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Preface

The CoSMoS workshops series has been organised to disseminate best
practice in complex systems modelling and simulation, with its genesis
in the similarly-named CoSMoS research project, a four year EPSRC
funded research project at the Universities of York and Kent in the
UK. Funding for the CoSMoS project has now completed, but we have
continued to run the workshop series as a forum for research examining
all aspects of the modelling and simulation of complex systems. To allow
authors the space to describe their systems in depth we put no stringent
page limit on the submissions.

We are pleased to be running the seventh CoSMoS workshop as a
satellite event at the 14th International Conference on the Synthesis and
Simulation of Living Systems (ALIFE 14), New York, NY, USA. ALIFE
is the leading international conference on artificially constructed living
systems, a highly interdisciplinary research area rich in complexity, which
provides a natural complement to the issues addressed by the CoSMoS
workshop.

The main session of the workshop is based on four full paper and two
extended abstract submissions:

Afshar Dodson et al. apply the CoSMoS approach to analyse and
re-engineer Schelling’s Bounded Neighbourhood Model, highlighting
the importance of formalising a model for clarity and reproducibility
in simulation studies.

Youssef and Rizk study node-heterogeneity in complex networks, pro-
posing a new model for generating various types of complex networks
by varying model parameters.

Banda et al. introduce a web-based chemistry simulation framework
that provides an intuitive user interface, access to a computational
grid and reliable database storage.

Andrews and Stepney show how the CoSMoS process and patterns
can be used to reverse engineer a domain model of an existing sim-
ulation, Aevol, from the simulation code and associated research lit-
erature.

Leijnen and Dormans present a case study for designing emergence
in games, showing how dynamical feedback loops in game mechanics
creates fun and interesting gameplay experiences.

Mavelli et al. describe a computational platform for studying the role
of randomness in a minimal cell model, highlighting how random
fluctuations can play an important role in determining timing be-
haviour.
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Our thanks go to all the contributors for their hard work in getting
these submissions prepared and revised. All submissions received multi-
ple reviews, and we thank the programme committee for their prompt,
extensive and in-depth reviews. We would also like to extend a special
thanks to the organising committee of ALIFE 14 for enabling our work-
shop to be co-located with this conference. We hope that readers will
enjoy this set of papers, and come away with insight on the state of
the art, and some understanding of current progress in complex systems
modelling and simulation.
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Using the CoSMoS approach to

study Schelling’s Bounded

Neighbourhood Model

Ali Afshar Dodson1,2, Susan Stepney1,2, Emma Uprichard3,
and Leo Caves1,4

1 York Centre for Complex Systems Analysis, University of York,
YO10 5DD, UK

2 Department of Computer Science, University of York, YO10 5DD, UK
3 Centre for Interdisciplinary Methodologies, University of Warwick,

CV4 7AL, UK
4 Department of Biology, University of York, YO10 5DD, UK

Abstract. The basic CoSMoS process concerns the design, im-
plementation, and use of a simulation built from scratch. How-
ever, the CoSMoS approach may be tailored and adapted for
other styles of use. Here we describe how it has been applied to
analyse and re-engineer an existing simulation, that of Schelling’s
Bounded Neighbourhood Model. We find that using a principled
approach to the analysis of an existing simulation facilitates for-
malisation of the model and reimplementation of the simulation.
In the process, several ambiguities in implementing a simulation
from the model were revealed. This highlights the importance of
formalising a model for clarity and reproducibility in simulation
studies, and also for providing new avenues for exploration of,
and insight into, the factors influencing its emergent behaviour.

1 Introduction

The Complex System Modelling and Simulation (CoSMoS) approach [1]
has been designed for the purpose of developing and using a simula-
tion as a scientific instrument [2]. It provides a guide for modelling and
simulating complex systems, and incorporates verification and valida-
tion throughout. It provides a structure for the development and use
of simulations in an interdisciplinary endeavour between scientists who
study a particular domain (the domain scientists), and software engi-
neers who construct simulations to facilitate the study of that domain
(the simulation engineers).
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Fig. 1. The generic Complex Systems Modelling and Simulation (CoSMoS)
approach. Products are shown in rectangles; activities are shown in rounded
boxes; the entire approach (products and activities) takes place within a spec-
ified research context.

The CoSMoS approach has already been successfully used in a num-
ber of studies including auxin transport canalisation [3], environment
orientation [4], immunology [5] and cancer systems biology [6]. Despite
this specific use, CoSMoS can also be tailored and adapted for other uses.
For example, it can be used to design bio-inspired algorithms [7], and
to reverse engineer models from implementations [8]. Here we describe
how it has been used to formalise, reimplement, and analyse an existing
third party model and simulation: Schelling’s Bounded Neighbourhood
Model [9] of segregation.

The structure of the rest of the paper is as follows:

– §2 summarises the relevant parts of the CoSMoS approach.
– §3 introduces Schelling’s Bounded Neighbourhood Model.
– §4 uses CoSMoS concepts to analyse Schelling’s model, formalise it,

and then reimplement it using the standard CoSMoS approach.

2 The CoSMoS approach

The CoSMoS process is described in detail in [1], and summarised in
figure 1. It comprises a set of products (models, software, arguments),
including [1, p13]:

Research Context : captures the overall scientific research context of
the simulation development project, including the motivation for the
research, the questions to be addressed by the Simulation Platform,
and the requirements for validation and evaluation.
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Domain : the domain scientist’s view of the subject of simulation; for
example, a real-world system that is the subject of scientific research,
or an engineered system that is the subject of engineering research
and design.

Domain Model : distils appropriate aspects of the Domain into ex-
plicit domain understanding. The Domain Model focuses on the sci-
entific understanding; no simulation implementation details are con-
sidered.

Platform Model : comprises specification, design and implementation
models for the Simulation Platform, based on the Domain Model and
research context. Any emergent properties captured in the Domain
Model that are hypothesised to arise from lower level interactions
are removed from the Platform Model, to ensure that the desired
result is not explicitly coded into the simulations.

Simulation Platform : encodes the Platform Model into a software
and hardware platform with which simulation experiments can be
performed.

Results Model : encapsulates the understanding that results from sim-
ulation experiments: the Simulation Platform behaviour, results of
data collection and observations of simulation runs. Note that the
way that the Domain Model captures the relevant understanding
of the domain, via experiments,observation, and theory, is mirrored
by the way that the Results Model captures understanding of the
simulation experiments.

By following the CoSMoS process an important distinction is made, not
only between the model and the software that implements the model in
the simulation, but also between the results from the simulation and any
results from the ‘real world’ domain.

3 Schelling’s Bounded Neighbourhood Model

Schelling’s 1971 paper “Dynamic Models of Segregation” [9] is a seminal
work in the field of Computational Social Science and is often used as a
classic example of what agent based modelling (ABM) can offer to social
sciences and urban studies. The models of segregation presented therein
have been the focus of a number of studies, using a variety of different
techniques. Schelling used agent based models to explore ideas of segre-
gation in heterogeneous populations. He developed models to examine
levels of segregation between two populations, using simplified ideas of
social interaction. His work has been described as the first ABM [10]. It
has also been called the first simulation of an artificial society [11].
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Fig. 2. Schelling’s results (from [9])

Schelling describes two distinct models, a Spatial Proximity model [9,
p149] and an aspatial Bounded Neighbourhood model [9, p167]. In both
models, agents have a general preference for their own type (like) over the
other type (unlike), and move to maintain a favourable ratio. Schelling
found that mixed populations are impossible to maintain, with popula-
tions eventually segregating, even when the desire for like over unlike is
quite weak.

The vast majority of the work after Schelling focuses on the grid-
based Spatial Proximity Model in both one [12] and two [13] dimensions.
Here we focus on the less well studied aspatial Bounded Neighbourhood
Model [9].

The Bounded Neighbourhood Model has a heterogeneous population
of two agent types, with some agents inside and some outside an aspa-
tial neighbourhood. It considers the flow of agents into, and out of, the
neighbourhood. Each agent calculates its happiness, based on the cur-
rent ratio of the number of the other type, compared to the number of
its own type, inside the neighbourhood. This ratio is compared to the
agent’s individual fixed tolerance of such a ratio. If its tolerance exceeds
the ratio, it is deemed happy; if its tolerance is below the ratio, it is
deemed sad. Sad agents inside the neighbourhood leave, while happy
agents outside enter.

Figure 2 shows Schelling’s analysis of the resulting population flows,
given a total population of 100 W s and 50 Bs, where the agents of a
given type have a uniform distribution of tolerances, from 2 (willing to
tolerate twice as many unlike agents as like agents) down to 0 (unwilling
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to tolerate any unlike agents). The change of population numbers inside
the neighbourhood for any given current number is shown by the arrows.
In some regions both W and B agents leave, in some both enter, and in
some one type enters and one leaves. The resulting equilibrium state is
tipped to either all B or all W . This is despite the fact that half of each
population is actually willing to tolerate a (limited) majority of unlike
agents: the migration of the least tolerant changes the ratios enough
that even the most tolerant find themselves sufficiently outnumbered
that they too leave. The same result is found with different population
numbers, and different tolerance schedules.

The popularity of Schelling’s ideas led to criticisms, most notably
Yinger [14], who argues that there is no consideration of a number of fac-
tors such as economics and social mobility. Similarly, Massey [15] argues
that not accounting for environmental/spatial factors and using a ho-
mogenous environment means the models are too simplistic to have any
relation to reality. If the model were being developed today, this could
be a fair criticism, since the input of experts in the field is an important
part of the modelling process. However, it is important to recognise the
purpose and scope of Schelling’s simple model. Schelling demonstrated
that a simple desire for non-minority status in a population could lead
to highly segregated systems.

Recent work has nevertheless attempted to apply Schelling’s mod-
els to ‘real-world’ situations [16]. Such attempts, without acknowledging
the limitations of the models, could lead to invalid conclusions. We apply
the CoSMoS approach retrospectively to Schelling’s Bounded Neighbour-
hood Model [9, p167], in order to formalise and re-implement it, and to
analyse the consequences of its assumptions through simulation.

Whilst our work is an attempt to gain a better understanding of
Schelling’s model, his interpretation is necessarily retained. Because of
this, and the inherent difficulty of relating models to reality, we make
no attempt to relate the model back to reality. Instead, results from the
simulation are used to formulate questions about Schelling’s model.

4 Schelling’s development through a CoSMoS lens

Here we analyse Schelling’s process in building his model in terms of
the CoSMoS approach (figure 3). There are points where Schelling’s ap-
proach differ from the CoSMoS approach. We need to analyse these
differences to determine their implications for his model, the simulation
results, and subsequent interpretations. Any shortcomings are not, nec-
essarily, the fault of Schelling; the work presented here is an attempt to
‘lift’ Schelling’s model to current computational modelling standards.
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Fig. 3. Schelling’s process in developing the Bounded Neighbourhood Model.
The dashed boxes show the CoSMoS products and activities not present in
Schelling’s work, whilst the double edged boxes and lines are alternative steps
employed.

Firstly, and most importantly, Schelling’s first step from the domain
(Segregation) to the Domain Model (informal Bounded Neighbourhood
Model) is Schelling’s personal interpretation [9, p143], rather than being
based on observational and experimental data from the Domain. Whilst
this may be acceptable (but not advised) for models in which the sim-
ulation engineer is also a domain expert, Schelling’s background was
mathematical, rather than sociological. CoSMoS requires the Domain
Model to be built in collaboration with domain scientists, or, at the very
least, validated by them.

Secondly, Schelling’s presentation of the Domain Model is informal,
and contains ambiguities that require resolution before a Platform Model
or Simulation can be developed. For example, when talking of the move-
ment of sad agents, Schelling states “some will move” in order of tol-
erance, but does not specify more precisely which ones (which type?),
or how many (one? all?). Which agents move at each step needs to be
formalised before a computational simulation can be developed, and the
decisions published, for clarity and reproducibility.

Next, Schelling proceeds directly from this informal Domain Model
to an simulation, without passing through an equivalent of the CoS-
MoS Platform Model. In this case the Domain Model is very simple,
and it might be thought that no Platform Model is necessary. However,
some of the ambiguities identified in the Domain Model became clear
only by attempting to formalise them within a Platform Model (order
of execution of operations, for example). If proceeding directly to imple-
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Fig. 4. An application of the CoSMoS process in developing a simulation of
Schelling’s Bounded Neighbourhood Model. Note the outputs of the process
feed back into the interpretation, rather than the real world.

mentation, such ambiguities would be resolved only in the code, leaving
their resolution (and existence) opaque to the general reader. Note that
in Schelling’s case, there was no computer-based simulation: the work
was done with pencil and paper, or on a typewriter. Hence these am-
biguities were resolved in Schelling’s head, leaving their resolution even
more opaque.

Finally, Schelling takes his results and then attempts to apply them
to a real world event (neighbourhood tipping) [9, p181]. Because of the
extreme distance of his Domain Model from the real world Domain of
population segregation, and lack of any validation from social scientists,
it is difficult to defend attempts to relate his results back to reality.
This argument is used by a number of authors who attack his models as
missing essential components of reality [14], [15].

5 Reimplementing the Bounded Neighbourhood
Model using CoSMoS

Having analysed Schelling’s model, and his (assumed) development ap-
proach, we are now in a position to reimplement the model, in the form
of a simulation, suitable for further experimentation. We use the ba-
sic CoSMoS approach to do so, modified to accommodate the fact that
we are using only literature, not domain experts, in order to build the
models and simulation.
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Algorithm 1: Agent movement rule, one timestep

if ∃an ∈ E ∗ ∧τ(an) ≥ Rn (there is a happy agent outside) then
move an with max τ to E (move happiest agent inside)

else if ∃an ∈ E ∧ τ(an) ≤ Rn (there is a sad agent inside) then
move an with min τ to E∗ (move saddest agent outside)

5.1 Domain Model

Following the CoSMoS approach, we refined Schelling’s formulation into
a formalised Bounded Neighbourhood Model, specifying mathematically
what is meant by terms such as ‘environment’, ‘agent location’, ‘agent
type’, ‘ratio’, ‘tolerance’, ‘happiness’, and agent movement. This activity
highlighted the key parameters of the model and made them explicit,
removing ambiguities that could arise from the language of the model
[Afshar Dodson et al, forthcoming a].

