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Abstract. Design patterns are usually described in terms of instances.
Templates describe sentences of some language with a particular form,
generate sentences upon instantiation, and can be used to describe those
commonly occurring structures that make a pattern. This paper presents
FTL, a language to express templates, and an approach to proof with
templates. This enables reuse at the level of formal modelling and ver-
ification: patterns of models are captured once and their structure is
explored for proof, so that patterns instances can be generated mechan-
ically and proved results related with the pattern can be reused in any
context. The paper uses templates to capture the Z promotion pattern
and metaproof to prove properties of Z promotion. The proved properties
are applicable directly to Z promotions built by template instantiation.
Keywords: patterns, templates, proof, Z, formal development.

1 Introduction

Design patterns [1] have had an impact in software engineering. There is also
a growing interest in patterns for formal development (e.g. [2-5]). Patterns,
however, are usually described in terms of instances, making their mechanical
adaption to a context impossible. We faced this problem while using and build-
ing patterns for Z [4,6-8], and so we resorted to templates to describe structural
patterns. Templates capture the form (or shape) of sentences of some language,
generate, upon instantiation, sentences whose form is as prescribed by the tem-
plate, and can be used to describe those commonly occurring structures that
make a pattern. This paper presents the formal template language (FTL), a lan-
guage to express templates, a calculus for the instantiation of FTL templates,
and an approach to proof with FTL templates of formal models.

Templates of some form appear often in the computer science literature. For
example, a popular Z book [9, p. 150] introduces the Z schema with a template:

Name == | declaration | predicates |

This is an informal template, it says that a schema has a name, a set of declara-
tions and a set of predicates. Intuitively, we guess that the names of the template
are to be substituted by values, which is confirmed by a template instance:

Bank == [accs : P ACCID; aceSt : ACCID - Account | dom accSt = accs]



2 Nuno Amélio, Susan Stepney, and Fiona Polack

The problem with informal templates is that it is difficult to distinguish
the template from the instance, and is difficult to know what instantiations are
valid, making it impossible to reason rigorously with them. FTL can represent
templates of any formal language precisely; it is used here with Z. The informal
template given above in FTL is:

<Name> == [ [ <declaration> | | | <predicate> ] |

A variable within <> denotes a placeholder, which is substituted by a value
when the template is instantiated; a term within [ ] denotes a list, which is
replaced by many occurrences of the term in the instantiation.

1.1 Metaproof

The form of Z sentences can be represented as FTL templates. It is also possible
to explore templates of Z for reasoning (or proof). This has practical value:
template developers can establish metatheorems for templates that are applicable
to all instantiations of the templates involved. This is motivated with an example.
In Z, the introduction of a state space definition of an abstract data type
(ADT), such as Bank above, into a specification, entails a demonstration that the
description is consistent: at least one state satisfying the description should exist.
This normally involves defining the initial state of the ADT (the initialisation)
and proving that the initial state does exist (the initialisation theorem). The
Bank is initialised assuming that in the initial state there are no accounts:

BankInit == [ Bank ' | accs’ = @ A aceSt' = @]

The consistency of Bank is demonstrated by proving the Z conjecture,
F? 3 BankInit e true. A proof-sketch of this conjecture is (see appendix A for
the Z inference rules used):

F 3 BankInit e true

= [By 3 Sc (twice)]

3 accs’ : P ACCID; accSt' : ACCID -+ Account e accs’ = @ N accSt' = &
= [By one-point]

Fdom@ =20 AP ACCID N @ € ACCID + Account

= [By set theory and propositional calculus]
true

This is proved automatically in the Z/Eves [10] theorem prover.

The Bank schema is an instance of a common structure of Z specifications:
the state of a promoted ADT [9,4]. The theorem proved above applies to the
Bank ADT, but does it apply also to all promoted ADTs that are similar in
form to Bank? If it does, can this result be proved once and for all?

Bank was generated from a template, but that template is too general and
not useful for the kind of investigation that we want to do. Instead, we use a
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more restricted template representing a promoted Z ADT, of which Bank is an
instance. A promoted ADT comprises a set of identifiers, a function mapping
identifiers to state, a predicate restricting the mapping function, and a predicate
representing an optional state invariant:

<P>==[<ids>: P <ID>; <st>: <ID> + <S> |
dom <st> = <ids> A <[> ]

(Promoted ADT’s without the optional invariant, such as Bank above, are in-
stantiated from this template by instantiating <> with the value true.)

