney et al. [24], pages 1-10.

[6] Bernhard Bauer and James Odell. UML 2.0 and agents: How to build
agent-based systems with the new UML. Journal of Engineering Appli-
cations of Artificial Intelligence, 18:141-157, 2005.

[6] FLAME website: www.flame.ac.uk.

[7] Volker Grimm, Uta Berger, Finn Bastiansen, Sigrunn Eliassen, Vincent
Ginot, Jarl Giske, John Goss-Custard, Tamara Grand, Simone K. Heinz,
Geir Huse, Andreas Huth, Jane U. Jepsen, Christian Jorgensen, Wolf M.
Mooij, Birgit Miiller, Guy Pe’er, Cyril Piou, Steven F. Railsback, An-
drew M. Robbins, Martha M. Robbins, Eva Rossmanith, Nadja Riiger,
Espen Strand, Sami Souissi, Richard A. Stillman, Rune Vabg, Ute Visser,
and Donald L. DeAngelis. A standard protocol for describing individual-
based and agent-based models. FEcological Modelling, 198(1-2):115-126,
2006.

[8] Volker Grimm, Uta Berger, Donald L. DeAngelis, J. Gary Polhill, Jarl
Giske, and Steven F. Railsback. The ODD protocol: A review and first
update. Ecological Modelling, 221(23):2760-2768, 2010.

106

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

Susan Stepney

Volker Grimm and Steven F. Railsback. Individual-based Modeling and
Ecology. Princeton University Press, 2005.

Volker Grimm and Amelie Schmolke. How to read and write TRACE
documentations, 1st draft. Technical report, Helmholtz Centre for Envi-
ronmental Research, Leipzig, Germany, 2011.

Marco A. Janssen, Lilian Na'ia Alessa, Michael Barton, Sean Bergin, and
Allen Lee. Towards a community framework for agent-based modelling.
Journal of Artificial Societies and Social Simulation, 11(2):6, 2008.
Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and
Gabriel Balan. MASON: A multi-agent simulation environment. Simu-
lation: Transactions of the society for Modeling and Simulation Interna-
tional, 82(7):517-527, 2005. Website: cs.gmu.edu/~eclab/projects/mason.
OpenABM website: www.openabm.org.

OpenABM model certification:
www.openabm.org/faq/what-model-certification-and-how-does-it-work.
Fiona A. C. Polack. Arguing validation of simulations in science. In
Susan Stepney, Peter H. Welch, Paul S. Andrews, and Adam T. Sampson,
editors, 2010 CoSMoS workshop, pages 51-74. Luniver Press, 2010.
Fiona A. C. Polack, Paul S. Andrews, Teodor Ghetiu, Mark Read, Susan
Stepney, Jon Timmis, and Adam T. Sampson. Reflections on the simu-
lation of complex systems for science. In ICECCS 2010, pages 276-285.
IEEE Press, 2010.

Fiona A. C. Polack, Alastair Droop, Philip Garnett, Teodor Ghetiu, and
Susan Stepney. Simulation validation: exploring the suitability of a sim-
ulation of cell division and differentiation in the prostate. In Stepney
et al. [25], pages 113-133.

Karl Popper. The Logic of Scientific Discovery. Hutchinson, 1959.
Steven F. Railsback. Concepts from complex adaptive systems as a frame-
work for individual-based modelling. Ecological Modelling, 139(1):47-62,
2001.

Mark Read, Paul S. Andrews, Jon Timmis, and Vipin Kumar. Tech-
niques for grounding Agent-Based Simulations in the real domain: a case
study in Experimental Autoimmune Encephalomyelitis. Mathematical
and Computer Modelling of Dynamical Systems (MCMDS), 18(1):67-86,
2012.

Amelie Schmolke, Pernille Thorbek, Donald L. DeAngelis, and Volker
Grimm. Ecological models supporting environmental decision making: a
strategy for the future. Trends in Ecology & Fvolution, 25(8):479-486,
2010.

Susan Stepney. A pattern language for scientific simulations. In Stepney
et al. [24], pages 77-103.

Susan Stepney, Kieran Alden, Paul S. Andrews, James L. Bown, Alastair
Droop, Teodor Ghetiu, Tim Hoverd, Fiona A. C. Polack, Mark Read,
Carl G. Ritson, Adam T. Sampson, Jon Timmis, Peter H. Welch, and
Alan F. T. Winfield. Engineering Simulations as Scientific Instruments.
Springer, 2013. in preparation.

CoSMoS and the ODD protocol 107

[24] Susan Stepney, Paul S. Andrews, and Mark Read, editors. Proceedings
of the 2012 Workshop on Complex Systems Modelling and Simulation,
Orleans, France, September 2012. Luniver Press, 2012.

[25] Susan Stepney, Peter Welch, Paul S. Andrews, and Carl G. Ritson, edi-
tors. Proceedings of the 2011 Workshop on Complex Systems Modelling
and Simulation, Paris, France, August 2011. Luniver Press, 2011.

[26] Uri Wilensky. NetLogo. Website: ccl.northwestern.edu/netlogo.

108 Susan Stepney

Understanding Self-Organized
Regularities:
AOC-Based Modeling of Complex
Healthcare Systems

Li Tao and Jiming Liu*

Department of Computer Science, Hong Kong Baptist University
1tao, jiming@comp.hkbu.edu.hk

Abstract. A healthcare system, as a well recognized complex
system, exhibits certain types of self-organized regularities, such
as the statistical distribution of wait-time variations. What re-
mains to be a challenge in understanding a complex healthcare
system is how to model and characterize emergent self-organized
regularities by taking into account the underlying individual-
level behavior (e.g., patient hospital selection behavior) with
respect to various impact factors (e.g., geographic accessibility
to services, hospital resourcefulness, and service performance).
In this paper, we present an Autonomy-Oriented Computing
(AOC) approach to modeling and simulating service utilization
in the context of a cardiac surgery system, so as to character-
ize the self-regulating patient arrivals and wait time. By ex-
perimenting with the AOC-based cardiac surgery system model
(AOC-CSS), we are able to explain how the global-level regu-
larities in patient arrivals and wait time may emerge from the
individual-level patient hospital selection behavior and its inter-
relationship with hospital wait time.