Note here that we effectively took Schelling’s informal model as our
Domain, and formalised it by examining the text in detail, and by using
social science knowledge (of author EU).

5.2 Platform Model and Simulation Platform

Once explicitly defined, the parameters were encoded in the Platform
Model. This process highlighted a few more ambiguities, this time in
the actual algorithm used to iterate through generations of movement
in and out of the neighbourhood. These were resolved by specifying the
details in high-level pseudo-code (for example, algorithm 1), using the
mathematical notation defined in the Domain Model. Here we had to
make specific choices (such as, the happiest agent moves); highlighting
the choice allows us to make other choices (such as, a random happy
agent moves) to investigate the effect of the choice on the behaviour of
the system [Afshar Dodson et al, forthcoming b].

The Platform Model was used as the specification for a NetLogo
ABM implementation.

5.3 Simulation Experiment Results

Given the re-implemented Simulation Platform, it was possible to con-
duct a number of experiments on the model.

In the first iteration, the validity of the formalised model was tested
against the original model results. We initialised the model to each of the
possible starting conditions (number of agents of each type) and plot-
ted the resulting flows on a 2D plane (figure 5). The comparison shows
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Fig. 5. To validate the simulation, its output and Schelling’s results (figure 2)
were compared. For each initial condition the resulting population flow is plot-
ted. The simulation results clearly show Schelling’s boundaries, with the flows
following Schelling’s results.

the simulation reproduces Schelling’s flows (figure 2), providing evidence
that it can be considered a valid simulation of Schelling’s Bounded Neigh-
bourhood Model.

Given a valid formalisation and Simulation Platform, we could then
perform further simulation experiments, and to explore the assump-
tions underlying the original model, and determine how the resulting
behaviour depends on those assumptions. We have discovered that the
model is surprisingly robust to quite drastic changes in the underlying
assumptions: it is very difficult to change find a model that does not
inevitably result in segregation [Afshar Dodson et al, forthcoming b].

6 Summary and Conclusions

We have applied the basic CoSMoS approach in order to develop a for-
malised model and validated simulation of Schelling’s Bounded Neigh-
bourhood Model, suitable for use as the basis for further simulation
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experiments to gain a better understanding of the factors underlying its
emergent properties.

This work demonstrates that the concepts from the CoSMoS ap-
proach can be employed to interrogate a previously developed model
and simulation. We have analysed Schelling’s original model through the
CoSMoS approach, identified products and activities missing or glossed
over, and explained why these are necessary for a reproducible simulator,
even in such a seemingly simple model as this. Our intention is not to
criticise Schelling’s approach; his work represents the very earliest steps
in agent-based social simulation, and he was running experiments on a
typewriter or using pencil and paper, resolving ambiguities on the fly.
However, it is telling that few if any subsequent authors implementing
his model in a computational setting have noted the many ambiguities
in Schelling’s original description.

One of the key advantages to using the CoSMoS approach is that
it breaks down the making and shaping of a simulation into distinct
parts of the modelling process. Importantly, it does this without losing
the depth and breadth of expertise that may be required at different
parts of the process, whilst at the same time allowing for the model
to developed iteratively, and thereby refined and tested over time. By
focusing on Schelling’s Bounded Neighbourhood Model, we have shown
how the CoSMoS approach can be usefully deployed to re-develop past
models.

We have deliberately made no attempt to relate this particular model
to reality, yet the CoSMoS approach may be especially interesting for
modelling social phenomena more generally. Social behaviours are emer-
gent properties of an underlying complex system. The crux in the in-
terpretation of social simulation is what factors influence the emergent
features. Such factors span issues of approximation, implementation and
potential coding errors. Thus, it is essential that models and their im-
plementations are formalised and carefully described, in order that their
results and interpretation may be fully reproduced and tested. These
steps are necessary to put simulation studies (in general, not just in the
social domain) into the realm of science. Principled model construction
approaches, such as CoSMoS, offer a promising way forward.

In redeveloping Schelling’s model, we have also, by implication, made
a first step towards an ambitious longer term project that involves using
CoSMoS as way of rethinking how we might methodically and system-
atically (re)explore causal mechanisms from which the social emerges.
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Complex Networks
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1 Bradley Department of Electrical and Computer Engineering,
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Abstract. World Wide Web (WWW), social networks, food
web (or food chain) networks are examples of complex net-
works. Complex networks are characterized by having a scale-
free power-law degree distribution, a small average path length
(small world phenomenon), a high average clustering coefficient,
and showing the emergence of community structure. Mathemat-
ical models were used as a technique for generating graphs with
particular statistical properties. Most proposed complex net-
works models have not incorporated all of these four statisti-
cal properties of complex networks. Additionally, models have
also neglected incorporating the heterogeneous nature of net-
work nodes. Moreover, even proposed heterogeneous complex
network models were not general for the generation of differ-
ent complex networks. Here, we define a new aspect of node-
heterogeneity that was never previously considered which is the
node connection standard heterogeneity. Thus, we have two het-
erogeneity aspects which are the heterogeneity of node charac-
teristics and heterogeneity of node connection-standards. Find-
ing a faithful general complex network model that preserves real
complex network statistical properties and incorporate these two
heterogeneity aspects is still an open research question. In this
paper, we propose a generation model for heterogeneous complex
networks. We introduce our novel model “settling node adap-
tive model” SNAM. SNAM reflects the heterogeneous nature
of nodes’ connection-standard requirements. Such novel nodes’
connection standard criterion was not included in any previous
network generation models. SNAM excels in its capability to
generate various types of complex networks by varying model
parameters. Additionally, SNAM was successful in preserving
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the power law degree distribution, the small world phenomenon
and the high clustering coefficient of complex networks.

1 Introduction

Complex networks are ubiquitous in many areas. The Internet, the World
Wide Web (WWW), social networks, food web (or food chain) networks
and many other networks are complex networks [1]. Researchers studied
and analyzed data extracted from complex networks which led to the
discovery of their distinct features and behavioral patterns. Solid aware-
ness of these features can lead to an improved understanding of the
network’s structure and dynamics. Devising a mathematical model for
complex networks can aid in making decisions about complex networks
management and help allocating their resources. It can be used to answer
research questions such as discovering the mediator for disease transmis-
sion in sexual networks, predicting future connections between websites
in the WWW, identifying critical nodes or links in power grid networks;
etc. Therefore, finding a sufficiently detailed mathematical model that is
capable of mimicking the structure, dynamics and evolution of complex
networks is paramount. Researchers used advanced computer capabili-
ties to analyze real large databases to identify essential properties for
modeling complex networks in the process of creating such mathemat-
ical models [2, 3]. Complex networks represented as graphs have been
shown to exhibit several common statistical properties, including degree
distribution, average path length, clustering coefficient, and community
structure.

Degree Distribution The degree of a vertex in a network represents
the number of connections that the vertex has. The degree of a vertex
j in an undirected graph is the total number of edges connected to
that vertex and it is expressed as kj. However, in a directed graph,
edges are classified as ending at a vertex or as originating from a
vertex. The in-degree of a vertex j is the total number of edges ending
at j, while the out-degree of a vertex j is the total number of edges
originating from j. The in-degree and out-degree of a vertex j are
expressed as kj in and kj out, respectively. Thus, the total degree
of a vertex j in a directed graph will be expressed as kj = kj in +
kj out. P (k) represents the fraction of vertices in the network with
degree k and it denotes the probability that if a vertex v is picked
uniformly at random it will have degree k. Degree distributions in
complex networks can follow an exponential, Poisson or power law
distribution according to the network’s nature [3].
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Average Path Length The path length between a pair of vertices is
equal to the number of links or hops that form the path that connects
the two vertices [3]. There may be different paths connecting a pair
of vertices. The shortest path, referred to as geodesic distance, is the
connecting path that has the lowest number of links. The average
path length in a network is defined as the average number of links
along the shortest paths for all possible connected pairs of vertices
in the network [3]. For an undirected network having n vertices,
the average path length l is the mean of the geodesic (the shortest)
distance between all vertex pairs in the network and it is defined
as: l = 1

1
2n(n−1)

∑
i≥j

dij , where dij is the shortest path (or geodesic

distance) between any two vertices i and j [3].
Clustering Coefficient A node’s clustering coefficient is defined as the

average fraction of pairs of neighbors of a node that are also neighbors
of each other [2]. Generally, the clustering coefficient is used to assess
transitivity of real world networks. Transitivity means that if vertex
i is connected to vertex j, and vertex j is connected to vertex k,
then there is a high probability that vertex i will also be connected
to vertex k. The value of the average network clustering-coefficient,
C, ranges between 0 and 1, and can be defined in any of the following
ways [3]:

1. C = 3 × number of triangles in the network
number of connected triples of vertices , where a triangle con-

tains three interconnected vertices and a connected triple is a
single vertex with its two edges running to an unordered pair of
vertices [3].

2. C = 6 × number of triangles in the network
number of directed paths of length 2 , where triangles are as

defined above and a directed path of length 2 refers to a directed
path of length 2 starting from a specified vertex [3].

3. Watts and Strogatz [4, 5] calculated the network’s average clus-
tering coefficient as the average of the individual clustering co-
efficients of network vertices Cis. The clustering coefficient for
node i is given by: Node i clustering coefficient =
Ci = number of triangles connected to node i

number of triples centered on i , where a triangle has one
of its vertices at node i, while a triple is a two-sided incomplete
triangle with its vertex at i.

Community Structure A community is a group of vertices having
high density of edges within the group (the community) and a lower
density of edges to vertices of other groups (other communities) [5].
Some networks show the presence of communities or a “community
structure”. This can be accurately evaluated by using community
identification techniques. Networks having a community structure
are sometimes referred to as networks with high clustering coeffi-
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cients. However, according to present definitions, the two properties
are not considered equivalent [5].

1.1 Statistical properties of complex networks

Statistical properties of complex networks were identified as: small world
effect, high average clustering coefficient, scale free power law degree
distributions, and the emergence of community structure [3, 4].

Small world effect means that for a certain fixed value of the nodes’
mean degree, the value of the average path length scales logarithmically,
or slower, with network size. The average clustering coefficients in real
complex network tend to have high values. Community structure emerges
when nodes in a community have denser connections within themselves
than to vertices of different communities [5]. In other words, community
structure exists when sub-regions of relatively higher interconnectivity
form are separated by regions of lower interconnectivity in the network.
Degree distribution follows a scale free power law distribution in real
complex networks. Scale free power law distributions, P (k) ∼ k−γ , have
a power law (PL) exponent γ independent of the size of the network and
its values are in the range of 1 < γ <∞ [3, 4].

Various models tried to find a faithful model for complex networks.
The most influential models in the complex-network modeling field are:
Erdös and Rényi (ER), Watts and Strogatz (WS), and Barabási and Al-
bert (BA). Networks generated according to the ER random graph model
have small average path length but they have Poisson degree distribu-
tions and are characterized by having clustering coefficients lower than
that found in real complex networks [3, 4]. Networks generated by the
WS small-world network model have a short average path length and
a high clustering coefficient. However, it lacks modeling the scale free
property for the networks’ degree distribution [2–4]. Thus, the scale-free
power-law degree distribution of real complex networks was not repre-
sented in the ER or the WS models, rendering both models to be in-
sufficient in modeling the four characteristics of real complex-networks.
This motivated Barbási and Albert to induce the scale free property for
node-degree distribution in their highly acclaimed model [2]. The BA
model uses a Preferential Attachment (PA) connection algorithm that
reflects the belief that nodes usually prefer to connect to higher-degree
structurally-popular nodes [2]. BA model succeeded in preserving the
PL degree distribution and small world phenomenon of real complex-
networks. Networks generated by the BA model show a power-law heavy-
tail degree distribution, if and only if, the model has the following two
properties; growth (where new nodes are continuously added to the net-
work) and preferential attachment (PA). The BA model starts with a
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Table 1. BA model vs. WS and ER

Barabási Albert Erdös Rényi (ER)
& Watts Strogatz

Degree distribution Power Law Poisson
Number of nodes (N) Growing Constant
Connection probability Preferential attachment Random

small number of nodes (m0), which is referred to as the seed network. A
new node is added at each time step. The new node preferentially attach
to other m nodes, (where m ≤ m0) using a connection function based
on the old nodes’ normalized degrees. Thus, new node i connects prefer-
entially to an old node j having degree Dj using a connection function

(CF) based on the normalized degree of the node dj , where dj =
Dj∑
j
Dj

.

Networks generated using the BA model have a scale-free power-
law degree-distribution and their average path lengths exhibit the small
world phenomenon. However, the BA model generates networks with
a constant PL exponent value of γ = 3, unlike real networks where the
exponent values differ according to the network type and ranges between
1 < γ < ∞. Additionally, the BA modeled network average clustering
coefficient is lower than that observed in real complex networks of the
same size [3–5]. A comparison of the Erdös and Rényi (ER), Watts and
Strogatz (WS), and Barabási and Albert (BA) models is shown in table 1.

The BA model was still inaccurate in representing all four properties
observed in real complex-networks. This motivated many researchers to
introduce modifications to the BA model in an attempt to remedy the
model’s shortcomings. Accordingly, devising a model that can represent
all four properties of complex-network is still an ongoing research [5].
Additionally, most models have assumed that nodes have the same prop-
erties and neglected incorporating the heterogeneous nature of network
nodes. Moreover, even proposed heterogeneous complex network models
did not integrate it with other structural properties of the network in the
analysis and growth algorithms of such networks. Also, models were not
general for different types of complex networks [6–8]. Therefore, finding
a faithful general heterogeneous complex network model that preserves
real complex network statistical properties is still a challenge.