Likewise, we represent as templates the empty initialisation of a promoted
ADT, and the initialisation conjecture:

<P>Init == <P>"'|<ids>" =@ N <st>' =2 |
F? 3 <P>Init e true

We can reason with these templates by analysing their welformed instanti-
ations. In those cases, P,id and st hold names, ID and S are sets, and I is
a predicate. By expanding the template schemas using the laws of the schema
calculus, and apply the one-point rule (see proof above), we get the formula,

Fdom @ =0 NG eP<ID> NG € <ID>+ <S>
A <I>'[<ids>" =@, <st>" = 2]

which reduces to, <I>'[<ids>' := @, <st>' := @]. If <[> is instantiated with
true, then the formula reduces to true. This establishes two metatheorems, where
the latter is a specialisation (or a corollary) of the former, that are applicable to
all promoted ADTSs instantiated from these templates. The specialised metathe-
orem gives the nice property of true by construction: whenever these templates
are instantiated, such that <I> is instantiated with true, then the initialisation
conjecture is simply true. Even when </> is not instantiated with true, the
formula to prove is simpler than the initial one.

The argument outlined above is rigorous and valid, but it is not formal.
To work towards formal metaproof, so that tool support is possible, a formal
semantics for the template language is required.

In the following, FTL is given a brief introduction followed by an overview of
its formal definition. Then, the instantiation calculus of FTL, a calculus for the
partial instantiation of templates, is presented. Finally, a metaproof approach
for Z based on FTL is developed and illustrated for the rigorous proof above.

2 A short introduction to FTL

FTL expresses templates that can be instantiated to yield sentences of some
language (the target language). FTL is general in the sense that it can capture
the form (or shape) of sentences of any formal language, and although designed
with Z in mind, it is not tied to Z or to any other language.
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FTL’s abstraction mechanism is based on wvariables, which allow the repre-
sentation of variation points in structures. Variables have, in FTL, their usual
mathematical meaning: they denote some value in a scope. Template instantia-
tion is, essentially, substitution of variables by values.

As FTL is general, it is possible to instantiate a template so that the resulting
sentence is meaningless. FTL templates assist the author; they do not remove
the obligation to check that what the author writes is sensible.

The following illustrates the main constructs of FTL.

Text. A template may contain text of the target language, which is present in
every instance. For example, the trivial template, true, always yields, true, when
instantiated. Usually, templates comprise text combined with other constructs.

Placeholder. A placeholder is represented by enclosing one variable within <>.
Placeholders, when not within lists, denote one variable occurrence, and they
are substituted by the value assigned to the variable when the template is in-
stantiated. The template, <z> : <t>; <y> : <t>, includes four placeholders
and three variables, x, ¢t and y; this can be instantiated with the substitution
set, {z — “a”,t— “N” y — “b"}, to yield: a: N; b: N.

List. A list comprises one list term, a list separator (the separator of the instan-
tiated list terms) and a string representing the empty instantiation of the list,
and it is represented by enclosing the list term within [ ]. The list term is a
combination of text, parameters and possibly other lists. Often, the abbreviated
form of lists, without separator and empty instantiation, is used.

A placeholder within a list denotes an indexed set of variable occurrences.
This means that <z> and [ <z> ] actually denote different variable occur-
rences; <z> denotes an occurrence of the variable z, but | <z> ] denotes the
occurrence of the indexed set of variables, {x1,...,z,}.

The template, [ <> : <t> ]« » <137, can be instantiated with the sequence
of substitution sets, ({z — “a”,t — “N”}, {z — “b”, ¢t — “P N”}). This yields:
a : N; b: PN. Lists can be instantiated with an empty instantiation, { ); here
this gives {}, the list’s empty instantiation.

Choice. The FTL choice construct expresses choice of template expressions.
That is, only one of the choices is present in the instantiation. There are two
kinds of choice: optional and multiple. In optional, the single expression may be
present in the instantiation or not. In multiple, one of the choices must be present
in the instantiation. Choices are instantiated with a choice-selection, a natural
number, indicating the selected choice; non-selection takes the value zero.