1 Introduction

A healthcare system has been well recognized as a complex system [24]
[17]. Some interesting self-organized regularities in healthcare service uti-
lization, such as the power-law distribution of specialists’ waiting-list
variations (i.e., the variations of mean time that patients spend in spe-
cialists’ waiting lists) [26], have been reported. However, it is still unclear
what and how individual-level patient behavior (e.g., hospital selection

* Corresponding author

110 Li Tao and Jiming Liu

behavior) and underlying factors (e.g., distance from homes to services,
hospital resourcefulness in terms of operating room capacity and physi-
cian supply, and service performance represented as wait time) account
for such emergent global-level regularities.

Dynamically-changing patient arrivals and wait time may be directly
or indirectly affected by various factors, as schematically illustrated in
Fig. 1, including, but not limited to, demographics, socioeconomics, en-
vironment (e.g., weather), human behavior [3], service delivery behav-
ior [29], and geographic accessibility to services [28]. For instance, old
age (physiological age at a biological scale) is an important risk factor
for cardiovascular diseases, while the patient hospital selection behav-
ior at a personal scale may heavily influence the distribution of actual
patient flows to various hospitals. Furthermore, the factors of demand
and supply may have complex interrelationships, coupled interactions,
and/or feedback loops [23]. For instance, as shown in Fig. 1, the hospital
performance (a quality measurement for hospitals, e.g., wait time), may
affect the patient hospital selection behavior via a feedback loop, which
will in turn influence the distribution of patient flows and further exert
effects on the performance of hospitals.

In view of this, to understand the global-level self-organized regulari-
ties in healthcare service utilization from a complex systems perspective,
it would be essential to address the following issues:

— Scope: What factors, variables, processes, and hierarchical levels
(e.g., services in a hospital level or in a regional level) are relevant,
and hence should be investigated and modeled?

— Coupling relationships and/or interactions: What are the in-
terrelationships among the impact factors and variables? Identify-
ing their local feedback loop(s) would be crucial for understanding
global-level self-organized regularities.

— Heterogeneity: The behavior of patients in choosing hospitals may
be heterogeneous due to their differences in personal profiles, socioe-
conomic backgrounds, and service distributions in and around their
residence areas. Hospitals may also be heterogeneous in delivering
healthcare services because of their variations in equipped resources,
management strategies, and dynamically-changing patient arrivals.
Thus, capturing the heterogeneity of patients and hospitals will be
essential in modeling and simulating a real-world complex healthcare
system.

In this paper, we present an Autonomy-Oriented Computing (AOC)-
based, “bottom-up” approach [19] to understanding the global-level self-
organized regularities relating patient arrivals and wait time in a cardiac

Understanding Self-Organized Regularities in Healthcare 111

Indicators

No. arrivals

No. throughput
Average/Median wait time
Average queue length

Multi-Scale
Impact Factors

.
.
.
e Weather 0

Patient population

Tempo-Spatial Patterns

e Self-organized patient
arrivals regularity

* Geographic accessibility
for healthcare services

Hospital resourcefulness Input

Output

>

* Hospital performance

Patient/GP hospital
selection behavior

Ontario s
4/
i
b

0 Self—organize& wait time
regularity

o Spatial patient flow pattern
Feedback P P P

Fig.1. An illustration of the complex cardiac surgery system in Ontario,
Canada. The illustrated tempo-spatial patterns are observed from secondary
data about cardiac surgery service utilization between January 2005 and De-
cember 2006. LHIN represents Local Health Integration Network, a geographic-
location-based health authority responsible for planning and determining
healthcare service needs and priorities in a certain area of Ontario, Canada [6].
There are 14 different LHINs in total. LHIN 2 to LHIN 7 are exemplified LHINs
in Ontario (refer to http://www.lhins.on.ca/FindYourLHIN.aspx for the cor-
responding geographic areas in Ontario). H denotes a hospital.

surgery system. In essence, “an AOC system is a multi-agent system
(MAS)” but different from a traditional MAS in that it is aimed to
address “the issues of self-organization, self-organized computability, in-
teractivity...” [18, p.9] in solving problems as well as in modeling com-
plex systems. It is not only scalable and efficient in problem solving, but
also capable of characterizing the properties of complex systems, such as
self-organized regularities and emergent behaviors, by means of model-
ing the underlying individuals’ behavior and their interactions and hence
uncovering the essential mechanisms of positive-feedback-based aggrega-
tion and collective regulation in the systems.

Specifically, in this work, we utilize the AOC-by-prototyping ap-
proach [19] to construct an AOC-based cardiac surgery system model
(AOC-CSS). In modeling the real-world cardiac surgery system in On-
tario, Canada, we consider multi-scale factors impacting patient arrivals
(as shown in Fig. 1), such as weather, demographics of cities/towns in
Ontario, geographic accessibility for cardiac surgery services, resource-

112 Li Tao and Jiming Liu

fulness of physicians in a hospital, hospital performance in terms of wait
time, and patient hospital selection behavior. Our goal is to characterize
the global-level self-organized regularities in service utilization, as emer-
gent from the individual-level behaviors of patients and hospitals with
respect to multi-scale impact factors.

The remainder of this paper is organized as follows. Section 2 presents
the global-level self-organized regularities in healthcare systems as re-
ported in previous studies as well as in our work. Section 3 briefly states
the research problem and related issues. Section 4 shows the detailed
formulation of our AOC-CSS model. Section 5 presents and discusses
simulation-based studies and results on characterizing the regularities of
patient arrivals and hospital wait time. We finally summarize our find-
ings and consider future work in Section 6.

2 Empirical Regularities in Complex Healthcare
Systems

Prior studies have empirically identified self-organized regularities in
healthcare systems. For instance, Smethurst and Williams found that
the monthly absolute variations of wait time that patients spent in spe-
cialists’ waiting lists (as calculated by the changes of mean wait time
w at time steps t and ¢t — 1 (w; — wi—1)/wy) followed a power-law dis-
tribution [26], and thus concluded that hospital waiting lists were self-
regulating.