In this paper we aim to devise a mathematical model that preserves
the statistical properties of complex-networks. Additionally, we include
a factor that, we claim, was undermined in most contemporary complex-
network models which is the node heterogeneity, [4, 5]. We identify two
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types of node-heterogeneity; node characteristics heterogeneity and node
connection standard heterogeneity. Node characteristics heterogeneity
reflects the different properties or attributes that network-nodes have.
Node connection standard heterogeneity reflects the difference in each
node’s requirements to make a connection. The contribution in this paper
can be summarized as:

1. Accounting for node heterogeneity in the graph-theory by incorpo-
rating node-attributes as one of the elements defining a network
graph. Accordingly, our model defines the network graph, G as a
set of three elements: G = {V,E,A}, where V is the number of
nodes in the network, E is the number of edges and A is the set of
attributes assigned to each network node.

2. Based on 1. we propose the Settling Node Adaptive Model (SNAM)
for generating complex-networks. SNAM acknowledges the hetero-
geneous nature of nodes by integrating the attribute-similarity with
the structural popularity measure within the CFs.

3. SNAM departs from the BA algorithm while acknowledging the
node heterogeneity. SNAM introduces the idea of heterogeneous node
connection-requirements as a criterion for connecting nodes.

Our proposed models will be validated using Matlab simulation [9].
The success of each proposed model to mimic real complex networks
will be verified by examining the generated network statistical proper-
ties, namely the average path length, clustering coefficient, and degree
distribution.

The rest of the paper is organized as follows: section two presents
the related work, section three presents our proposed models and their
simulation results, and section four is the conclusion and future work.

2 Related Work

Several researchers have proposed mathematical models that address the
heterogeneous nature of the nodes composing a network. The authors of
this works examined the success of these models in generating networks
that mimic real complex-networks by observing the statistical properties
of these networks. This section will review a subset of these attempts.

Bianconi and Barabási in [6] were interested in WWW networks.
They introduced the term node fitness to represent nodes’ different abil-
ities to attain connections. Their work was motivated by the observation
that the nodes’ abilities to attract connections do not depend only on
their degrees (based on the nodes’ ages). WWW nodes that provide good
content are likely to acquire more connections irrespective of their ages.
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In citation networks, a new paper with a breakthrough is likely to have
more connections than older papers. Thus each node should be assigned
a parameter that describes its competitive nature to attain connections.
In their model, node j upon birth is assigned a fitness factor ηj , follow-
ing some distribution ρ(η), which represents its intrinsic ability to attain
connections. Bianconi and Barabsi model followed the BA PA connection
algorithm with a modified PA function. The model has the PA function
value for connecting an old node j to a new added node i depending on
the old-node degree Dj , and its fitness value ηj . When ρ(η) follows a
uniform distribution, the degree distribution is a generalized power law,
with an inverse logarithmic correction. The average clustering coefficient
and average path length values of networks generated by this model were
not calculated in the presented work.

Shaohua et al. in [7] observed that nodes with common traits or
interests tend to interact. They introduced an evolving model based on
attribute-similarity between the nodes. Each of the network nodes has an
attribute set. Node-attributes can be described by a true or false function
as in fuzzy logic. Shaohua et al. used fuzzy similarity rules to define a
similarity function between attribute sets of two nodes. A connection is
established between two nodes if their attributes similarities fall within a
certain sector. Despite that this model satisfies the small world property;
its degree distribution follows a Poisson distribution and does not follow
a power law.

Yixiao Li et al. in [8] argued that every vertex is identified with a
social identity represented by a vector whose elements represent distinc-
tive social features. The new node added at each time step connects with
probability p to the group closest to its social identity and to the other
groups with probability (1 − p). The higher degree node is attached to
the new node within a group using PA. Random linking to neighbors
of the previously attached old node is repeated until the new node es-
tablishes its m links. Their generated network follows power-law degree
distribution and used triad formation to produce high average clustering
coefficients. The authors claimed that using triad formation produced
high average clustering but they did not present values for it and they
did not measure their generated networks’ average path length. Addi-
tionally, the model did not increase the length of the attribute vector to
more than one which is unrealistic as nodes usually possess more than
one attributes. Increasing the attribute vector length would be useful in
investigating the impact of including different attributes in the model on
the generated network.

While [6–8] based their connection algorithm on the PA attachment
algorithm, some authors experimented with models that were not based
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on the BA PA algorithm such as those presented in [10] and [11]. Klein-
berg et al. in [10] used a copying mechanism which entails randomly
choosing a node then connecting its m links to neighbors of other ran-
domly chosen nodes. The model was found to preserve power-law distri-
butions using heuristics only. They argued that analytical tools were un-
able to prove this conclusion, because the copying mechanism generated
dependencies between random variables. Krapivsky et al. [11] argued
that an author, in a citation network, citing a paper is most likely going
to cite one of its references as well. In their model, when a new node i is
added to the network, its edge attaches to a randomly chosen node j with
probability (1−r). Then with probability r this edge from the new node
i is redirected to the ancestor node o of the previous randomly chosen
node j. The rate equations of the model show that it has a power-law
degree distribution with degree exponent decreasing with the increase
of the probability r value. Other statistical properties were not studied.
These models were able to generate networks having a power-law degree
distribution without using the PA algorithm of BA. However, they are
not applicable to all complex-networks as they assume that the arriving
node decision to establish connections is affected by decisions made by
other nodes (the one it will copy from the connections or its neighbor).
Whether the node is copying its connections from a random node or
connecting to the ancestor of a node previously connected to it, is not
applicable for some types of complex networks. Additionally, the choice
of the nodes from which the links are copied or the choice of the ancestors
of the node is made randomly without regards to nodes-heterogeneous
characteristics or their heterogeneous connection-standards.

Our previous paper [12] introduced the integrated attribute similar-
ity models “IASM”. IASM is a growing network model. It uses a pref-
erential attachment algorithm to connect the nodes. The CF in IASM
depends on the attribute similarity between newly arriving nodes and
old network nodes as well as the structural popularity of old nodes. Two
different structural popularity measures are used in IASM simulation.
In IASM A, a nodes structural popularity is based on the number of
connections that the node has, i.e. the node-degree, while in IASM B,
the structural popularity is based on the nodes Eigen vector centrality.
IASM preserved the power law degree distribution and the small world
phenomenon but it did not reflect the high average clustering coefficient
and the emergence of community structure. We enhance the IASM by
adding a triad formation step (TFS ) by having the arriving node make
an additional connection to a neighbor of its previous neighbor. The TFS
results in increasing the clustering coefficient values.
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This motivated us to find a mathematical model that does not nec-
essarily use the PA connection algorithm but at the same time generates
networks with PL degree distribution. Our model should also be able
to generate different types of complex networks. Additionally, the model
should generate networks with the before mentioned statistical proper-
ties. The generated model should also preserve the concept of hetero-
geneity of nodes properties and their connection standards.

3 Settling Node Adaptive Model (SNAM)

3.1 Introduction

Nodes, users or entities, in real complex-networks have different pro-
files and characteristics. Connections between nodes affect the network
dynamics, and their future evolution. We argue that nodes having differ-
ent characteristics influence the density and the pattern of connections
within a network. The notion of node-attributes is used to highlight
the node-distinct characteristics. The attribute set is extracted from the
characteristics or profiles of the network node. In our models, nodes
are assigned their attributes upon their arrival to the network. Ac-
cordingly, the network graph G is now defined by a three-element set
G = {V,E,A}, where V is the number of nodes in the network, E is
the number of edges and A is the set of attributes defining the pro-
files/characteristics of all the network nodes. SNAM is a growing gener-
ation model with nodes constantly being added to the network during
its evolution.

SNAM’s connection algorithm uses attribute-similarity between the
newly added node and the old node attribute(s) in the connection func-
tion (CF). Including the attribute similarity in CF makes it dependent on
the attributes of both of the newly added node and the old node rather
than having the CF dependent only on the old node’s fitness/degree.
SNAM integrates the attribute-similarity between new node and old
nodes with the structural popularity of old nodes in the CF. The node
structural popularity is a measure of the node’s popularity based on its
network position and connections. SNAM uses the node-degree as the
structural popularity measure. The CF can be dependent on the nor-
malized degree of the old node i Di or on the normalized degree of the
old node node i Di multiplied by or added to the attribute similari-
ties (Aij) for both node i and new node j. Thus, the CF is given by:

CF = α
DjAij∑
j
DjAij

+ β
Dj∑
j
Dj

+ w
Aij∑
j
Aij

, where α+ w + β = 1.0, 0 ≤ α ≤ 1,

0 ≤ w ≤ 1, and 0 ≤ β ≤ 1.
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Fig. 1. Seed network, mo = 5

SNAM departs from the classic PA connection algorithm presented
in BA. SNAM reflects the idea that nodes are not only differentiated by
their attributes but also according to their connection-standard require-
ments. Connection-standard requirements for the nodes represent the
minimum CF values that a node find satisfactory to connect with other
nodes. Thus, an arriving node x calculates its connection function value
with an existing node z (CF1). If CF1 is equal to or higher than the
arriving node’s x connection standard, then node x makes a connection
to node z. Another node y calculates its connection function with the
same test node z (CF2) and finds CF2 lower than its connection stan-
dard. Thus, node y refuses to connect to the same existing node z. The
CF used in our SNAM model depends on the structural popularity of
the tested existing node and its attribute similarity with the new node.

To evaluate our models, we generate networks based on each model
using MATLAB simulation. For each of the generated networks, values
for the power law exponent, the average path length and the average clus-
tering coefficients were measured and assessed against values reported
for a variety of real complex-networks [3, 4]. These statistical properties
are the three metrics that validate that the three features of real complex
networks are preserved in our models.

In SNAM, each new network-node upon birth possesses its own dis-
tinct attribute-set (attribute vector of length L) that represents the in-
terests or engagements of the node in the network’s L interests or activ-
ities. The CF does not depend solely on a specific characteristic of the
old node but on the characteristics of both the new and the old nodes.
SNAM is a growing network model and starts with a seed network of
size mo shown in figure 1. Then at each time step a new node is added
with m edges to be connected to it, where m ≤ mo.

Each node is assigned an attribute vector having L elements. Each
element takes binary values of ‘1’ or ‘0’ representing the presence or
absence of an attribute in the attribute-vector respectively. Our proposed
attribute similarity is equal to the normalized summation of the inner
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Fig. 2. Flowchart of SNAM algorithm

product of the new-node and old-node attribute vectors. The algorithm
of SNAM is shown in the flowchart in figure 2.

To the extent of our knowledge, all previously proposed models as-
sumed that all newly arriving nodes have the same requirements when
connecting to old nodes. In reality, nodes may have different views of the
same value of a connection-function (CF) calculated based on attribute
similarity and/or structural popularity. A network node may have high
connection standard and does not settle for the CF value offered by the
tested old node, thus rejecting the connection. Another new node may
have lower standards and considers the same CF value acceptable. To
reflect this, we assign a characteristic that reflects the node’s standards.
This characteristic represents the minimum acceptable value of the CF
for each node. All old pre-existing nodes whose CF values with the new
node are below the newly arriving node standard will not be attached to
that new node. The arriving node must then test other old pre-existing
nodes to find the ones that satisfy its connection standard.

Thus, in SNAM, each arriving node, upon birth will be assigned a
value representing its own connection standard value which is derived
from a uniform distribution. Arriving node will calculate its CF values
with old nodes. Hence, the CF obtained values will not be used to deploy
the preferential attachment algorithm but will be used to examine if
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the randomly chosen old nodes will meet the arriving node’s standards.
A newly arriving node will calculate the CF corresponding to random
chosen nodes. The new node will establish connections with the old nodes
whose CF values are equal to or higher than its connection-standard.
The used CF depends on the normalized degree values and/or attribute
similarity.

3.2 Results

The network starts with a seed network mo. A new node arrives at each
time step and each new node i is assigned a random connection-standard
value Si, where 0 < Si ≤ 1. If for a chosen pre-existing old node j the
CF value exceeds Si then i will establish a connection to j, otherwise i
rejects the connection to j and another old node is tested. This testing of
other existing nodes continues until the new node achieves its predefined
m connections or reaches its maximum number of tests, NoT. If node
i reaches its maximum number of tests, NoT, and it still did not make
its m connections, then arriving node i reduces its connection standard
by a certain percentage and the testing of randomly chosen existing
nodes is resumed. The reduced standard-connection value, Si, reduced,
is determined as follows: Si reduced = Si(1− ε), where ε < 1.0

In the present model, we experiment with the maximum number of
tests, NoT, required for the arriving node i to lower its standard if i has
not already established its m connections during the NoT tests. NoT is
initially taken as the integer value of half the seed size mo. NoT value is
dependent on the current size (CS) of the network. NoT is increased by
one whenever the CS of network reaches certain predefined milestones.
The number of milestones occurring during the arrival of every 100 nodes
to the network is varied between 1 and 10. Thus, a number of milestones
(NM) value of 5 means that the NoT is increased by one 5 times during
the arrival of 100 nodes to the network (i.e NoT increased by one each
time 20 new nodes arrive to the network).

The value of these milestones is dependent on the final size of the
network (N) and the number of milestones (NM) occurring during net-
work evolution. The number of milestones has two extreme values. The
smallest number of milestones is one which is reached when the network
reaches its final size. The largest number of milestones occurs when we
consider the arrival of each to the network as a milestone. Thus, NM
ranges between 1 and N. Thus, NoT is increased by one whenever the
CS of the network reaches the milestones.. The higher the value of NM,
the more rapid is the increase in NoT.