The template [ <z> : <t> )’ can be instantiated with (1,{z — “a”,t —
“N”}), to yield: a : N. To avoid the presence of the expression in the instantiation,
the template can be instantiated with (0,{}), which simply yields the empty
string. In the multiple-choice template,

(<z>:<t> [ <> : <> + <br>)
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the first choice is instantiated with (1, {z — “a”,t — “N”}) to yield: a : N; the
second with (2,{z +— “f” t; — “N”, & — “N”}) to yield: f : N -» N.

3 The Formal Definition of FTL

FTL has a denotational semantics [11] based on its abstract syntax. The instan-
tiation of an FTL template should give sentences in some target language, and
this is naturally represented in the domain of strings (the semantic domain).

FTL is fully specified in Z elsewhere [12]. Here, we present its definitions in
a form that is easier to read, which combines Z sets and operators, the BNF
(Backus-Naur form) notation and an equational style.

3.1 Syntax

This section defines the syntactic sets of the language. The set of all identifiers
(I) gives variables to construct placeholders. The set of all text symbols (SYMB)
is used to construct the set of all strings, which are sequences of text symbols:

1, SYMB] Str == seq SYMB

The remaining syntactic sets are defined by structural induction, using the
BNF notation. The set of template expressions comprises objects that are either
an atom (A), a choice ('), or either of these followed by another expression:

E:=A|C | AE | CE

The set of choices comprises optional and multiple choice; optional is formed
by one expression, and multiple by a sequence of expressions (set CL):

C==(E)" | (CL) CL :=F || F | E | CL

The set of atoms, A, comprises placeholders, text (T), and lists (L); a place-
holder is formed by an identifier, the name of a variable:

Av=<I> | T | L

The set of lists, L, comprises two forms of list: normal and abbreviated. A
normal list comprises a list term (set LT, a sequence of atoms), a list separator
(SEP) and the empty instantiation of the list (ET); the abbreviated form just
includes the list term:

L :HLT H(SEP,E[) | [ILTH LT II:A | ALT
List separators, list empty instantiations and text are just strings:

SEP ::= Str EI ::= Str T ::= Str
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3.2 Semantics

A template denotes a set of strings, corresponding
to all its possible instances (Fig. 1).! The semantics
Str of FTL could be specified by calculating all possi-
ble instances of a template. That is, given the set of
template expressions (F) defined above, the mean-

"6 ing of a template would be given by the function:

Templates

I M:E — PStr

Fig. 1. Templates and the
sets of strings they denote
(all possible instances).

But this does not explain instantiation, that is, how
users generate sentences from templates.

The same meaning of templates as denoting a set
of strings, can be achieved by considering instanti-
ation, which consists of substitutions for the tem-
plate’s variables and selections for the template’s
choices. A template has a set of all possible instan-
tiations; by instantiating a template with these in-
stantiations we get the set of all strings denoted by
the template.

So, instead, the semantics is defined by an instantiation function, which cal-
culates the string (sentence) generated by instantiating a template with an in-
stantiation. That is:

M : E — TInst + Str

The semantic functions are defined by structural induction on the syntax
of FTL. The following presents the semantics for atoms and expressions; the
complete definitions are given in [12].

Semantics of atoms. Atoms are instantiated with substitutions for the vari-

ables that occur within placeholders, which may stand-alone or be within lists.
The environment structure (Env), defined as a partial function from identi-

fiers (variables) to strings (values), represents a set of variable substitutions:

Env==1 -+ Str

This allows the instantiation of placeholders that are not within lists. For
example, the template <z> : <t> is instantiated with, {z — a,t — N}, an
instance of Env, to yield x : N. As a placeholder within a list denotes an indexed
set of variable occurrences, it seems natural to instantiate these variables with
a sequence of substitution sets (seq Env), but this does not work with nested
lists. So, a recursive structure is required, the environment tree:

TreeEnv ::= tree ((Env x seq TreeEnv))

! But only a subset of these strings has a meaning in the target language.
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TreeEnv comprises one environment, to instantiate the placeholders that stand
alone in the current scope, and a sequence of TreeEnv to instantiate the place-
holders that are within the lists of the current scope. See [12] for further details.