In this work, we have analyzed the month-to-month variations of
patient arrivals and median wait time for 11 hospitals providing car-
diac surgery services in Ontario, Canada, over a 2-year period from
January 2005 to December 2006. The investigated data was provided
by Cardiac Care Network of Ontario (http://www.ccn.on.ca/cen_pub-
lic/FormsHome/HomePage.aspx; accessed in February 2011). The month-
to-month variations of patient arrivals (or median wait time) are calcu-
lated as follows:

Tt+1 — Tmin _ Tt — Tmin (1)

Vt+1 =
Tmaz — Tmin Tmaz — Tmin

where v;41 denotes the variation of patient arrivals (or median wait time)
at time ¢ + 1. In this work, each time step ¢ corresponds to a month. z;
denotes the number of patient arrivals (or median wait time) at time ¢.
Tmin and T, are the minimum and the maximum values of patient
arrivals (or median wait time) over the two-year period, respectively.

Accordingly, the absolute month-to-month variations of patient ar-
rivals (or median wait time), v}, can be obtained as follows:

Understanding Self-Organized Regularities in Healthcare 113

0.12 4
Mean: 0.0004
SD: 0.226

0.10 4

0.08 -

0.06 4

0.04 4] »

0.02 + L]]

0.00 =m L] n

Percentage of Variation Occurance

T T T T T
08 06 -04 -02 00 02 04 06 08
Variation of Patient Arrivals

Fig. 2. The statistical distribution of patient-arrival variations for cardiac
surgery services in Ontario, Canada, between January 2005 and December
2006. The distribution follows a normal distribution; the normality of the dis-
tribution has passed the Kolmogorov-Smirnov test.

vp= 1ol (E>1) (2)

By observing the (absolute) variations of patient arrivals and me-
dian wait time, two types of self-organized regularities can readily be
discovered, as shown in Figs. 2 and 3.

As shown in Fig. 2, the monthly variations of patient arrivals against
the percentages of variation occurrences follow a normal distribution
with mean value of 0.004 and standard deviation (SD) of 0.226. More
interestingly, as shown in Fig. 3, the monthly absolute variations of me-
dian wait time follow a power-law distribution with power of —1.36 and
standard deviation of 0.28 (p < 0.001), implying that there exists a
statistical regularity in month-to-month variations.

3 Problem Statement

In this work, as aided by AOC, we will build a white-box model (i.e.,
AOC-CSS model), which not only considers the input and output of
a real-world cardiac surgery system, but also addresses the underlying
interaction mechanisms among the entities in the system (e.g., patients

114 Li Tao and Jiming Liu

Percentage of Variation Occurance

0.1
P<0.001
0.01 4 SD: 0.28
0.01 0.1 1

Absolute Variation of Median Wait Time

Fig. 3. The statistical distribution of absolute variations of median wait time
for cardiac surgery services in Ontario, Canada, between January 2005 and
December 2006. The distribution follows a power law with power of —1.36
(p < 0.0001).

and hospitals), to explain how the global-level regularities (as shown in
Figs. 2 and 3) emerge from the individual-level behavior and interactions.

Specifically, in designing the AOC-CSS model, we will address the
following issues:

— Major impact factors: What factors, by and large, affect the pa-
tient hospital selection behavior?

— Behavioral rules: How to formulate the behavioral rules of the
entities in the focal cardiac surgery system that govern the patient
hospital selection behavior, while taking into account the identified
impact factors and the heterogeneity of patients and hospitals?
Local interactions and feedback loop(s): How to capture the
local interactions and feedback loop(s) of the entities in the system?
Simulation-based validation: Can the empirically observed global-
level regularities emerge from the individual-level behavior (e.g., the
behavior of patients with respect to the wait time of a hospital)
through simulation?

In what follows, we will describe in detail how we build the AOC-CSS
model and address the above-mentioned issues.

Understanding Self-Organized Regularities in Healthcare 115

4 The AOC-Based Cardiac Surgery System Model
(AOC-CSS)

As a case study to understand self-organized regularities by means of
AOC-based modeling and simulation, we present the following three
steps in constructing an AOC-based cardiac surgery system model (AOC-
CSS):

1. Identifying the participating heterogeneous entities in the system,
major impact factors, and local feedback loop(s).

2. Modeling the system based on the AOC methodology where special
attention is paid to deriving entities’ behavioral rules that incorpo-
rate (1) the heterogeneity of the entities, (2) the identified impact
factors, and (3) the local feedback loop(s) (e.g., the feedback loop
between the patient hospital selection behavior and hospital wait
time). In this step, the spatial pattern of patient flow distributions
by LHINs (as shown in Fig. 1), which reflects aggregated effects of
the patient hospital selection behavior, will be considered.

3. Capturing the self-organized regularities by means of simulating the
constructed AOC-CSS model.

4.1 Identifying Entities, Major Factors, and Local Feedback
Loop(s)

In Ontario, general physicians (GPs) are the “gatekeepers” for referrals
to cardiac surgery services since 93% of the population in Ontario have
GPs [5]. When a patient needs a cardiac surgery, he/she will first make a
mutual decision with his/her GP on choosing a hospital for the required
treatment [1]. In most cases, the patient, no matter what his/her age
and socioeconomic background is, will select a hospital following his/her
GP’s recommendation [3] [11]. For this reason, modeling the patient hos-
pital selection behavior is equivalent to modeling the patient-GP mutual
decisions on selecting a hospital. After the patient and the GP make a
mutual decision on hospital selection, the GP will refer the patient to
the selected hospital, in which the patient will register and wait for re-
ceiving the treatment [1]. Finally, the patient will leave the hospital after
finishing the treatment.

Based on the above process, we can readily identify three types of
autonomous entities in the cardiac surgery system; they are: GP, pa-
tient, and hospital. For each patient entity, he/she and his/her GP will
make a mutual decision on hospital selection based on (1) the released
information about the hospitals and (2) the applicable behavioral rules
for hospital selection taking into account certain impact factors.