Our experimentation with NoT parameter indicated that rapid in-
crease of NoT with network growth resulted in the presence of irregular-
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(a) Average Path length

(b) Power law Exponent of Degree distribution

(c) Average clustering coefficients

Fig. 3. SNAM algorithm with a normalized degree CF (β = 1)
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(a) Average Path length

(b) Power law Exponent of Degree distribution

(c) Average clustering coefficients

Fig. 4. SNAM algorithm with a normalized degree with added attribute sim-
ilarity CF (w = β = 0.5)
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(a) Average Path length

(b) Power law Exponent of Degree distribution

(c) Average clustering coefficients

Fig. 5. SNAM algorithm with a normalized degree with multiplied attribute
similarity CF (α = 1)
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Table 2. Simulation Parameter Values

mo m L N

5 5 10 500

ities in the statistical characteristics of the generated network. Here, we
consider the arrival the maximum value of NM is 10 . This choice was
made to avoid irregular statistical properties, which appears when NM >
10, and has proved to give satisfactory results as shown in figures 3, 4, 5,
6. The connection function CF is dependent on the old node i degree Di

and attribute similarities (Aij) for both node i and new node j , namely:

CF = α
DjAij∑
j
DjAij

+ β
Dj∑
j
Dj

+ w
Aij∑
j
Aij

, where α+ w + β = 1.0, 0 ≤ α ≤ 1,

0 ≤ w ≤ 1, and 0 ≤ β ≤ 1. α, w and β are weighting coefficients used
to give different weights to the combined structural popularity and the
attribute similarity in the CF terms to test their influence . Simulation of
SNAM starts with a seed network of size mo = 5. The network size grows
as new nodes arrive to the network, until reaching a predetermined final
size N. In our simulation N=500. Each newly arriving node has to es-
tablish m links with the preexisting network nodes, where m = mo = 5.
Each new node in the network is randomly assigned an attribute vector
of length L=10, whose elements are derived from a uniform distribution.
Simulation parameter values used are summarized in table 2.

Matlab [9] simulations were performed for different combinations of
the CFs’ coefficients for both models. The simulation results show the
average of 10 experiments with different random-seed generator values.
CFs used can be based on normalized degree only (β = 1, α = w =
0), on degree with added attribute similarity (α = 0 and w = 1 − β
where 0 ≤ β ≤ 1), and on degree multiplied by the attribute similarity.
Simulation results for the Average Clustering Coefficient (Av CC), the
Average Path length (Av Pl), and the Exponent of PL (Exp PL) for
three combinations of the coefficients α, β and w are shown in figures 3,
4, 5.

Figures 3(a), 4(a), 5(a) for the average path length indicate that
small world effect is preserved for three combinations of α, β and w as
its value is ≤ logN , where N = 500. Average path length decreases with
the increase of NM. Figures 3(b), 4(b), 5(b) show that the magnitude
of PL exponents for the three variations remains in the range of 1.35 ≤
γ ≤ 1.75 which is consistent with values found in real networks [1, 3, 4].
Additionally, the magnitudes of PL exponent saturates at values close
to γ ∼= 1.35 with the increase of NM.
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The average clustering coefficient values increase with the increase of
NM for the three variations as seen in figures 3(c), 4(c), 5(c). Average
clustering coefficient reach high values compared to those of BA model.
The clustering coefficients in figure 3(c) corresponding to degree only
achieves higher values than those of figures 4(c) and 5(c) using additive
attribute similarities and multiplicative attribute similarity CF respec-
tively.

Examples of the generated networks using SNAM are shown in fig-
ure 6 for the three combinations of the coefficients α, β and w. The
simulation parameters values are m = mo = 5, N = 500, L = 10, and
NM= 10. The generated networks are plotted using Pajek [13].

As previously mentioned, the connection-standard is reduced by a
step of value ε. When increasing ε, the connection standard is reduced
at a faster rate. Thus, we experiment with the effect that changing the
connection-standard reducing step would have on the generated net-
works statistical properties. A 500 nodes network with CF coefficient
depending on normalized degree (β = 1) is generated with ε taking the
values of 0.1, 0.25, 0.5 and 0.9. From figure 7, we can conclude that at
ε = 0.9, the presence of the connection-standard becomes less effective.
The average path length values increases with increased ε. The average
clustering coefficient decreases with the increase of ε. The power law
exponents becomes unstable at ε = 0.9. High ε values would make the
nodes reduce their standard more rapidly. This will decrease the effect
of the presence of the node’s connection-standard on the generated net-
work. Thus, when ε approaches the value of one, the generated network
approaches a network generated with no connection standards.

Thus, the SNAM generation model has preserved the PL degree dis-
tribution, has a small average path length, and has high clustering co-
efficient values. Parameters NM and ε values can be used to generate a
variety of complex networks with specific values of the clustering coeffi-
cient, the average path length and the PL exponent.

4 Conclusion

This paper took into consideration that complex networks mathemat-
ical models should incorporate their statistical properties and should
also reflect the heterogeneous nature of network nodes. In this paper, we
propose several mathematical models that pave our path to find a final
mathematical model that can successfully mimic real complex networks.
The proposed models have heterogeneous network nodes with assigned
distinct attributes. Our work is the first to assign more than one at-
tribute to each node. SNAM integrates the attribute similarity measure
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(a) Normalized Degree CF (β = 1)

(b) Degree with added attribute similarity (w = β = 0.5)

(c) Degree with multiplied attribute similarity (α = 1)

Fig. 6. Networks generated using SNAM algorithm with varying CF coefficient
values
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(a) Average Path length

(b) Power law Exponent of Degree distribution

(c) Average clustering coefficients

Fig. 7. SNAM algorithm with normalized degree CF and varying ε = 0.1,
0.25, 0.5 and 0.9
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within the CF. SNAM uses the CF values to connect the nodes. The CF
depends on the old node degree simultaneously with the attribute simi-
larity between new node and old node. SNAM is the first model that has
new arriving nodes having different connection-standard requirements.
SNAM proved to be very promising as it generated a network that had
a PL degree distribution, small average path length and high clustering
coefficient values. Simulation parameters as NM and ε can be tuned to
generate a variety of complex networks with specific values of the clus-
tering coefficient, the average path length, and the PL exponent. The
effect of using Eigen vector centrality instead of degree centrality on the
emergence of community structure in SNAM is still to be examined in
the future work. We are also working on implementing an algorithm to
SNAM that would result in the emergence of community structure. Im-
plementing an analytical model for SNAM is also part of our future work.
SNAM is general and hence can be used to generate any type of complex
networks. As a proof of concept, we will consider a case study where we
will apply these models to online social networks. Our choice of online
social networks is mainly due to their wide spread and their currently
excessive applications in fields such as marketing, information diffusion,
recommendation, and trust analysis. We believe that our model will be
useful in studying online social networks and mimicking their structure
and dynamics.
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Abstract. The chemical reaction network (CRN) is a widely
used formalism to describe macroscopic behavior of chemical
systems. Available tools for CRN modelling and simulation re-
quire local access, installation, and often involve local file stor-
age, which is susceptible to loss, lacks searchable structure, and
does not support concurrency. Furthermore, simulations are of-
ten single-threaded, and user interfaces are non-trivial to use.
Therefore there are significant hurdles to conducting efficient
and collaborative chemical research.

In this paper, we introduce a new enterprise chemistry simu-
lation framework, COEL, which addresses these issues. COEL
is the first web-based framework of its kind. A visually pleas-
ing and intuitive user interface, simulations that run on a large
computational grid, reliable database storage, and transactional
services make COEL ideal for collaborative research and educa-
tion.

COEL’s most prominent features include ODE-based simula-
tions of chemical reaction networks and multicompartment reac-
tion networks, with rich options for user interactions with those
networks. COEL provides DNA-strand displacement transfor-
mations and visualization (and is to our knowledge the first
CRN framework to do so), GA optimization of rate constants,
expression validation, an application-wide plotting engine, and
SBML/Octave/Matlab export. We also present an overview of
the underlying software and technologies employed and describe
the main architectural decisions driving our development. COEL
is available at coel-sim.org for selected research teams only. We
plan to provide a part of COEL’s functionality to the general
public in the near future.
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1 Introduction

The main motivation behind the development of the COEL framework
is the often monotonous and low-level management of scientific mod-
els. Further, running simulations on multiple threads and CPUs requires
non-trivial effort. Research avenues built on solid theoretical ideas often
run into trouble because of a lack of appropriate tools and software, lead-
ing to unnecessary delays, implementation of proprietary (home-made)
solutions for basic tasks and reinventions of standard design patterns. As
is true with most desktop applications, most existing tools provide access
to only a single user on a local machine, requiring version-management
software to enable collaboration, and general usability and visual appeal
are usually low priorities. We argue that the way we work and conduct
research must dramatically change to keep pace with the amount of data
produced by simulations, to provide immediate and integrated visualiza-
tion, and to enable geographically dispersed teams to work together on
a single platform.

In this paper we introduce the COllective cELlular computing (COEL)
framework, the first web-based simulation framework for modeling and
simulating chemical reaction networks (CRNs). COEL’s web client is
immediately accessible without any installation or download. The com-
putational load of simulations is handled by COEL’s grid rather than
the client’s machine. Remote teams can share and manipulate chemi-
cal models in real time. Data is stored remotely and safely in COEL’s
database, which is backed up daily. In developing COEL we emphasized
platform-wide visualization, providing quick and embedded insight for
users.

It is important to emphasize the significance of COEL’s database
storage. Even though raw file storage (as opposed to structured databases)
has been obsolete in industry for more than two decades, the scientific
community still widely practices this approach. Storing data in files is
not only ineffective, but its textual representation requires cumbersome
parsing and tedious serialization for later structured searches or data
mining. More so, files are inherently local, and without proper back-up,
it is not uncommon that scientific data are lost. A recent study by Vines
et al. in Current Biology [1] found that 80% of scientific data are lost
within two decades, disappearing into old email addresses and obsolete
storage devices. Alarmingly, the authors found that the average rate of
data loss is 17% each year. Furthermore, because of private and local
storing only 11% of the academic research in the literature was repro-
ducible by the original research groups, as reported in Nature [2]. This is
intuitively more prevalent in experimental science, but computer-based
research is affected as well. We suggest that with current scientific ap-
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proaches this problem will only worsen in the age of big data. We argue
that storing all (even intermediate) models and results remotely and
in a reliable long-term fashion, and making them accessible to the gen-
eral scientific community should become the new standard. With remote
data storage and a convenient web client, users do not have to deal with
version-compatibility of data structures, as it is the case with traditional
approaches. Since a new application release is deployed together with
a central migration of the database, version updates are worry-free for
users.

Accessibility has two important consequences: collaboration and tran-
sparency. Using COEL, as with so-called ‘cloud-based’ web applications,
individuals can work on different facets of the same project and see each
other’s modifications in real-time. This has allowed the authors of this
paper, for example, to study the same system, run parameter evolu-
tions and performance evaluations, modify simulation dynamics and so
on from separate campuses.

COEL has been developed as a part of the NSF project “Computing
with Biomolecules”. We have successfully applied COEL as a sole tool to
model and evaluate various types of chemical perceptrons [3–5], chemical
delay lines and time-series learners [6, 7], and random DNA circuits [8].

In this paper we first discuss the state-of-the-art in chemistry simula-
tion frameworks (Section 2), then present COEL’s functionality (Section
3) and technical architecture (Section 4). We conclude with a discussion
of COEL’s place in the ecosystem of chemistry simulation frameworks,
and the future of COEL (Section 5).

2 Related Work

COEL is not the first software made to simulate chemical reaction net-
works. There are already many programs which do so, and together the
field of CRN simulators [9–13] offers a huge set of technical features, e.g.,
simulation options and statistical tools. Our goal with COEL was not (so
much) to introduce new simulation algorithms or methods of analysis,
but to include the most common and useful tools among CRN simulators
in an intuitive and modern web-based package. This makes the tools of
systems biology more accessible, and the research done with them more
transparent, collaborative, and replicable.

COPASI [9] is arguably the most advanced and widely used tool. In a
nutshell, COPASI simulates a variety of chemical objects and allows for
freedom in experiment design and statistical analysis. COPASI is quite
feature rich, and could be considered the gold standard of CRN simu-
lation frameworks. There are others worth mentioning, of course, such
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as those in the MATLAB Systems Biology Toolbox [11], and CellDe-
signer [12], which is a modeling tool for biochemical networks. Most of
these tools share support for the SBML language for describing chemi-
cal systems [13], which as a standard has been a great boon to the field,
enabling cross-platform migration.

Along with SBML support, most simulation environments share a
core set of capabilities. Beyond basic deterministic ODE integration of
CRNs (and stochastic reactions, a feature which COEL notably does not
have), it is common to offer parameter optimization to help in the design
of the networks themselves. Programs such as COPASI and CellDesigner
can simulate a number of other biochemical objects of interest, such as
cellular compartments. It is common to allow for various kinetic models
of chemical interactions, such as Michaelis-Menten [14] and mass action
[15].

In many kinds of frameworks, there is some tension between the depth
of features and the features’ accessibility, especially for highly technical
applications such as CRN simulators. In addition to offering rich design
capabilities, many developers of CRN simulators have the explicit mo-
tivation of reaching a large audience: The authors of COPASI said, “...
the software needs to be available for the majority of scientists ...” (p.
3069, [9]). The authors of CellDesigner felt similarly, saying that they
wish to “confer benefits to as many users as possible” (p. 1255, [12]).
COEL automatically runs on any operating system with a web browser,
including smartphones or tablets, so it is accessible anywhere in the world
without any installation. Further, COEL’s computational grid centrally
runs any difficult tasks which might run slowly on clients’ computers.
We strongly believe that there is no more accessible paradigm for re-
search tools than a web-based interface with computation performed in
the cloud.

3 Features and Functionality

COEL provides a unified web environment for the definition, manipula-
tion, and simulation of chemical reaction networks. In this section, we
will discuss COEL’s functionality and application-wide features in detail.

3.1 Chemical Reaction Network Definition

At its most basic level, a chemical reaction network (CRN) consists of a
finite set of chemicals and reactions. A CRN represents an unstructured
macroscopic simulated chemistry, hence the species labeled with symbols
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are not assigned a molecular structure. The state of a CRN is represented
by a vector of chemical species concentrations.