The semantic function extracts the required substitutions from this structure;
it takes an atom (A) and a TreeEnv, and returns a string (Str):

My A — TreeEnv + Str
This is defined by the equations (where e € Env and ste € seq TreeEnv):
Ma( T )(tree(e, ste)) =T

e(l if I € dome
Mal( <> )(tree(e, ste)) = {ugld)eﬁned otherwise

Ma( L )(tree(e, ste)) = Mg( L) ste

If the atom is a piece of text (a string), then the text is returned. If the atom
is a placeholder, then either there is a substitution for the placeholder’s variable
in the current environment (e) and the substitution is returned, or otherwise
and the function is undefined. If the atom is a list, then the list instantiation
function is called in the current sequence of environment trees (ste).

Semantics of expressions. The global environment (GEnv) structure, which
represents a total template instantiation, builds on the TreeFEnv structure; ; it
comprises a sequence of natural numbers, the selections of the template’s choices,
and a TreeEnv structure, the substitutions of the template’s variables:

GFEnv == seqN x TreeEnv

The semantic function for template expressions takes an expression (E) and
a GEnv and returns a string:

Mg : E — GEnv + Str

The equation definitions for expressions made up of atoms (see [12] for choice)
is (where chs € seqN and te € TreeEnv):?

Me( A)(chs,te) = My( A) te

Me( A E )(chs,te) = Ma( A) te H Mg( E )(chs, te)
If the expression is an atom, then the atom is instantiated in the environment tree
(call to M 4 with te). If the expression is an atom followed by another expression,

then the instantiation of the atom (call to M 4 with te) is concatenated with
the instantiation of the rest of the expression (recursive call to Mg).

2 The operator # denotes string concatenation (defined as sequence concatenation).
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3.3 Illustration: Instantiating templates using the semantics

The language definition can be used to instantiate templates. This is illustrated
here for the template of the promoted Z ADT:

TPADT == <P> == [ <ids> : P<ID>; <st>:<ID> + <S> |
dom <st> = <ids> A <I>]

First, the substitution set for the template is specified in the environment e:

e == {P — “Bank”,ids — “accs”, st — “accst”, ID — “ACCID”,
S — “Account”, I — “true”}

The environment tree and the global environment build upon e. As there are
no lists or choices, the sequences of trees and choice selections are empty:

t == tree(e, () g==((1t)
The template is now instantiated by applying the semantic functions:

Me(TPADT)(g)

= [By defs of TPADT, Mg and ¢]

MUy(<P>)(t) H Meg(==[<ids>:P <ID>; <st>:<ID> + <S> |
dom <st> = <ids> A <I> ])(g)

= [by defs of M 4 and M¢]

e(P) H Mu(“==[")(t) + Mg(<ids> : P <ID>;
<st> : <ID> -+ <S> | dom <st> = <ids> A <I> ])(g)

= [by defs of e, + , M4, M¢]

“Bank == 7 H Ma(<ids>)(t) H Me(: P<ID>;
<st> : <ID> + <S> | dom <st> = <ids> A <I> ])(g)

By applying the semantic functions in this way, we obtain:

“Bank == [ accs : P ACCID; accSt : ACCID - Account |
dom accSt = accs A true]”

3.4 Testing

FTL’s semantics has been tested using the Z/Eves theorem prover, based on its Z
definition. The proved theorems demonstrate that the semantic functions when
applied to sample templates and instantiations yield the expected Z sentence.
Test conjectures were chosen to give a good coverage of all FTL constructs and all
possible instances of templates containing those constructs (see [12] for details).
The derivation presented above is demonstrated by proving the conjecture:

F? Mg(TPADT)(g)
= “Bank == [ accs : P ACCID; accSt : ACCID + Account |
dom accSt = accs A true]”

And this conjecture is proved automatically in the Z/Eves prover.
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4 The instantiation calculus

The semantics of FTL is defined by calculating the string (sentence) that is
generated from a template given an instantiation. The instantiations of the se-
mantics are total, that is, there must be substitutions for all the template’s
variables and selections for all the template’s choices. Sometimes, however, we
may be interested in partially instantiating a template, for example, substituting
just one variable in a template and leaving the rest of the template unchanged.

The instantiation calculus (IC) of FTL is an approach to transform tem-
plates by taking instantiation decisions on a step-by-step basis. In this setting, a
template has been fully instantiated when there no placeholders, choices or lists
left; all instantiation decisions have been resolved.

To have a better idea of the calculus, consider a transformation of the pro-
moted ADT template where the variable P is substituted with “Bank”:

Bank == [ <ids> : P <ID>; <st>: <ID> + <S> |
dom <st> = <ids> A <I>]

This is a more refined template, one in which the decision of substituting the
variable P has been taken. By applying a similar sequence of transformations,
the Bank schema would be reached.