116 Li Tao and Jiming Liu

According to the previous literature, the key factors affecting the de-
cisions of patients and GPs on choosing hospitals may include distance
(from homes to services), the resourcefulness of a hospital (referred to as
hospital resourcefulness hereafter), and hospital performance (e.g., wait
time). First of all, it has been well recognized that the geographic dis-
tance from homes to services is negatively associated with the likelihood
to select the services (i.e., selection probability) for patients [25] [15]
and GPs [16] [12] [15] because patients are more likely to visit hospitals
close to their homes. The resourcefulness of a hospital, as represented
by the number of physicians [29], has been found to be positively cor-
related with the probability that patients and GPs select the specific
hospital [29] [13] [27] because more hospital resources may attract more
patient arrivals [26]. In addition, wait time is also a major concern for
patients [3] and GPs [15] [22], who are usually in favor of hospitals with
short wait time [3] [15] [22].

The aforementioned interrelationships among these factors and pat-
ient-GP mutual decisions on hospital selection may form a certain feed-
back loop between patient arrivals and hospital wait time (as illustrated
in Fig. 4), which may result in nonlinear phenomena (e.g., self-regulating
patient arrivals and wait time) in the complex cardiac surgery system.
For instance, the long wait time in a hospital may weaken the probability
of patients/GPs selecting the hospital, which will in turn decrease the
number of patient arrivals, and thus the wait time in the hospital will
be reduced soon afterwards.

In what follows, we will describe the detailed formulation of the AOC-
CSS model, defining the three types of entities, the environment in which
they reside and receive the released information, and their behavioral
rules.

4.2 Environment

In our work, the geographic relationship/structure between cities and
hospitals is conceptualized as a weighted bipartite network defined as
follows:

Definition 1: City-Hospital Network CH = (C, H, D), where C(N) =
{ei} (i € [1,N]) and H(M) = {h;} (j € [1,M]) are two node sets,
HNC =0; D={d;;} (i €[1,N],j€[l,M])is aset of weighted edges.

In our research context, each node ¢; (Ve; € C) represents a sampled
city /town, which has more than 40,000 population in 2006 according to
the census data in Ontario, Canada. Each node h; (Vh; € H) denotes
a hospital that provides cardiac surgery services in Ontario, Canada.

Understanding Self-Organized Regularities in Healthcare 117

Distance

A4

Hospital
Resourcefulness +

* No. Physicians
* No. Operating rooms

Patient Arrivals

* Patient-GP mutual decisions
on hospital selection

A

O

A

Hospital Wait Time

Fig. 4. The effects of impact factors on patient-GP mutual decisions on hos-
pital selection and the interacting feedback loop. In this figure, “+” or “-”
means a positive or a negative relationship between two factors, respectively.

Finally, each weighted edge d;; (Vd;; € D) represents the driving time
from a city/town ¢; (V¢; € C) to a hospital h; (Yh; € H) which is
estimated by using the “Get directions” function in Google Maps [4].
The environment F in the AOC-CSS model records the released in-
formation about hospitals. We formally define environment E as follows:

Definition 2: Environment E for the AOC-CSS model is represented as
a bipartite network as defined in Definition 1. £ maintains information
that could be accessed by patients and GPs. We define environment E
as a tuple: < D, R, W >, where the elements are given as follows:

— D: Distance information D = {d;;}. Each d;; records the driving
time between city/town ¢; (Ve; € C) and hospital h; (Yh; € H).

— R: Hospital resourcefulness information R = {r;}, where r; records
the number of physicians in h; (Vh; € H) .

— W: Wait time information W = {w; }. Each w; , records the wait
time information for hospital h; (Vh; € H) at time round 7. Here, a
unit time round 7 to review hospital operations (e.g., one month or
one quarter) includes T number of unit time steps ¢ (a unit of time
to record the hospital operational information, e.g., one day), i.e.,
7 = T'xt. In this paper, w; r records the median wait time of h; over
the past time round 7 — 1.

118 Li Tao and Jiming Liu

4.3 Entities
(1) General physician (GP)

In the AOC-CSS model, patients come to a hospital selected upon
patient-GP mutual decisions and the released information in the environ-
ment F. As most cardiac surgery patients are referred by GPs, we define
entities GP[N] to record and represent patient-GP mutual decisions on
hospital selection.

Definition 3: GP[N] records the information for patients and GPs
to make hospital selection decisions. We assume that GPs are homo-
geneous in a city/town, so that all GPs in city/town ¢; can be re-
garded as one GP entity, GP;. Each entity GP; maintains a record:
< cityl D, rule, P, \;;, A, >, where the elements are given as follows:

— cityl D: The unique identity for a city/town that GP; resides in.

— rule: The behavioral rules representing how G P; and his/her patients
make mutual decisions on selecting hospitals. The specific behavioral
rules will be introduced in Section 4.4.

— P: The hospital preference information, P = {p;} (Vj € [1,M]).
Each p; presents GP;’s preference for hospital h; (h; € H). The
preference for a hospital is estimated based on GP;’s behavioral rule
for hospital selection and the accessed environmental information.

— Ag: The mean number of type k patients at each time step.

— Aj: The patient flow information for type k (k € K) patients, Ay =
{ak;}. Each a; records the number of type k (k € K) patient
arrivals for hospital h; (h; € H) at each time step.

(2) Patient

At each time step t, city/town ¢; generates a number of patient en-
tities following a poisson distribution, ZtheH ak,; ~ P(Ax). The mean
patient number varies from one city/town to another due to the differ-
ences in demographic characteristics, such as population size and age
profile. A patient entity can be defined as follows:

Definition 4: A patient entity, patient, records its information in a hos-
pital. Each patient entity maintains a record: < patientI D, cityl D, hosp-
itall D, type, joinT'ime, endTime,w >, where the elements are given as
follows:

— patientI D: The unique identity represented by a constant for a pa-
tient.

Understanding Self-Organized Regularities in Healthcare 119

— cityI D: The unique identity for the city/town that a patient comes
from.

— hospitall D: The unique identity for the hospital that a patient ar-
rives at.

— type: The patient type that represents the heterogeneity of patient
entities, Vk € [1, K] (K > 1).

— joinTime: The time step that a patient joins in the queue of a hos-
pital.

— endTime: The time step that a patient has been served in a hospital.

— w: The wait time of a patient, w = endTime — joinTime.