Each reaction is of the form a1X1 + . . .+anXn → b1Y1 + . . .+ bmYm,
where species Xi are reactants and Yi products. Constants ai and bi are
stoichiometric factors, i.e., positive integers describing how many copies
of each molecule are involved in the reaction. For instance the reaction
A+B → C describes species A and B binding together to form species
C. Reactions can also involve catalysts or inhibitors, which speed up or
slow down the reaction, but are not consumed.

Note that a legal reaction could have no reactants or no products.
For that purpose we include a special no-species symbol λ to represent
a formal annihilation A+ B → λ or a decay A→ λ. Mass conservation
states that matter cannot be destroyed nor created, i.e., in a closed
system the matter consumed and produced by each reaction is the same.
Annihilation and decay as we defined them seem to violate that, however,
in the chemical analogy, λ does not signify a disappearance of matter but
simply an inert species, effectively absent from the system of chemical
interactions. Similarly we interpret a reaction λ → A as an influx of A
rather than a creation of a molecule A from nothing.

Reaction rates define the strength or speed of reactions, as prescribed
by kinetic laws–Michaelis-Menten [16] kinetics for catalytic reactions,
and mass action kinetics [17] otherwise. The rate of an ordinary reaction
a1S1 + a2S2 → P is defined by the mass-action law as

r =
d[P ]

dt
= − 1

a1

d[S1]

dt
= − 1

a2

d[S2]

dt
= k[S1]a1 [S2]a2 ,

where k ∈ R+ is a reaction rate constant, a1 and a2 are stoichiometric
constants, [S1] and [S2] are concentrations of reactants (substrates) S1

and S2, and [P ] is a concentration of product P . The rate of a catalytic

reaction S
E−→ P , where a substrate S transforms to a product P with a

catalyst E, whose concentration increases the reaction rate, is given by
Michaelis-Menten kinetics as

r =
d[P ]

dt
=
kcat[E][S]

Km + [S]
,

where kcat,Km ∈ R+ are rate constants.

COEL is consistent with these general CRN formalisms; next, we
will describe details particular to COEL’s implementation. COEL auto-
matically computes appropriate rate functions once given numeric rate
constants, yet it also allows users to define arbitrary rate functions using
custom expressions over species labels, giving the user full freedom over
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Fig. 1. A partial description of a chemical reaction network in COEL. Species
are listed at the top, and their reactions are presented in tabular form. The
reactants and products are described in the third column, the forward reaction
rates are in the fourth column, and any catalysts are in the fifth.

the system’s dynamics. Reactions can be uni- or bidirectional, and bidi-
rectional reactions can have independent forward and backward rates.

Both species sets and reaction sets are extensible, in that new sets can
be defined as expansions of old ones. This promotes reuse and modular
design. Further, two CRNs can be merged combining their reactions and
species into one network.

Figure 1 shows an example CRN in COEL, a memory-enabled chem-
ical perceptron [6]. The CRN’s species, reactions, and reaction rates are
presented in a unified view from which any of these objects can be easily
edited in a few steps. Also, users can export CRNs in Matlab, Octave, or
SMBL formats if they wish to study their systems using different tools.
It is also possible to import an SBML-defined CRN into COEL.

In imitation of biochemical cells or membranes, CRNs in COEL
support hierarchical tree-like compartmentalization. Each compartment
hosts an independent reaction set and vector of chemical concentrations.
Compartments communicate with each other through permeation, for-
malized in what we call ‘channels.’ A channel works just like an ordinary
reaction, except the reactant and product species reside in adjacent com-
partments. Among other things, this allows for modular design of chem-
ical systems, where connected modules reside in nested compartments,
as shown in Figures 2 and 3.
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Fig. 2. Schematic of permeation in a simple 2-1 multicompartment system
from one of the authors’ current projects. The ‘tagged’ input species X ′

1 and
X ′

2 are injected into the outer compartment. They permeate into the inner
compartments via channels which transform them into regular, untagged in-
put species X1 and X2. The inner compartments’ ASPs (Asymmetric Signal
Perceptrons [4], each of which is a large CRN) process the input species into
the output Y . Each compartment has a unique outgoing channel to trans-
form Y into one of the input species, which are then processed in the outer
compartment.

Fig. 3. COEL’s representation of the permeation schema depicted in Figure
2.
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Fig. 4. The details of a COEL interaction series. Left arrows denote the setting
of species concentrations, and right arrows indicate assignments of user-defined
variables. The interaction at time 100 does the following (note that at time 0
the variable IN is set to 3): first, the variables X1inj and X2inj are randomly
set to 0 or 3 with equal probability. The concentration of Sin′ is set to 3, then
the concentrations of X1′ and X2′ are set equal to their respective injection
variables. Finally, Y is flushed from the system—its concentration is set to 0.

3.2 Chemical Reaction Network Simulation and Interaction
Series

A major feature of COEL, in that it has been crucial to its early users and
their work, is so-called interaction series. An interaction series allows the
user to directly manipulate concentrations of species in the CRN. This
feature is analogous to, though more capable than, automatic chemical
injections into a reaction chamber. For compartment-extended CRNs,
interaction series can be identically hierarchical, allowing for precise in-
teraction with each component of the network.

Concentrations can be modified multiple times, not just initially. E.g.,
for iterative processes it is useful to define a set of periodic interactions.
In specifying interactions, a user can define custom concentration-setting
expressions, as well as custom variables for use in those expressions. For
example, the bottommost interaction in Figure 4 injects species B (here
a ‘penalty species’) at concentration 0.5 if the output species Y does not
match AND of the original input concentrations, X1inj and X2inj . The
COEL Interaction Series API, as we call it, is then a scripted language
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Fig. 5. A chart showing concentration traces of 5 chemical species over time
in COEL. In this case, an interaction series injects a random combination of
X1 and X2 at concentration 1, every 1000 time steps.

that can describe a variety of complicated experimental scenarios with-
out touching the underlying simulation-framework code. Thus end users
have the freedom to manipulate the chemical system in a dynamic and
safe way (basic expression validation is provided).

To actually simulate a CRN, a user runs a defined reaction network
with a selected interaction series (which might be as simple as setting
initial concentrations). Users can choose from a number of non-adaptive
and adaptive deterministic ODE solvers to integrate their system. Upon
running such a simulation, the user is by default shown an embedded
chart of species concentrations over time (Figure 5). If further post-
processing is required, full or filtered data could be easily exported into
a CSV file.

Note that since ODE solvers are deterministic, two simulations us-
ing the same CRN and interaction series will always produce the same
concentration traces if the interaction series is deterministic. That is,
however, not the case for the interaction series in Figure 4, which uses
random weight setting and randomly injects binary inputs at concen-
tration 0 or 3. COEL does not currently have a feature to save random
number seeds to exactly replicate simulations such as these.

3.3 Performance Evaluation and Dynamics Analysis

COEL provides a core set of tools for analyzing and modifying CRNs,
enabling statistical record-keeping as well as the design of complex net-
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works whose precise architecture is initially unknown to the user. COEL’s
basic interpretive tool is the “translation series,” defined by the user in
a similar manner to interaction series, described above. A single transla-
tion is a straightforward function of the current concentrations and any
predefined constants, and can be Boolean or numeric in its output.

One can simply plot the output of a translation series to see the
CRN’s behavior through a certain lens, or use the series as the basis
of evaluation and optimization. Because many CRNs involve a random
component, especially in (but not limited to) their interaction series,
COEL allows the user to run large batches of simulations and collect
statistics based on these translation series.

Because it is usually difficult to precisely translate simulated chemist-
ries into wet ones, COEL also offers perturbation analysis. Users can
evaluate the performance of the CRN if a defined set of rates are ran-
domly perturbed according to set parameters. This is useful in measuring
the robustness of a chemical system.

COEL also offers dynamics analyses with a detailed statistical view of
an individual CRN simulation. This includes Lyapunov exponents, Der-
rida stability, time and spatial nonlinearity errors, and more; along with
reports about the simulation itself, like how many species concentrations
reached fixed points for given tolerance.

To allow maximum freedom in analysis, COEL offers CSV export of
any raw data a user might produce. Every chart and data visualization
in COEL is accompanied by a CSV export function, allowing the user to
export either the data currently displayed on-screen (to replicate a chart
or precisely modify its appearance) or the entire raw dataset, as shown
in Figure 6.

3.4 Rate Constant Optimization

With defined evaluation criteria, a user can optimize CRN’s parameters
with COEL’s flexible genetic algorithm tool. Users define the space to be
optimized by selecting which reaction and channel permeation rates are
to be modified, in what ranges, and under what constraints (e.g. several
reaction rates can be fixed to each other). Chromosomes are then vectors
of rate constants.

The parameters of COEL’s GAs are easily modified, allowing for
different rates of mutation, rules of reproduction, initial populations, and
so on. Chromosomes can be selected to reproduce either deterministically
with elite selection, or probabilistically relative the measured fitness of
each chromosome. Reproduction can be sexual or asexual. In the former
case, crossover between two chromosomes can be either one-point (i.e., in
chromosomes of length n, the child’s first p ≤ n genes are from one parent
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Fig. 6. A chart of three separate performance evaluations, each one showing
the performance of a binary chemical perceptron averaged over 10,000 repeti-
tions for given interaction series representing desired binary function (XOR, OR,
PROJ). Note the data export options on the right.

and the last n−p are from the other), or a probabilistic shuffle. Supported
mutation types are one-bit, two-bit, exchange and per-bit, with content
replacement and perturbation options. COEL’s GAs also support fitness
renormalization, and selection of maximization or minimization of the
target function (fitness vs. error).

3.5 DNA Strand Visualization and Displacement Reactions

COEL has a convenient web interface for visualizing DNA strands spec-
ified by the Microsoft Visual DSD syntax [18], which decomposes single
and (full or partial) double DNA strands into labeled subsequences called
domains. Domains are classified as either long or short, also called toe-
holds. These DNA-strand images can be exported in the svg format,
appropriate for publications and educational purposes alike. Note that
the Microsoft Visual DSD web tool (unlike COEL) requires an installa-
tion of Microsoft Silverlight, whose support on Linux is problematic.

Furthermore, COEL can transform any CRN based on mass-action
kinetics into a DNA strand-displacement circuit using the methods of
Soloveichik et al. [19]. In strand displacement systems, populations of
these species are typically represented by the populations of single stran-
ded DNA molecules. These interact with double-stranded gate complexes
which mediate transformations between free signals. In a nutshell, the
mass-action reaction X1 +X2 → X3 is translated to three displacement
reactions X1 +L� H+B (a single strand X1 displaces an upper strand
B from the complex L), X2 +H → O+W1 (a single strand X2 displaces
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Fig. 7. A chart of a population’s fitness over time in a run of a particular
GA. This plot displays several features shared by all plots in COEL, enabling
modification of the plot without refreshing the web page: an x-axis slider to
specify the plot’s domain, a drop-down menu to select which series to display,
and a slider to select the plot’s resolution relative the data set.

Fig. 8. COEL’s tool for visualizing DNA strands specified in Visual DSD. Red
lines represent toeholds, and gray lines are long domains.
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Fig. 9. A DNA strand displacement reaction obtained by COEL’s transfor-
mation of arbitrary CRNs into strand displacement circuits.

an upper strand O from the complex H), and finally O+ T → X3 +W2

(a single strand O displaces an upper strand X3 from the complex T ),
where L,H,B,O, T,H are auxiliary fuel species, and W1 and W2 are
waste products.

Once applied to a reaction set, the transformation produces a CRN
with new intermediate species and reactions, describing displacements
of single strands from partial or full double strands. Besides new reac-
tions, COEL also specifies the DNA structure of each species in terms
of numerically-labeled domains, the output of which is shown in Figure
9. This is a powerful tool for automatic translation of so-called in silico
systems to feasible wet chemistries in a user-friendly way. The authors
are not aware of any other CRN simulation framework that includes
DNA strand displacement transformations as a part of their application
toolbox.

3.6 Random Chemical Reaction Network

COEL offers functionality to quickly make a random chemical reac-
tion network with set specifications. User-defined parameters include the
number of species, the number of reactions, the number of reactants and
products in each reactions, and a random distribution of reaction con-
stants; COEL meets all of these constraints with combinatorial design.
For open systems the user can also specify influx and efflux constraints.

Furthermore, COEL also supports generation of random DNA-stand
circuits [8] using single, full double, and partial double strands. Parame-
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ters for this function include number of single strands, ratio of upper to
lower strands, ratio of upper strands with complements, (positive) nor-
mal distribution of partial double strands per upper strand, (positive)
normal distribution of rate constants, ratio of influxes and effluxes, and
distribution of rate constants. Based on a randomly generated ordering,
DNA strands with higher order take precedence over lower-order strands
in DNA-strand displacement reactions (Section 3.5). Also, note that the
maximum number of strands that could bind together is two, which is
justified by assuming that a single strand does not bind to partial dou-
ble strand, but always displace its upper or lower part. We assume wet
synthesis of these networks is possible by standard DNA sequence de-
sign [20].

3.7 Platform-wide Features

Numerous features of COEL are omnipresent throughout the platform,
creating a familiar look-and-feel as well as providing intuitive access to
common features. Throughout COEL, users input mathematical func-
tions in the straightforward syntax of the Java Expression Parser (dis-
played in Figure 4), and those expressions are always validated by COEL
before being input into any simulation. Views, such as COEL’s list of re-
action sets or interaction series, have a common search and filter feature,
allowing for easy navigation through huge sets of objects.

All charts in COEL are made with the Google Charts API, and in-
clude sliders for domain selection and data filtering (see Figure 7), as
well as CSV export options (see Figure 6). Finally, COEL has rudimen-
tary user privacy protocols, where each user account is either a ‘user’
who can see only his/her own projects, or an ‘admin’ who can see every
project on COEL. In order to share a project, a group of users currently
have to have admin rights. We plan to expand privacy features in later
versions.