The calculus is defined by instantiation

functions, which take a template expression

Ic str (E) and a partial instantiation, and return

transformations the template resulting from the partial in-
stantiation of the given template:

I:FE — Plnst — FE

Templates refined with the IC are just
like any other FTL template: they denote a
set of strings. As templates are refined with
the calculus, the sets of strings they denote
become smaller and smaller, until they can-
not be refined any further and just denote
a singleton set of strings (Fig. 2).

The IC is divided into placeholders, lists and choice. The IC functions, like
in the semantics, are defined by structural induction on the syntax of FTL. The
complete definitions are given elsewhere [12]. The IC was tested, in a similar
fashion to the semantics (see above), by using its Z definition and the Z/Eves
prover. The following presents part of the definition of the IC for placeholders.

Fig.2. Templates transformed
with the instantiation calculus
and the sets of strings they denote.

4.1 Placeholders

The IC function simply replaces placeholders by a substitution of their variables,
provided that a substitution has been provided. To represent a set of variable
substitutions, the Env structure (see above) is reused.



10 Nuno Amélio, Susan Stepney, and Fiona Polack

The instantiation function for atoms takes an atom (A) and an environment,
and returns another atom:

IPy:A— Env— A

This is defined by the equations (where e € Env):

IPA(T)e=T

_fe(I) I € dom e
IPa(<I>) e= { <I> otherwise
IP4(L) e=1L

If the atom is text then the text is returned. If the atom is a placeholder, then
either there is a substitution for the variable in the environment (e) and instan-
tiation takes place, or otherwise and the placeholder is returned uninstantiated.
If the atom is a list then the list is returned; lists have their own function.

The instantiation function for expressions takes an expression (£) and an
environment, and returns an expression:

IPe:E— Env— FE
The equations for expressions made up of atoms are:

IPg(A) € :IPA (A) €
IPs(A E)e = (IP4 (A) €) (IPs (E) ¢)

Essentially, the atoms that make the template expression are instantiated recur-
sively for the given set of substitutions (e).

5 Metaproof

The formal definition of FTL and the IC can be used to support metaproof.
The approach presented here is developed for Z, but it is more general; the same
ideas can be applied to any language with a proof logic.

Metaproof with Z is a proof on a generalisation of a commonly occurring Z
conjecture. First, the setting for metaproof with Z is presented, by discussing
the link between FTL and Z for metaproof, and by considering generalisation
and the concept of characteristic instantiation. Then, the approach is illustrated
for the initialisation conjecture of promoted ADTs.

5.1 Linking FTL with Z

FTL is a general language: it captures the form of sentences and makes no
assumptions in terms of meaning from the target language. Metaproof, how-
ever, requires FTL to be linked with the target language, so that reasoning
with template representations makes sense. So, metaproof with Z considers only
those templates that yield Z sentences and instances that are welformed. In Z,
welformed means that the sentence is type-correct.
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FTL.Z z Formally, given the syntactic and semantic
definitions above, the set of all possible instances
of a template is given by the function:

-L" S==(\t:Ee{gi: GEnv e Mg(t) gi})
. The function Z7C tells whether the given string
e is a type-correct Z specification:

ZTC_:PStr
ZTC s < s is type correct

Fig.3. FTL-Z terr}platgs de- Then, the set of all welformed Z instances of a
note sets of Z specifications. e plate, a subset of all possible instances, is

given by:
WFS ==(At: Ee{s:S(t)| ZTC s})

Essentially, this is how FTL is linked with Z for metaproof: through the
welformed instances of Z templates. A Z template denotes a set of Z specifications
(Fig. 3), the set of all possible type-correct instances.

5.2 Characteristic instantiation and the rule of generalisation

In the process of reasoning with Z templates, there is a point where a switch
from the world of templates into the world of Z occurs: a general template
formula becomes an instance. This involves a characteristic instantiation. For
example, in the template formula, @ € P<ID>, it is clear that ID must hold
a name referring to a set; the sentence would not be type-correct otherwise.
So, here, a characteristic instantiation is required: let X be an arbitrary set,
instantiate ID with X to give, @ € P X, which is trivially true. The set X
is a characteristic instantiation of that formula. In this simple case, only one
characteristic instantiation needs to be considered. Other cases require induction
(for lists) or case analysis (for choice).