(3) Hospital

In this work, we model the operations of a hospital entity that pro-
vides cardiac surgery services in the same way as the existing studies on
queueing theory based modeling and simulation of hospital operations
(i.e., hospital service behavior) [9]. Since operating rooms for cardiac
surgery services in a hospital are, to a certain extent, homogeneous, it is
reasonable to regard hospital j as one server (i.e., one operating room)
with service rate p;, and thus assume that each hospital is an M/M/1
queueing model [14]. A hospital entity can be defined as follows:

Definition 5: Hospital[M] records the information of all the hospitals.
Each hospital entity h; (Vh; € H) maintains a record: < hospitallD, ci-
tyl D, u, Ay, w, queue >, where the elements are given as follows:

— hospitall D: The unique identity for a hospital.

— cityI D: The unique identity for the city /town in which a hospital is
located.

— Aj: The patient arrival information for type k (k € K) patients,
A = {@; 1} Each a; j, records the number of type k (k € K) patients
coming from city/town ¢; at each time step.

— u: The hospital service rate.

— w: The wait time information of hospital h; in a past time period,
which will be released in environment E. In this work, the wait time
information w released at time round 7 is the average median wait
time for the past time round 7 — 1.

— queue: The queue including all the patient entities waiting for cardiac
surgery services at each time step.

4.4 Behavioral Rules for Selecting Hospitals Based on
Stylized Facts

By reviewing the literature, some stylized facts about the effects of key
impact factors, i.e., distance, hospital resourcefulness, and wait time,

120 Li Tao and Jiming Liu

on patient-GP mutual decisions on hospital selection are identified as
follows:

— Stylized fact 1: The probability for a patient selecting a hospital is
exponentially and inversely associated with the distance from his/her
home to the hospital [25].

— Stylized fact 2: Distance has a certain threshold effect [3] for pa-
tients and GPs to select hospitals. That is to say, patients and GPs
will, more or less, consider visiting a hospital within a certain dis-
tance threshold. If the distance from homes to a specific hospital is
longer than a distance threshold, patients and GPs are less likely
to visit the hospital. For instance, patients may consider to visit a
hospital within two-hour driving time. Here, two-hour driving time
could be regarded as a distance threshold.

— Stylized fact 3: Patients usually prefer to visit resourceful hos-
pitals, in terms of human resources (e.g., physicians) and physical
resources (e.g., ORs) [29] [13] [27]. In other words, the hospital re-
sourcefulness and the number of patient arrivals are positively cor-
related in a cardiac surgery system [20].

— Stylized fact J: Patients usually prefer to visit a hospital with
shorter wait time [3] [15] [22]. However, certain patients, especially
the elderly will less likely or never consider the wait time factor when
they select hospitals [3].

In view of this, two preferred categories of hospitals that patients and
GPs may consider to visit can be defined as follows:

Definition 6: The first preferred category of hospitals G;1 (i € [1, N],
G;1 C H) represents the most preferred hospitals with respect to driv-
ing distances for patients and GPs residing in city ¢;. G;1 contains the
hospital(s) that the patients and the GPs can reach within a distance
d (d > 0); or the nearest hospital(s) if there does not exist any hospitals
within d from city c;.

Definition 7: The second preferred category of hospitals G2 (i € [1, N],
G2 C H) denotes the hospitals that are farther than those in G;1, but
can be reached within a distance 3 x d for patients and GPs residing in
city ¢;. Here 8 (8 > 1) is a multiplying factor to determine the distance
threshold for G;5 based on that for G;.

The three different behavioral rules for patients and GPs residing
in city ¢; to determine the probability a;; for selecting hospital h; are
defined as follows:

Understanding Self-Organized Regularities in Healthcare 121

Behavioral rule 1: D-rule (Distance). Patients and GPs select a
hospital h; based only on the distance d;; from their residing city/town
¢; to the hospital. The hospital selection probability is calculated by
using Equation 3:

(dij)™ ™ _ .
0% thecil 6*(dim)7o‘+zhmeci2 (dim)—2" hj € G“
= (di) 2 R (3)
? thecil 5*(di7'L)7a+thEGi2 (dim)=? h] € Gia
0, else

where 6 (6 > 1) is a bias factor to indicate the preference of patients or
GPs for hospitals in G;; over those in G2, « is an exponent factor to
scale the hospital selection probability with respect to driving distances.

Behavioral rule 2: DH-rule (Distance and Hospital resource-
fulness). Patients and GPs choose a hospital h; based on the distance
d;; from their residing city/town ¢; to the hospital, and the hospital re-
sourcefulness 7; as represented by the number of physicians. The hospital
selection probability is calculated by using Equation 4.

Ox(dij) ™™
(dijz) @ * f(?“j), hj € Gt

2nmecy O dim) T30 e,
(dig)~“

Q;i = i . . . 4
J E}L,,LEGil 5*(dim)7a+2hmecim (dim)ia * f(rj)y h] S G’LQ ()
0, else
flrj) = -

the(cil‘*'cm) Tm

Behavioral rule 3: DHW-rule (Distance, Hospital resourceful-
ness, and Wait time). Patients and GPs select a hospital h; based
on the distance d;; from their residing city/town ¢; to the hospital, the
hospital resourcefulness 7;, and the released wait time information w; -
at time round 7. The hospital selection probability is calculated by using
Equation 5.

dx(diz) = , 4 , 4

Shmecn 6*(di7”)7a]+zhm,eciz(d"’:"7")7a * f(TJ) * f(wj7‘l')7 hj € G
L = (d,;j)ia

i Dhmecy O dim) T30 e, (dim) ™ * f(rj) * f(wj’T)’ hj € Giz

0, else

(5)

122 Li Tao and Jiming Liu

Patient Residence by LHIN

2 4 6 8 10 12 14
Location of Cardiac Surgery Services by LHIN

Fig. 5. The distribution of operated cardiac surgery patients with respect to
their residence by LHINs in the year of 2007-2008 in Ontario, Canada.

£r) = st

thE(Gil +G o) Tm

w;)1
flw;) T

the(GHJrGig) Wi+

Due to the differences in factors, such as geographic accessibility to
cardiac surgery services, patients and GPs in different cities may use
different behavioral rules for selecting hospitals. The spatial pattern of
real patient flows (as shown in Fig. 5), which represents the aggregated
effects of patients’ and GPs’ hospital selection behaviors, will be utilized
to find out the suitable behavioral rule for patients and GPs in each
city /town. During this process, we are also able to estimate the values of
the distance threshold d, the multiplying factor 3, the exponent factor
a, and the bias factor § from real-world data.