4 Architecture and Technology

COEL’s architecture is highly modular with strict separation of business
logic and technological application aspects. Nowadays, the main chal-
lenge of enterprise application development is not programming per se
but rather the integration of diverse technologies and libraries which each
address different application needs. The absence of strict inter-modular
/ inter-layer dependencies enables quick and easy customization and re-
placement of technologies and providers.
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Table 1. A list of the acronyms used in this section.

Acronym Description

JVM Java Virtual Machine
ORM Object-Relational Mapping
POJO Plain Java Object
DAO Data-Access Object
IoC Inversion of Control
JEP Java Expression Parser
JMS Java Message Service
REST Representational State Transfer
HPC High Performance Computing
JDBC Java Database Connectivity
SQL Structured Query Language
PLSQL Procedural Language/Structured Query Language
HQL Hibernate Query Language

At this level of abstraction only the domain objects, the data hold-
ers of business data, implemented as POJOs (Plain Java Objects), are
shared among all application parts and layers. Figure 10 presents a high-
level overview of COEL’s architecture with call (request) pathways. On
the very top we have two clients representing the only entry points to the
application: the web client backed by Grails [21], jQuery [22] and Boot-
strap [23] frameworks (discussed in Section 4.4), and the plain console
client implemented in standard Java for “headless” scripting.

Based on user’s requests, the clients call the services such as Chemistry
Service, EvolutionService, and UserManagementService (Section 4.2) ma-
intained by the Spring application container (Section 4.1), which then
redirects either to a computational grid implemented on the top of
GridGain HPC technology [24] (Section 4.3) for distributed task exe-
cution, or to the persistence layer with DAOs (Data-Access Objects)
and ORM (Object-Relation Mapping) provided by Hibernate [25] (Sec-
tion 4.5). In addition, the web client controllers have a direct link to the
persistence layer, which is beneficial especially for basic CRUD (Create,
Read, Update, Delete) operations. At the very bottom a PostgreSQL [26]
database stores and provides data on the demand of the persistence layer.

The business logic such as chemistry simulation and GA optimization
is implemented mainly in the Scala language, leveraging both object-
oriented and functional programming approaches. All technologies and
libraries integrated into COEL are either open-source or free to use.
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Fig. 10. A high-level overview of COEL’s architecture consisting of web and
console clients, web servlet, services, business logic, persistence layer, and com-
putational grid. The application (IoC) container holding the server-side of the
application is implemented in Spring framework.



COEL: A Web-based Chemistry Simulation Framework 51

4.1 Application Container

The Spring Framework [27, 28] provides the COEL’s core application
infrastructure. Spring is a leading enterprise solution for Java maintained
by the SpringSource community since 2002. Compared to Enterprise Java
Beans, the Spring portfolio is less invasive and more flexible. Spring is not
an application server, it is just a set of libraries which can be used and
deployed anywhere (like e.g., Tomcat and Jetty). It consists of several
sub-projects which can be used separately or together as needed. Spring
is a lightweight tool that shows how little is really needed for enterprise
application development. It does not have strict dependencies, and it
detaches technical and business concerns.

The IoC (Inversion of Control) container is a central part of the
Spring Framework. It controls the creation, number of instances (with
singleton and prototype scopes), lifecycle, inter-dependencies (loose-cou-
pling or wiring) and general configuration of application components,
modules, adapters, specific utility classes or in general any POJO whose
creation and use should be maintained in the application context. Spring
IoC is a simple and transparent glue or integrator of various components
and frameworks which are provided either by Spring Portfolio itself or
other parties.

The IoC container encourages the best practices of programming with
interfaces, i.e., each bean (POJO object in the IoC container) should
consist of an interface and implementation class. Therefore, each bean
knows that it can talk to a different bean that does something specific,
but not which type of object, how its functionality is implemented, nor
how the call is carried out. The IoC container injects the dependencies
into POJOs at the runtime, and so beans take care only about their
business purpose, not creation (and maintenance) of their relationships.

This approach is superior to the factory design pattern because all
dependencies get injected and configured through the application con-
tainer (annotations and/or XML), however beans are not aware of the
container’s existence, i.e., unlike the factory pattern they do not need
to call the application container in order to get their dependencies. The
application code of Spring beans has little dependency on Spring itself.
As a matter of fact, IoC is often described with the Hollywood prin-
ciple: “Don’t call us, we call you.” Besides Spring, other popular IoC
containers include GUICE and Pico.

IoC abstraction results in modular, lightweight and layered architec-
ture with loose-coupled pluggable components. Programmers are also
encouraged to implement beans as thread-safe and stateless if possible,
so several callers could safely query the same component without wor-
rying about timing and/or call history.
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Last but not least, Spring IoC enables COEL to become a truly test-
driven project. Because of loose-coupling and dependency injections, our
JUnit tests could switch to test (rather than production) application
context and substitute for instance implementation classes that require
remote access to production systems with mock objects.

4.2 Services

The service layer is the actual gateway to the business/functional part
of the application. Services are callable functions provided to the clients
(or outside world). COEL is divided into five functional modules, each
exposed by a separate service interface (facade): ChemistryService, Evol

utionService, NetworkService, AnalysisService and UserManagementSer

vice.
One of the most compelling reasons to use Spring for service manage-

ment is its comprehensive transaction support. Spring provides a con-
sistent abstraction for transaction management that integrates very well
with various data access abstractions. For remote access, the service in-
terfaces can be easily injected by appropriate stubs. Spring supports
for example Remote Method Invocation (RMI), Spring’s HTTP invoker,
JAX-RPC, JAX-WS or JMS.

Since the web client runs as a part of the application context, i.e., it
lives inside the same server-side JVM (Java Virtual Machine) as Spring,
all service calls are local. On the other side, the console client runs as a
separate process and its calls are remote. More precisely, console clients
requests are carried out by RESTFul Web Services and alternatively by
JMS. In the future we might consider exposing a portion of services to
3rd parties, possibly other universities or teams, through REST.

4.3 Cloud Computing

COEL’s computational grid has been built on top of the GridGain In-
Memory Computing Platform [24]. The GridGain HPC (High Perfor-
mance Computing) library implements a scalable low-latency zero-deplo-
yment computational grid, which fits seamlessly into our Spring-backed
IoC container (Section 4.1).

COEL’s grid currently consists of 19 nodes with around 500 cores.
All nodes are hosted on Portland State University hardware, though the
technology allows us to add any geographically remote resource, since
the communication is carried out by TCP/IP protocol with optimized
marshaling (serialization) of exchanged data. We plan to utilize existing
grid technology to pool the resources with other geographically dispersed
teams.
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COEL’s grid acts transparently, as a single computing resource. Grid-
Gain enables COEL’s users to be more productive by eliminating the
complexity of distributed computing. Regardless of a user’s geographic
location, they can add tasks to the grid from the COEL web page without
much effort. When a user submits a task, after the chain of calls the
request is ultimately received by the grid master node running within
the application context. The task splits into many partial jobs, which
are then distributed over the grid.

GridGain provides zero-deployment technology, so a new (slave) node
could be added to the grid on-the-fly by registering with the master node
identified by the IP address or domain name. Therefore the grid’s topol-
ogy might change freely during its lifetime. COEL’s grid supports several
enterprise features contributing to effective and robust execution of jobs.
The grid keeps track of various node statistics such as CPU performance,
execution time, and availability, which are constantly updated and uti-
lized for adaptive job distribution such that high performing nodes ob-
tain more jobs. Also, if a node disconnects from the grid, the exception
is noted by a periodic heartbeat, and disconnected node’s jobs are redis-
tributed across the grid. Moreover, if a node finishes its execution sooner
that expected and so it sits idle (its wait queue is empty), it steals jobs
from other nodes.

Due to the communication and task initialization overhead we ex-
ecute only nontrivial tasks on the grid, with compute times that can
last seconds, hours, or days. The main grid tasks include chemical ODE
simulations, dynamics analyses, and evolutionary optimizations of rate
constants.

4.4 Web Client

COEL’s web client is implemented in Grails [21], which is a powerful web
2.0 framework using the Groovy dynamic language for the Java Virtual
Machine. JVM compatibility means that Java, Groovy, and Scala source
compiles into Java byte code, hence these three languages are natively
inter-callable. Grails follows the ”Convention over Configuration” ap-
proach, which emphasizes standard (conventional) naming, binding and
data flow, so the structure of the application is simply implied if it is
not explicitly configured. This approach is heavily utilized in a function
called scaffolding, which based on a domain object structure generates
dynamically at runtime the controller with associated web pages, provid-
ing basic CRUD operations without any effort. As a matter of fact, we
could build a COEL prototype web client just with a few lines of code.
Grails internally uses Spring IoC for dependency injection and bean cre-
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Fig. 11. COEL’s home (welcome) page. URL: coel-sim.org.

ation. Furthermore, Grails was officially incorporated into Spring at the
end of 2008.

The web front-end relies heavily on Javascript provided by the jQuery
library [22], which makes UI interactive and intuitive and moves a part
of data processing and visualization directly to the web browser. For
instance, although COEL runs all simulations server-side, if a user wishes
to see a chart, e.g., of species concentration traces, COEL sends the user
raw data which is transformed into a chart by client-side Javascript using
Google Charts API. For styling and some widgets we used the Bootstrap
library [23] created by Twitter.

4.5 Persistence

The persistence layer consists of DAOs (Data-Access Objects) wrap-
ping storing, retrieving, deleting, and filtering functionality for domain
objects. To map an object-oriented domain model to a traditional re-
lational database we use Hibernate [25], an object-relational mapping
(ORM) library for the Java language. DAOs and Hibernate are widely
supported by Spring, which offers hooks for fast integration.

Hibernate solves Object-Relational impedance mismatch by replac-
ing direct persistence-related database accesses with high-level object
handling functions. Hibernate provides declarative strategy for persist-
ing data. We define a mapping of columns, reference metadata and in-
heritance strategy mapping. Hibernate handles details about persistence
implementation, like SQL statements and JDBC connection creation. To



COEL: A Web-based Chemistry Simulation Framework 55

obtain data we use SQL or the Hibernate query language (HQL). The
actual translation from the POJO to JDBC result set is automatic. Hi-
bernate also uses various optimization strategies, such as cache and DB
access optimization.

We believe that it is imperative to store data in a structured database,
enabling prompt retrieval, searching and post-processing. PostgreSQL
[26] is a mature open source database providing standard SQL/PLSQL
language support with numerous additional features. The decision to
select PostgreSQL as DB provider was driven mainly by the following
factors: a lot of hands-on experience, a comprehensive console as well
graphical UI (PgAdmin), an open source license, and support for array
data types, useful for storing scientific vector data. The database model
currently contains about 90 tables. To assure compatibility for each ver-
sion of COEL we migrate data by a set of SQL scripts. Also, each day
the whole database is dumped (backed-up), so we could restore the state
of the DB to a certain date and time very quickly. That means our data
is stored safely in structured and indexed format.

4.6 Build, Deploy, and Testing

To build COEL’s project and to maintain its library dependencies, we
use Apache Maven [29]. For a new application version we run a set of
JUnit tests, which guarantee that the core functionality works as ex-
pected. After that, COEL is deployed to the Tomcat application server.
Figure 12 shows a deployment schematic of COEL’s components over
several resources (machines), each running some part of the application:
the database server, the application server, and the cloud. Due to the
extendability of the computational cloud, the number of resources is not
bounded. Also, note that the database server and the application server
are currently hosted on the same machine.

COEL currently has about 30 users (exclusively from the NSF project
“Computing with Biomolecules” and Portland State University), 5 of
which are active, i.e., they access COEL on a daily basis. Once COEL will
be available to the research community we expect the number of users to
grow to hundreds, which would require more resources and more rigorous
testing. If the users find a production issue or want to recommend a new
feature, they will be able to submit a report through a Jira issue tracking
system. More than 60 issues and new feature requests have be reported
so far internally. Currently, the development of COEL is largely driven
by the authors’ research needs.
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Fig. 12. Diagram showing a physical deployment of COEL’s components.

5 Conclusion and Future Work

In this paper, we presented a new web-based chemistry simulation frame-
work, COEL. Its modern layered architecture includes a scalable com-
putational grid, a user-friendly and interactive web UI, and the safe and
transactive persistence of chemistry models and simulation results. Its
wide range of features primarily target chemistry simulations, GA opti-
mization of rate constants, performance evaluations, and dynamics anal-
ysis. We paid particular attention to general usability and lightweight
and fluid layout, and embedded data visualization using Google’s chart-
ing engine.

COEL can be used without any installation, and from any web brow-
ser. As such, it is easier to start using and has a larger potential audience
than existing desktop-application based frameworks. Keeping COEL in
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the cloud allows for easy collaboration and sharing of results, and makes
it simple to build upon another’s work.

COEL’s computational grid utilizes CPU resources only, however, it
would be beneficial to extend the grid over GPUs as well. GridGain,
our current computational grid library, does not provide native support
for GPUs. On the other hand, we argue that reimplementing all tasks
and business logic in (J)CUDA or OpenCL and maintaining two code
branches would not be feasible. Therefore, we plan to explore transparent
compilation mechanism such as Aparapi, where a single Java code com-
piles to CPU and GPU version transparently and gets executed based
on resource availability.

Furthermore, we often face the situations when we want a newly
submitted task to be executed as soon as possible, or we want to asso-
ciate more CPU time to the tasks of a certain user. To achieve that we
would like to assign priorities to the tasks based on their type and users’
privileges.

As mentioned in Section 4.2 we might consider exposing certain ser-
vices and routines through RestFul API so 3rd party applications could
call, integrate and tailor COEL’s functionality for their needs.

To improve the quality of chemistry ODE-based simulations we plan
to integrate the standard LSODA solver. Also, to provide an alternative
to the deterministic ODE solvers our goal is to introduce a stochastic
simulator based on the Gillespie method [30]. The Gillespie method sim-
ulates each reaction step stochastically on a molecular level [31, 32]. It is
computationally more demanding than ODE integration, however, it is
physically more realistic, especially if the number of molecules in the sys-
tem is low. Therefore, COEL is currently best-suited to simulate systems
with large numbers of each chemical species.