Based on our experiments, it has been found that when d = 0.5,
a =28, =15 and § = 1.5, we can get relatively small values of
mean and standard deviation of absolute errors. Here, the absolute error
is defined as |e;;| = |a;; — aj;|, where e;; is the error between the per-
centage of patients residing in LHIN I; coming to hospitals in LHIN [;
in the year of 2007-2008 in Ontario, and that obtained from our simu-
lation. The best-fit behavioral rules found for patients and GPs residing
in cities/towns within different LHINs are summarized in Table 1. The
estimated hospital selection probabilities and errors with respect to the
best-fit behavioral rule for each LHIN are shown in Fig. 6.

Understanding Self-Organized Regularities in Healthcare

123

Table 1. A summary of best-fit behavioral rules for patients and GPs residing
in cities/towns within different LHINs

LHIN Hospital Behavioral Rule

1 - DH-rule

2 London Health Sciences Centre DHW-rule
3 St. Mary’s General Hospital D-rule

4 Hamilton Health Sciences DH-rule

5 - DH-rule

6 Trillium Health Centre DH-rule

7 St. Michael’s Hospital, Sunnybrook Hospital, DHW-rule

University Health Network

8 Southlake Regional Health Centre DH-rule

9 - DHW-rule
10 Kingston General Hospital DH-rule
11 University of Ottawa Heart Institute D-rule
12 - D-rule
13 Hoéspital Régional de Sudbury DHW-rule
14 - D-rule*

*: Since the driving time from any city/town in LHIN 14 in Ontario to any
cardiac surgery services is longer than 10 hours, the service accessibility as well
as the hospital selection behaviors of patients and GPs in LHIN 14 are appar-
ently different from those in other LHINSs. In this case, the best-fit behavioral
rule may not adequately characterize the selection behavior for patients and

GPs.

—: No hospital providing cardiac surgery services.

Patient Residence by LHIN

2
Location of Cardiac Surgery Services by LHIN

(a) Estimated hospital selection probability: &’

4

Patient Residence by LHIN

12

14 | |

0.2
0.1

0.1
0.2
0.3
0.4
0.5

6 8 10 12 14 2 4 6 8

14

Location of Cardiac Surgery Services by LHIN
(b) Error: e;

Fig. 6. (a) Estimated hospital selection probabilities for patients residing in
each LHIN, and (b) errors between the percentages of patients residing in an
LHIN coming to hospitals in its own LHIN or other LHIN(s) in the real-world
and those as obtained from the simulation, with respect to the best-fit rules
as shown in Table 1.

124 Li Tao and Jiming Liu

5 Simulation and Discussion

In this section, we will describe simulations based on our AOC-CSS
model with an aim to understand the global-level self-organized regular-
ities in cardiac surgery service utilization.

5.1 Simulation Settings

The parameters in the AOC-CSS model are initialized by using pub-
licly available data. Cardiac Care Network of Ontario (CCN) published
monthly statistical reports on cardiac surgery service utilization in On-
tario hospitals in the years between January 2005 and December 2006
(we accessed the data in February 2011). In the statistical reports, the
average number of treated cases, the median wait time, and the queue
length in a month for each hospital were reported. Therefore, the service
rate p; for hospital h; can be approximated as the average number of
served cases in a day. The arrival rate for each patient type in city/town
¢; can be approximated by the following Equation 6:

> GPLA = sixm; (6)

keK
where s; is the patient-generation probability, i.e., the probability of
a person in city/town ¢; being a patient who needs a cardiac surgery
service, m; is the size of total population in city/town ¢;. The parame-
ter s; represents the heterogeneity of city/town ¢; in producing patient
population requiring cardiac surgery services with respect to its demo-
graphics and socioeconomic factors. In this work, the patient-generation
probabilities for cities/towns in each LHIN could be inferred from [8].
The total population m; for each city/town is gathered from the 2006
Canada Census data [7].

There are two types of patients in our simulation, i.e., K = 2. One
patient type is urgent, and the other is non-urgent. According to the
data reported in [8, p.71], the arrival rate of urgent patients versus that
of non-urgent patients is set to 0.23:0.77. Urgent patients have a higher
priority in receiving cardiac surgery services than non-urgent patients.

Since seasonal weather is an important contributing factor influencing
patient arrivals [21], the arrival rate will be adjusted seasonally in our
simulation. For a relatively warm season (i.e., from May to October in a
year in Ontario), the arrival rate is approximately 15% lower than that
of a cold season (i.e., from January to April, and from November to
December in a year in Ontario) according to the reported CCN data.

In accordance with the real-world monthly service utilization data
from January 2005 to December 2006, we therefore set the same time

Understanding Self-Organized Regularities in Healthcare 125

period, i.e., two years, to run simulations. At each time step, the simu-
lation runs 100 times and generates an average value of patient numbers
for each city/town.

5.2 Global-Level Patterns of Patient Arrivals and Wait Time

In this section, we examine the global-level service utilization regular-
ities in our modeled cardiac surgery system. Fig. 7 shows the compar-
ison between the distribution of patient arrival variations in the real
world (represented as square dots in the figure) and that as obtained
from the simulation (represented as star dots in the figure). From Fig.
7, we can note that the shape of the distribution relating real-world
patient-arrival variations, by and large, has been reproduced by our sim-
ulation. The mean value and the standard deviation (SD) of real-world
patient-arrival variations are 0.0004 and 0.226, respectively, while those
of simulated patient-arrival variations are -0.015 and 0.243, respectively.
The relative entropy or the Kullback-Leibler (KL) divergence (which is
a measure of the difference between two probability distributions) [10]
of the statistical distribution of simulated patient-arrival variations from
that of real-world patient-arrival variations is 0.1398. The small value of
KL divergence implies that the distribution of patient-arrival variations
as obtained from the simulation may be approximate to that from the
real world.

Fig. 8 presents the statistical distribution of absolute variations of
median wait time as obtained from our simulation. From Fig. 8, we can
note that the absolute variations of median wait time exhibit a power-
law distribution (p < 0.0001), indicating that a self-organized regularity
has emerged.

Fig. 9 compares the statistical distribution of absolute variations of
median wait time as obtained from the simulation to that from the real
world. The Kullback-Leibler (KL) divergence of the distribution of sim-
ulated absolute wait-time variations (represented as star dots in the fig-
ure) from that of real-world absolute wait-time variations (represented
as square dots in the figure) is 0.1227. The small value of KL divergence
implies that the two distributions are similar to a certain extent.

5.3 Discussion

Based on our AOC-CSS model and simulation-based experiments, we
are able to characterize the self-organized regularities as observed in the
real-world complex cardiac surgery system. This is partially due to the
local feedback loop between patient arrivals and hospital wait time as
shown in Fig. 4.

126 Li Tao and Jiming Liu

© i

e 0.12 ¥ Simulated
o 0 O Real
S 010

3 ¥k

[$] g [m]

O 0.08- ¥ e

c X

2 go o m]

T 0.06- *K

g X X, *g

< 0041 . R o,

o o Koy

g 0.02 x O o]

S 1™ e,
8 000 *xtit 0og *Hg
)

o

08 06 04 -02 00 02 04 06 08
Month-to-Month Variation of Patient Arrivals

Fig. 7. Distributions of simulated and real-world arrival variations in cardiac
surgery services.

0.1

0.01

P<0.0001
SD: 0.27 =

Percentage of Variation Occurance

01 1
Month-to-Month Absolute Variation of Median Wait Time

Fig. 8. The distribution of absolute wait-time variations in cardiac surgery
services as obtained from the simulation. The distribution follows a power law
with power of -1.31 (p < 0.0001).

Understanding Self-Organized Regularities in Healthcare 127

3
c X Simulated
g O Real
5 4
8
S o014 & ox

0O X o
<]
,g [m I S
.% %

X

2 o
S 0.0 -
[ON X X ¥
@
8
S oX o
o
[0}
n_ T

01 1
Month-to-Month Absolute Variation of Median Wait Time

Fig. 9. Distributions of simulated and real-world wait-time variations in car-
diac surgery services.

- 1.00

T
0-0-0-0—

O0-0~0-g—-0—,
50 4 o o B-0-0_g_o-n o

40 . _/'XE\-/B/ -® Logo

0 s u-® o098
= - u
© 0 - o097
20 1 /l/"fn\./n/ o
a-E-n '

o 096
10 A © 0, o OO ©
o, o L 095

—a— Median Wait Time of LHSC
o+ Median Wait Time of St.Mary's General Hospital |- 0.94
—o— Arrival Probability to LHSC

Median Wait Time (day)
OSHT 0} AJjigeqoud [eAly

L
o
1

3 6 9 12 15 18 21 24
Month

o

Fig. 10. The dynamically-changing preference of patients residing in the city
of London to London Health Sciences Centre (LHSC) along with wait time
changes in LHSC and St. Mary’s general hospital over time.

Let’s take the city of London, Ontario, as an example to illustrate
the self-organizing process at an individual level. For patients residing in

128 Li Tao and Jiming Liu

this city, there exist two nearest hospitals, i.e., London Health Sciences
Centre (LHSC) and St. Mary’s general hospital that offer cardiac surgery
services. Before 2005, the wait time in St. Mary’s general hospital was
longer than that in LHSC. However, in 2005, the wait time in St. Mary’s
general hospital was notably reduced (as shown in the first 12 months
in Fig. 10) as two new operating suits for cardiac surgery became opera-
tional [2]. As a result, as shown in Fig. 10, during the initial time rounds
(i.e., months) in our simulation, almost all patients living in London
prefer LHSC, because (1) the driving distance from London to LHSC is
shorter than that to St. Mary’s general hospital since LHSC is exactly
located in the city of London, (2) LHSC also has more physicians than
St. Mary’s general hospital, and (3) the wait time in LHSC is shorter
than that in St. Mary’s general hospital. As nearly all the patients in
London come to LHSC, the wait time in LHSC will increase while that in
St. Mary’s general hospital will decrease afterwards. As a consequence,
the preference of subsequent patients to LHSC will decrease and thus
some patients may choose St. Mary’s general hospital (from month 1 to
month 21 in Fig. 10), which will in turn result in the increase of wait
time in St. Mary’s general hospital and the decrease of wait time in
LHSC (from month 21 to month 24 in Fig. 10). This self-regulating pro-
cess is initiated by autonomous patient/GP entities according to their
hospital selection behavioral rules, which incorporates the feedback loop
(between the wait time and the hospital selection behavior) that may
account for the observed global-level self-organized patterns.

6 Conclusion

In this paper, we have presented an AOC-based modeling and simula-
tion approach to characterizing self-organized regularities in a real-world
cardiac surgery system. In particular, we have described three types of
entities, i.e., patient, GP, and hospital, as well as the environment that
they reside in and access information from. Based on the identified major
impact factors of distance, hospital resourcefulness, wait time, as well as
their interaction relationships and the local feedback loop, we have de-
rived three types of behavioral rules for patient-GP mutual decisions on
hospital selection. Drawing on the spatial pattern of real-world patient
flows, we have discovered the best-fit behavioral rule for patient and GPs
residing in each LHIN. Intuitively, the identified best-fit behavioral rule
for an LHIN is, to a certain extent, associated with its accessibility to
cardiac surgery services. In general, patients and GPs tend to exhibit
D-rule behavior in selecting hospitals (i.e., taking into account only the
distance factor) when they reside in LHINs with few hospital choices

Understanding Self-Organized Regularities in Healthcare 129

within a certain distance. On the other hand, if patients and GPs live
in LHINs with good service accessibility, they will be inclined to exhibit
DH-rule behavior (i.e., considering the factors of distance and hospital
resourcefulness concurrently), and even DHW-rule behavior (i.e., involv-
ing the factors of distance, hospital resourcefulness, and wait time), in
selecting hospitals.