Also, we plan to introduce more advanced sharing permissions, so
each user could specify with which group or user he wants share the
models and results for viewing and editing.

Last but not least, our vision for COEL is to become a common
platform for diverse unconventional computing models. One step toward
that goal is a new Network module, which will simulate complex spa-
tial, random, or layered networks with configurable node functions and
interaction series.
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Abstract. The CoSMoS approach and pattern language has
typically been used to guide the entire process of development
and use of scientific simulators. The resulting CoSMoS compo-
nents (domain, domain model, platform model, simulation plat-
form and results models) provide an explicit framework for pre-
senting and reasoning about both the engineering and scientific
aspects of the simulator and its results. The flexibility of CoS-
MoS enables us to use the same patterns to reverse engineer
CoSMoS model components from pre-existing simulators and
associated research literature. We demonstrate this here by ap-
plying the CoSMoS patterns to the Aevol (artificial evolution)
simulator in order to extract an explicit Aevol domain model.

1 Introduction

The CoSMoS approach [1, 2] provides guidance on how to engineer, and
subsequently use, computer simulators for scientific investigations. At
the heart of CoSMoS is a collection of core components, shown in fig-
ure 1, whose construction let us reason about the process of engineering
and using a simulator. The process of identifying and constructing these
components is governed by a set of CoSMoS patterns [3], which each
describe a generalised core solution to a task that one might encounter
when working with scientific simulations. Appendix A provides a brief
summary of the main CoSMoS patterns referred to in this paper.

The CoSMoS components and patterns have been successfully used
to assist the engineering of simulators for science [4, 5]. These simu-
lators have followed a typical application of the CoSMoS approach by
applying the CoSMoS Simulation Project pattern that guides the identi-
fication and construction of the core components through the applica-
tion of three phase patterns, Discovery Phase, Development Phase and
Exploration Phase. The flexibility of the CoSMoS products and patterns
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Fig. 1. The CoSMoS core components. Each is captured and referred to by its
associated pattern, Domain, Domain Model, Platform Model, Simulation Plat-
form, Results Model.

approach, however, does not dictate that we must always follow the com-
plete CoSMoS Simulation Project pattern. Instead we can apply a subset
of the CoSMoS patterns to construct core components in a way that best
suits our particular circumstances. Here we illustrate such an example
by showing how the CoSMoS patterns can be used to reverse-engineer
a Domain Model from pre-existing simulator code (i.e. a simulator that
hasn’t been created within the CoSMoS approach).

Specifically, we are motivated to reverse engineer a Domain Model
of Aevol [6], an in silico experimental artificial evolution platform [7]
in which populations of digital bacteria are subject to Darwinian-style
evolution. Although there are numerous publication that detail aspects
of Aevol [7–9], as well as the simulator’s source code [6], a single consis-
tent Domain Model (in the CoSMoS sense) does not exist. As a Domain
Model provides an explicit representation of the model of the science that
underpins a simulator, an Aevol domain model is desirable to help us
reason about Aevol simulation results and to help us produce any future
extension of the Aevol platform.

We first outline in section 2 how we can apply the CoSMoS approach
to develop an Aevol domain model, identifying our starting point and
method for reverse engineering the model. We then describe the Aevol
domain in section 3, and establish the Aevol platform model in section 4.
From this point we outline the Aevol domain model in section 5, and
finally discuss the reverse engineering exercise in section 6. Appendix A
provides a brief summary of the main CoSMoS patterns referred to in
the paper, and appendix B contains the Aevol domain model and Aevol
platform model elements.
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2 Application of CoSMoS to Aevol

We have as our starting point for reverse engineering an Aevol domain
model the Aevol code (freely available to download at [6]) and a corpus of
research literature such as [7–9]. This literature contains descriptions of
the biology that has inspired Aevol, descriptions and ‘cartoon’ depictions
(see figure 1 in [8]) of how Aevol has been implemented, and Aevol
simulation results. Our first task is to examine how the Aevol code and
literature relate to the CoSMoS core components identified in figure 1.
This enables us to then identify how we can approach engineering the
Aevol domain model, and which CoSMoS patterns will help us do this.

The CoSMoS core components shown in figure 1 are described in
detail in [10], and summarised here:

Domain: a particular view or perspective of the real world system under
study.

Domain Model: a model that explicitly captures aspects of the domain,
identifying and describing the structures, behaviours and interac-
tions. It is a model based on the science and is free from any simu-
lation implementation details.

Platform Model: a model derived from the domain model that details
how the concepts captured in the domain model will implemented
by the simulation platform.

Simulation Platform: encodes the platform model into a software and
hardware system upon which simulation experiments are run, which
in turn generate the results.

Results Model: a model describing the behaviour of the simulation plat-
form based on the output of simulation experiments, providing the
basis for interpretation of what the simulation results show.

These components are framed within a Research Context that identifies
the scientific context of a simulation-based research project, establishing
its scope, purpose and success criteria.

The closest match between the Aevol resources we possess and a CoS-
MoS component is the Aevol source code and the Simulation Platform.
In this case the Aevol simulation platform is represented by the Aevol
C++ code, relevant programming libraries, and the operating system and
computer hardware on which it all runs. Any operating system and com-
puter hardware that has the necessary C++ compiler will be able to run
as an Aevol simulation platform, so for the purposes of this paper we
just consider the Aevol simulation platform as being the Aevol code.

Elements of the other four components are contained within the Aevol
literature, although there is no explicit mapping to any specific core
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component. As our task is to construct a Domain Model, we ignore trying
to establish the Aevol results model for this exercise and instead focus on
identifying the Aevol domain model from the details contained within the
literature and our Aevol simulation platform. First we use the literature
to infer a description of the Research Context and Domain of Aevol within
section 3.

Due to the relationship between the Domain Model, Platform Model
and Simulation Platform, the Aevol simulation platform will contain many
of the concepts, structures and behaviours present in the Aevol domain
model and the Aevol platform model. So, instead of trying to infer the
Aevol domain model solely from the Aevol domain and literature we
work backwards from the Aevol simulation platform to create the Aevol
platform model (section 4). From there we create the Aevol domain
model (section 5) by cross-referencing the structures and behaviours in
the Aevol platform model with Aevol domain concepts.

3 Aevol Domain

Examining the Aevol research literature, we can use the Domain Identifi-
cation pattern to outline Aevol’s domain. In short, this pattern involves:
providing an overview description of the Domain; using the Cartoon pat-
tern to present an informal sketch that identifies system components
in domain specific terms; identifying the relevant sources for domain
knowledge; applying the Document Assumptions pattern; and defining
the scientific scope and boundary of the domain.

In normal circumstances we would identify a Domain Researcher as
our source for domain knowledge, however for this exercise we already
have published material on Aevol and we wish to demonstrate how a
Domain can be extracted from such a body of work. So, the chosen
sources for domain knowledge on Aevol are the three publications [7–
9], which capture a representative cross-section of the entire body of
published work on Aevol (see [6] for a full list of Aevol publications).
The domain description now follows.

Aevol is designed to provide insight into the real world dynamic of
Darwinian evolution. The Aevol domain, therefore, falls within the ar-
eas of evolutionary theory and digital genetics [11] in which populations
of artificial organisms evolve within a computer simulation. Specifically,
Aevol is focused on the evolutionary dynamics of the size and organisa-
tion of bacterial genomes, enabling the user to run digital experiments
in an in silico laboratory to test evolutionary scenarios [8].

The cartoon in figure 2, adapted from [8], summarises the biologi-
cal processes that have been modelled by Aevol. Here we see individuals
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Fig. 2. Aevol domain cartoon, adapted from [8]

have double-stranded circular genomes, which are constructed from a se-
quence of nucleotides. The nucleotides on the genome are grouped into
coding sequences (genes) and non-coding sequences. Genes are decoded
via an explicit process of transcription (via messenger RNA), transla-
tion and folding, which results in a signature of the cellular processes
for that individual. Selection is performed as a function of this signature
compared to an environment, with individuals with a closer match to the
environment being favoured for selection. Selected individuals are asexu-
ally reproduced to form the next generation of the population. Variation
is introduced to the population by exposing reproduced individuals to ge-
netic mutations and rearrangements such as point mutations, insertions,
deletions, duplications, inversions and translocations. These mutations
can create new genes and modify or destroy existing genes.

In addition to the domain description above, we can extract from
the background Aevol literature a number of important assumptions
(Document Assumptions) and establish the scientific scope and boundary
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of the domain. Whilst we don’t capture all assumptions, the following
should be considered when interpreting outputs from the Aevol simula-
tor:

– Space is not modelled, bacteria exist in a well mixed environment.
(Modified versions of Aevol exist which consider a grid-like environ-
ment, but this is not considered here).

– Individuals are composed only of their genome and mechanisms to
transcribe, translate and fold proteins; there is no cell metabolism.

– The non-linear mapping between genotype and phenotype (cellular
processes) is sufficient for the selection process..

– Genetic transfer only occurs vertically during reproduction; there
is no horizontal transfer (plasmids) between individuals. (Modified
versions of Aevol exist with plasmids, but this is not considered here).

– The environment is static and does not change. (Modified versions
of Aevol exist with varying environments, but this is not considered
here).

– Complete populations of individuals are replaced per generation.

Elements of the Research Context for Aevol can be identified from the
literature as:

– Investigating processes of indirect selection and evolvability
– Insights into circular bacterial genome structures (chromosome length

and composition)
– Dynamics of structural changes to genomes only
– Spatial environment effects not taken into account
– Only vertical transfer of genetic material (no plasmids or horizontal

transfer)

4 Aevol Platform Model

Although the Platform Modelling pattern (see appendix A) assumes that
to develop the Platform Model from the Domain Model, we can still ap-
ply it (with caveats) to help us develop the Aevol platform model in
the absence of the Aevol domain model. First we apply the Modelling
Approach pattern to identify a language to describe the Aevol platform
model. Given object-oriented design of the Aevol code, we have chosen
the UML’s Class Diagrams and Activity Diagrams to express the im-
plemented structures and behaviours respectively. These diagrams are
also a natural language in which to express a domain model (see ex-
amples [4, 5]), so we keep continuity of modelling language between the
Aevol platform model and Aevol domain model.
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As previously mentioned, the Platform Modelling pattern states that
the platform model should be developed from the Domain Model. This
processes considers engineering factors and should result in a Platform
Model in which some Domain Model components have been removed
(such as emergent behaviours), components not in the Domain Model
have been added (such as visualisations), and components differ between
the two models (such as number of agents). Here, however, we can extract
the platform model components and behaviours directly from the Aevol
code (the Simulation Platform), and we consider later how the Platform
Model and as yet undefined Domain Model differ.

Extracting the platform model from the Aevol code is essentially a
mechanical task with a one-to-one mapping between class structures,
behaviours and parameters in the code and Platform Model, as the Simu-
lation Platform is simply a concrete implementation of the Platform Model
in a given programming language. The Aevol code is around 20000 lines
of native C++ and, other than the standard C++ and system libraries,
uses the SIMD-oriented Fast Mersenne Twister (SFMT) library [12] for
generating pseudo-random numbers.

The main classes present in the Aevol code, and the relationships
between these classes, are shown in figure 5. The methods of the Aevol
classes implement the behavioural aspects of the Aevol platform model.
Being guided by the Aevol domain description established above, these
behaviours have been summarised in three activity diagrams in figures 6,
7, 8 which show the selection process, mutation process, and fitness eval-
uation process respectively. It is noted that the activities in these dia-
grams reflect only the gross-level structure of the Aevol code and that
more in-depth descriptions of the code could be produced. However, this
is infeasible for the many thousands of lines of Aevol code, and the ac-
tivity diagrams presented provide the necessary level of detail to help us
reach our ultimate goal of presenting the Aevol domain model.

Having documented the main structural and behavioural concepts
present in the Platform Model diagrams, we can identify which elements
of the Platform Model have been added for instrumentation purposes (to
run simulations and record data). The following classes shown in figure 5
are instrumentation classes: ExperimentManager, ExperimentSetup, and
OutputManager. These instrumentation concepts may, or may not, be
present in the Domain Model depending on whether it explicitly captures
the domain experiment within. We will revisit this when we consider the
Aevol domain model in the next section.

We can identify cases of abstractions that have obviously been made
for implementation reasons, and these should be reflected in the Domain
Model. First, the DNA nucleotide sequence captured by the DNA class
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is a binary string, therefore there are just two nucleotides, 0 and 1. This
has effects throughout the genotype-to-phenotype mapping, namely in
the translation and folding processes encoded within the GeneticUnit,
RNA and Protein classes. Second, the Environment class is implemented
as a FuzzySet, which represents a continuous function as a discrete set
of points.

These last two platform model abstractions highlight two of the
main assumptions (applying Document Assumptions) about the platform
model, namely:

– A binary string nucleotide representation of the genome is sufficient
to reflect the structural organisation on the genome during the evo-
lutionary process

– The genotype-to-phenotype mapping implementation provides an ac-
ceptable non-linear mapping between the two to mimic that of real
bacteria.

Lastly, the Platform Model and Domain Model differ from what has
been removed from the domain model when constructing the domain
model, such as emergent behaviours. We identify these in the next section
when comparing the Aevol platform model and Aevol domain to infer
the Aevol domain model.

5 Aevol Domain Model

Given our identified Aevol domain and Aevol platform model, we can
use the Domain Modelling pattern to construct our Aevol domain model.
First we apply the Modelling Approach pattern. As mentioned above,
UML’s class and activity diagrams are natural tools for expressing mod-
elling structures and behaviours and they have been used to capture
the Aevol platform model, so we use the same modelling approach here.
Next, we apply a four stage process to identifying the Aevol domain
model:

1. Extract the domain structures and behaviours from the Aevol plat-
form model diagrams removing those concepts that were added for
additional instrumentation and modifying those concepts that were
deemed to be implementation abstractions.

2. Identify the behaviours that are not in the Aevol platform model,
but are necessary to explain the Aevol domain.

3. Modify the Aevol platform model diagrams as according to 1. and
2. to make the Aevol domain model.

4. Construct the Aevol domain experiment model (not shown here)
based on relevant instrumentation present in Aevol platform model.
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Fig. 3. Aevol domain model class concepts.

The resulting Aevol domain model is summarised in figures 3 and 4. In
addition, the Aevol platform model activity diagrams (figures 6, 7 and
8) are also suitable components of the Aevol domain model as they are
able to convey the selection, mutation, and fitness evaluation processes
present Aevol domain. We may in future wish to create more detailed
activity diagrams separately for the Aevol domain model and Aevol plat-
form model, but the current more generic activity diagrams suffice for
this exercise.

The Aevol domain model classes in figure 3 differs from the Aevol
platform model classes (figure 5) in the following ways:

– We have removed the experiment specific instrumentation classes
such as ExperimentManager and moved these concepts to the Aevol
domain experiment model (not shown here).

– The relevant evolutionary processes (Folding, Translation, Transcrip-
tion, Mutation) are represented explicitly as classes that act upon
the structures (Protein, RNA, Chromosome).
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– The Chromosome is composed of both coding (Gene) and Non-
coding DNA

– The concept of Ordering is applied to the Chromosome to capture
the concept of the emergent process that acts up the bacterial
genome as a whole. This concept is expanded with the aid of fig-
ure 4.

The Cartoon in figure 4 captures the Research Context Diagram el-
ement of the Aevol domain model and complements the concepts pro-
vided in class diagram, specifically the emergent ordering of the bacterial
genome. This provides an overview of the behaviours being modelled,
highlighting the components hypothesised to play a significant role in
the real-world phenomena and the system-level behaviours that result
from their interactions. This links the domain language with expected
observables in the simulation. Here we are highlighting the concepts of
indirect selection and evolvability that occur within the research lit-
erature with how we expect these concepts to be revealed in the Aevol
simulation platform and subsequent Results Model for Aevol: namely the
dynamical changes in the population chromosome length and make-up
of coding and non-coding DNA on that genome over an evolutionary run.
We also highlight the components in the Aevol domain that we believe
are responsible for the these emergent behaviours. This essentially cap-
tures the rates at which mutational and rearrangement processes occur,
and how these are selected for according to the individuals phenotype.

Finally, we apply Document Assumptions, recording the main Aevol
domain model assumptions as:

– We have suitably identified the source of emergent behaviours we
expect to arise in the Aevol simulation platform

– The mutation, rearrangement and selection dynamics are sufficient
change the structure on the chromosome

– We can measure ordering on the bacterial chromosomes

6 Conclusions

We have shown how we can use the CoSMoS pattern language to take
a pre-existing scientific simulation platform and extract an explicit Do-
main Model via a process of constructing the associated Domain from the
domain literature, and the Platform Model from the simulator code. To
do this we have used only those CoSMoS patterns that were required.
Importantly, this is made possible as the patterns do not impose a strict
ordering on when things need to be done, only what needs to be done.
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Fig. 4. Aevol research context diagram.

Consequently we have been able to apply the patterns in a different
ordering to a typical application of the CoSMoS Simulation Project.

For simplicity we have not followed the argumentation patterns that
are associated the other patterns we have used, but there is no reason
why these cannot be used for a similar exercise. These patterns help
us record and justify assumptions and design decisions. Also, we have
not yet employed the Domain Researcher (the developers of Aevol) to
check that we have ultimately captured the correct Domain and Domain
Model. This is left as a necessary task for the future, and may result
in the incremental re-application of the patterns to refine our CoSMoS
products.

We have subsequently used the Aevol domain and platform model to
create a refactored version of the simulator in the Python programming
language. Whilst this does not have the performance of the original C++
version, it is providing to be a very useful prototyping tool to explore
extensions of the Aevol simulator. With the explicit Domain Model and
Platform Model, these extensions can be done in a principled and trans-
parent manner. Future work (as part of the EvoEvo project [13]) will
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apply the same domain model reverse engineering process to a family of
simulators based on the “Pearls on a string” (PoaS) formalism that have
been used to explore evolutionary dynamics [14, 15]. We can then use
the Aevol domain model and the domain model of the PoaS simulators
to develop a common metamodel [10]. This metamodel will provide the
basis to develop a framework for novel evolutionary algorithms.
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A CoSMoS Patterns

The patterns briefly summarised here are in alphabetical order and will
appear in full in the forthcoming publication [2].

I Cartoon

Produces an informal sketch that identifies system components in do-
main specific terms. It provides a step towards more formal modelling.

I CoSMoS Simulation Project

Develop a fit-for-purpose simulation of a scientific or engineering system.
Application of this pattern results in the construction of the products
shown in figure 1 from the application of the Discovery Phase, Develop-
ment Phase and Exploration Phase patterns.

I Data Dictionary

Defines the modelling data that will be used to parameterise the Simu-
lation Platform, and relevant real-world data that will form the basis for
comparison to data produced from simulation experiments.

I Development Phase

Based on the outputs from Discovery Phase, produces the simulation
platform upon which simulation experiments can run. Will require the
completion of the Platform Model and Simulation Platform patterns.
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I Discovery Phase

Establishes what simulation platform needs to be built. Other patterns
required to complete this pattern include the Research Context, Domain
and Domain Model patterns detailed below.

I Document Assumptions

Records assumptions appropriately to ensure they are explicit and jus-
tified. For each assumption record its nature, criticality, reason for exis-
tence and a justification such that its consequences are understood.

I Domain

A particular view or perspective of the real world system under study.

I Domain Experiment Model

A model that explicitly captures the experimental system that is applied
to the domain components identified in the Domain Model. This model
identifies the domain variables and how we manipulate and record them.

I Domain Identification

Identifies the Domain (see figure 1), establishing the perspective on the
real world system of study used as the basis for simulation. This pattern
makes use of the Cartoon and Document Assumptions patterns.

I Domain Model

A model that explicitly captures aspects of the domain, identifying and
describing the structures, behaviours and interactions. It is a model
based on the science and is free from any simulation implementation
details.

I Domain Modelling

Generates the Domain Model (see figure 1) and Domain Experiment Model,
which forms the scientific description of the identified Domain. This pat-
tern makes use of the Cartoon, Modelling Approach, Document Assump-
tions and Data Dictionary patterns.
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I Domain Researcher

Identifies the domain researcher who is the point of contact for domain
knowledge, providing the interpretation of the domain literature.

I Exploration Phase

Uses the outputs from Development Phase to run simulation experiments
to investigate the questions identified during Discovery Phase.

I Modelling Approach

Identifies an appropriate approach and notation for producing a model.
Takes account of suitability and understandability with respect to the
modelling to be performed.

I Platform Implementation

Generates the Simulation Platform (see figure 1), which incorporates a
software and hardware platform capable or running simulations of the
implemented Platform Model.

I Platform Model

A model derived from the domain model that details how the concepts
captured in the domain model will implemented by the simulation plat-
form.

I Platform Modelling

Generates the Platform Model (see figure 1) detailing how the Domain
Model and Data Dictionary concepts will be implemented and analysed in
the Simulation Platform product. This pattern makes use of the Modelling
Approach and Document Assumptions.

I Research Context

Identifies the scientific context of a simulation-based research project,
establishing its scope, purpose and success criteria.
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I Research Context Diagram

A Cartoon that provides an overview of the behaviours being modelled,
highlighting the components hypothesised to play a significant role in
the real-world phenomena and the system-level behaviours that result
from their interactions.

I Simulation Platform

Encodes the platform model into a software and hardware system upon
which simulation experiments are run, which in turn generate the results.

B Platform Model Diagrams

Fig. 5. Aevol platform model classes.
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Fig. 6. Aevol platform model selection activity.
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Fig. 7. Aevol platform model mutation activity.
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Fig. 8. Aevol platform model evaluation activity.
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Abstract. Modeling dynamical feedback loops in game me-
chanics as complex systems helps to create fun and interesting
gameplay experiences. Including structural aspects of emergence
yields a more integrated approach and allows for new gameplay
possibilities.

Creating games that are simple enough for a player to learn but that
allow for challenging complexities to keep him or her interested is a craft
often likened to a form of art. Yet, general rules of thumb that may help
guide the design process are being discovered. One such rule is to exploit
emergence in the game world by creating a world where a limited number
of different entities combine into a nearly unbounded universe of possible
interactions. If done right, this allows for elegant designs where the world
seems complex and unpredictable for the player but is controllable from
a design perspective.

Machinations is a Domain Specific Language modeled after Petri Nets
which can be used to formalize game mechanics and produce visual di-
agrams of the relevant component interactions [1]. It can be used on-
line [2] to produce diagrams and subsequently analyze the dynamics
that emerge.

In an experimental game called Order of Battle (OOB), two players
each control a commander unit who, locally, increases order in their re-
spective battle ranks (fig. 1, left). As soldiers fire salvos towards their
adversaries, their order (represented in the game as discipline or morale)
decreases due to enemy fire. A decrease in troop order will negatively
effect the power of a salvo which in turn does less damage to the en-
emy’s troop order, similar to historical musket warfare. Troop order also
decreases naturally over time.

OOB game mechanics is modeled after Rayleigh-Bénard (RB) con-
vection [3], an emergent process that can occur when a liquid is exposed
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Fig. 1. Commanders (illustrated by circled dots) increase local troop order in
OOB, which in turn affects the effectivity of firing salvos (yellow lines) that
decrease the enemy troop order (left); a complex feedback loop that is modeled
after entropy production maximization in RB convection (right).

Fig. 2. Machinations diagrams and corresponding graphs of straightforward
heat dissipation (left), heat dissipation maximization (red) due to the forma-
tion of dissipative structure (blue) in RB convection (center), and the effect
of commander positioning on troop order (blue) and firing rate (red) in OOB
game mechanics (right).

to a heat source from below. According to the Maximum Entropy Pro-
duction Principle [4], the structure which will dissipate most energy is
bound to arise. This principle explains a phenomenon that was previ-
ously thought to be inherently unpredictable: how and where emergent
structure arises spontaneously. Thus, as the upward dissipation of heat
is obstructed by the downward motion of cooled molecules, dissipative
structures (in the form of hexagonal columns known as convection cells)
spontaneously take shape and minimize horizontal exchange, thereby
maximizing vertical dissipation (fig. 1, right).

Although it increases the complexity of the OOB game mechanics model,
including dissipative structure (i.e. troop order) to maximize the firing
rate provides an interesting and realistic game dynamic (fig. 2). As next
steps, we intend to extend the model with battle commands, multiple
commanders, and a hierarchy of structural components [5] that allows
for long-term persistence of emergent gameplay structures.
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The top-down synthesis of artificial cells and bottom-up self-assembly
of protocells are attracting the interest of a growing number of re-
searchers [1–4]. In this framework, the properties of lipid vesicles (e.g.,
their stability, permeability, growth dynamics, potential to host reactions
or undergo division processes...) are being experimentally explored by an
increasing number of labs, eliciting an ever increasing interest on their use
as compartmentalized chemically reacting systems and plausible models
for minimal living systems. Thus, from a theoretical standpoint, it is
highly attractive the determination, under a set of assumptions as broad
as possible, the conditions under which simple protocells spontaneously
settle into a stationary reproducing regime, characterized by a regular
growth/division cycle and the maintenance of a certain standard size
and chemical composition across generations (figure 1). The occurrence
of a stationary regime of protocells reproduction can be expressed in
terms of the growth control coefficient (γ), based on simple geometrical
considerations, and of an explicit deterministic relationship, the osmotic
synchronization condition, which can be analytically derived under a
set of kinetic simplifications. This general condition constrains differ-
ent molecular/kinetic parameters and features of the compartmentalized
self-producing system (reaction rates, permeability coefficients, metabo-
lite concentrations, system volume) due to the osmotic pressure balance
operating across the protocell membrane. Accordingly, this model can
be used for predicting and characterizing the stationary regime in terms
of protocell size and lifetime.

Furthermore, in compartmentalized reacting systems where the mole-
cular population of the reactants is very low, random fluctuations due
to the stochastic nature of reacting events (intrinsic stochasticity) can
bring an open system towards unexpected time evolutions [5]. Addi-
tionally, this effect results to be amplified by the spreading of different
initial concentrations of biological molecules encapsulated in lipid com-
partments, the molecular distribution being dependent on the experi-
mental preparation procedure (extrinsic stochasticity). In recent years
we developed a computational platform [6, 7] suitable for studying the
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Fig. 1. Stationary reproduction conditions of in silico protocells

stochastic time evolution of reacting lipid compartments in order to elu-
cidate the role of randomness [8] in the time behaviour of chemically
reacting and self-reproducing lipid compartments, such as vesicles or
micro emulsions. This program is a C++ object oriented code that im-
plemented the Gillespie stochastic simulation direct method [9] in order
to cope with reacting compartments that can increase in number during
the time evolution. Moreover, a MPI version has been also implemented
in order to run in parallel both statistically equivalent simulations, in
order to get insights on the average time behaviour of the reacting sys-
tem, and simulations that differ in the kinetic parameters, in order to
quickly explore the space of kinetic constants, molecular permeability,
initial concentrations, etc..

Two main research lines are then generated from these premises: the
first consists in modelling and simulating the structural properties and
dynamic behaviour of lipid vesicle populations. This is done by a com-
parison with experimental data available in literature [8, 10], and gives
us the opportunity to test our approach, our simplifying assumptions,
and to estimate dynamic and structural parameters by fitting experi-
mental data (for example, kinetic parameters for the exchange of lipids
between the vesicle membrane and bulk aqueous solution are obtained).
The second line of research explores hypothetical protocell models that
keep a relatively low degree of molecular complexity like the ‘minimal
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lipid-peptide cell’ [11] and the ‘Ribocell’ [12, 13]. More recently, we also
started an investigation on the effect of different molecular distribution
laws on the protein expression taking place in giant lipid vesicles [14].
In all these cases, random fluctuations can play an important role in
determining the time behaviour of the studied systems.
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