Through simulation-based experiments, we have observed that the
constructed white-box AOC-CSS model produces global-level regulari-
ties similar to those found in the real-world cardiac surgery system. This
indicates that the patient-GP mutual hospital selection behavior and
its interrelationship with hospital wait time may account for the self-
regulating service utilization. It also reveals that the AOC-based mod-
eling approach can effectively provide a means for explaining the self-
organized regularities and investigating emergent phenomena in complex
systems. In our future study, it would be promising to study the applica-
tions of the presented approach to other real-world complex healthcare
systems, so as to better understand how global-level regularities emerge
from individuals’ collective behavior and their closely coupled interac-
tions.

References

[1] Advanced adult cardiac care patient access management process: Bet-
ter access to quality cardiac care. http://www.ccn.on.ca/cen_public/
uploadfiles/files/Patient%20Access%20Mgmnt%20diagram.pdf.

[2] Cardiac care network of ontario: Cardiac surgery in ontario: Ensuring con-
tinued excellence and leadership in patient care. http://www.ccn.on.ca/
ccn_public/uploadfiles/files/Surgical _Report_October31_2006_BOARD.pdf.

[3] Cardiac care network of ontario: Patient, physician and ontario household
survey reports: Executive summaries. http://www.ccn.on.ca/ccnpublic/
UploadFiles/files/CCNSurveyExecSum200508.pdf.

[4] Google maps. http://maps.google.com.

[5] Ontario freezing doctor pay to invest in more community care for families
and seniors. http://www.health.gov.on.ca/en/news/release/2012/may/nr_
20120507 _1.aspx.

[6] Ontario’s local health integration networks. http://www.lhins.on.ca/

home.aspx.

[7] Statistics canada: 2006 census database. http://estat.statcan.gc.
ca/cgi-win/CNSMCGI.EXE?Lang=E&C91SubDir=ESTAT&DBSelect=
FSAO6IN.

[8] D.A. Alter, E.A. Cohen, X. Wang, K.W. Glasgow, P.M. Slaughter, and
J.V. Tu. Cardiac procedures. In J.V. Tu, S.P. Pinfold, P. McColgan, and
A. Laupacis, editors, Access to Health Services in Ontario, pages 55-95.
2006.

130

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

[23]
[24]

[25]

Li Tao and Jiming Liu

C. Brecht, D. Erik, and J. Belien. Operating room planning and schedul-
ing: A literature review. Eur. J. Oper. Res., 201(3), 2010.

K.P. Burnham and D.R. Anderson. Model Selection and Multi-Model
Inference: A Practical Information-Theoretic Approach. Springer-Verlag,
New York, 2002.

B. Chan. Access to physician services and patterns of practice. In D. Nay-
lor and P. Slaughter, editors, Cardiovascular Health and Services in On-
tario: An ICES Atlas Toronto, pages 301-318. Institute for Clinical Eval-
uative Sciences, 1999.

S.L. Grace, S.G. Witte, J. Brual, N. Suskin, L. Higginson, D. Alter, and
D.E. Stewart. Contribution of patient and physician factors to cardiac
rehabilitation referral: A prospective multilevel study. Nat. Clin. Pract.
Cardiovasc. Med., 5(10), 2008.

K.S. Kincben, L.A. Cooper, D. Levine, N.Y. Wang, and N.R. Powe. Re-
ferral of patients to specialists: Factors affecting choice of specialist by
primary care physicians. Ann. Fam. Med., 2(3), 2004.

L. Kleinrock. Queueing Systems: Volume I — Theory. Wiley Interscience,
New York, 1975.

S.F. Lakha, B. Yegneswaran, J.C. Furlan, V. Legnini, K. Nicholson, and
A. Mailis-Gagnon. Referring patients with chronic noncancer pain to pain
clinics. Can. Fam. Physician., 57(3), 2011.

G.R. Langley, S. Minkin, and J.E. Till. Regional variation in nonmedical
factors affecting family physicians’ decisions about referral for consulta-
tion. CMAJ, 157, 1997.

L.A. Lipsitz. Understanding health care as a complex system: The foun-
dation for unintended consequences. JAMA, 308(3), 2012.

J. Liu. Autonomy-oriented computing (aoc): The nature and implications
of a paradigm for self-organized computing. In The Fourth International
Conference on Natural Computation, pages 3—11, 2008.

J. Liu, X. Jin, and K.C. Tsui. Autonomy Oriented Computing: From
Problem Solving to Complex Systems Modeling. Springer, 2004.

J. Liu, L. Tao, and B. Xiao. Discovering the impact of preceding units’
characteristics on the wait time of cardiac surgery unit from statistic
data. PLoS One, 6(7), 2011.

Mensah G. Mackay, J. The Atlas of Heart Disease and Strokes. World
Health Organization, Geneva, 2004.

Wakefield P.A., G.E. Randall, and G.M. Fiala. Competing for referrals for
cardiac diagnostic tests: What do family physicians really want? JMIRS,
43(3), 2012.

P.E. Plsek and T. Greenhalgh. The challenge of complexity in health
care. BMJ, 323, 2001.

W.B. Rouse. Health care as a complex adaptive system: Implications for
design and management. The Bridge, 38(1), 2008.

J.E. Seidel, C.A. Beck, G. Pocobelli, J.B. Lemaire, J.M. Bugar, H. Quan,
and W.A. Ghali. Location of residence associated with the likelihood of
patient visit to the preoperative assessment clinic. BMC Health Serv.
Res., 6(13), 2006.

Understanding Self-Organized Regularities in Healthcare 131

[26] D.P. Smethurst and H.C. Williams. Self-regulation in hospital waiting
lists. J. R. Soc. Med., 95, 2002.

[27] L. Tao and J. Liu. An integrated analytical method for uncovering com-
plex causal relationships in healthcare: A case study. In ACM SIGKDD
Workshop on Health Informatics, 2012.

[28] L. Tao, J. Liu, and B. Xiao. Effects of neighborhood geodemographic
profiles on healthcare service wait time: A case study on cardiac care. in
review: BMC Health Serv. Res., 2013.

[29] H.C. Wijeysundera, T.A. Stukel, A. Chong, M.K. Natarajan, and D.A.
Alter. Impact of clinical urgency, physician supply and procedural capac-
ity on regional variations in wait times for coronary angiography. BMC
Health Serv. Res., 10(5), 2010.

132 Li Tao and Jiming Liu