But, when is it safe to conclude the truth of the template statement from
the proof of its instance? In formal logic there is a similar problem. Suppose a
set A and a predicate P, the truth of the predicate logic statement, V z : A e P,
implies that it is true for every value in A. But how can such a statement be
proved? We could prove that it is true for each value in A, but this is not practical
because it may involve a large or even infinite number of proofs. This is solved
by proving that P holds for an arbitrary member of A: if no assumptions about
which member of A is chosen in order to prove P, then the proof generalises
to all members. This is, in fact, a known inference rule of predicate logic called
generalisation (or universal introduction) [9]:

I'EYz:AeP [V-1]
I'nze AP xg FV(D)
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The is the principle behind characteristic instantiation. An arbitrary instan-
tiation of a template formula is introduced so that the proof of the instance
generalises to the proof of the template.

5.3 A logic for template-Z

If we just use characteristic instantiation, all we can do with templates in proofs
is instantiation. Only when everything has been instantiated can other inference
rules be applied in proofs (see [12] for examples of this).

A Dbetter approach is to build a logic (a set of inference rules) for proof
with template formulas, which extends the logic of the target language. These
inference rules are proved in the logic of the target language. [12] defines a draft
logic for proof with Z templates.

In the template-Z logic, the inference
rules of characteristic instantiation are, for
now, axioms (unproved), which could be
proved by considering a meta-world of Z
(Fig. 4), where its objects represent FTL
templates of Z and denote sets of Z spec-
ifications. For example, the formula, @ €
P<ID>, can be proved in meta-Z; suppose
that in meta-Z there is a universal set, U, of
which all sets in a Z specification are a subset
of.3 That formula is interpreted in meta-Z as:

FVID:PUegeclP ID

Now, by the law of universal introduction,

ID e PUF©o el ID

Fig. 4. A Z template denotes one which is trivially true.

meta-Z object and a set of Z The following illustrates metaproof with
specifications. A meta-Z object the template-Z logic, using the initialisation
denotes a set of Z specifications. conjecture of the promoted ADT.

5.4 Proof with the template-Z logic

We now go back to the proof of the initialisation of the promoted ADT to
illustrate proof with the template-Z logic.

First, there is an inference rule for characteristic instantiation, which allows
a variable to be replaced with a name referring to a set. This transformation
uses the IC to replace all occurrences of a variable in a template formula with
its substitution. For now, it is an axiom (unproved) of the template-Z logic:

3 In fact, this is precisely the case in the ISO standard semantics of Z [13].
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I+ E1 <S> E2 [l—S]
SeU; (IPe(I'F By <S> Eo){S — “S"})[S & FV ()]

An inference rule for Z templates for the schema calculus inference rule 3 Sc
(appendix A), is also required; given a template representation of a Z schema,

<Sc> ==[<ScD> | <ScP> |
then the template inference rule is:*

I'; <Sc»>==[<5D>|<ScP>]F3 <Sc> e <P> [T 3 S¢
I'; <S> ==[<ScD> | <ScP> |F 3<ScD> ¢ <P> A <ScP>

We also need the one-point rule (appendix A) for templates:

'3 <z> : <t> o <P> N <> = <v> [T one-point]
'k <P>[ <> :=<v> | A <> € <t> [<z> € FV(<v>)]

These two inference rules are easily proved by using the axiom rules of the
template-Z logic and the logic of Z (see [12]).
The metaproof of, -7 3 < P> Init e true, using these rules is:

=lby T 3 9]

<P> == <ids> : P<ID>; <st>: <ID> + <S> |
dom<st> = <ids> A <I> |;

<P>it == [ <P>"'|<ids> =@ N <st>' =@ |

Fd <P>'e<ids> =3 N\ <st> = @ A true
= [by T 3 Sc; sequent calculus; propositional calculus)
F3 <ids>' : P <ID>; <st>' : <ID> + <S> e
<ids>' =@ A <st>' =@ ANdom <st>' = <ids>' A <[>
= [by T one — point]
FoeP <ID>AN@e<ID> -+ <S> ANdom @ =0
A <I>'[<ids>' =@, <st>' := 2]
= [by I-S twice and set theory]
IDeU; S€U
FoeP IDAN@eID -+ SA<I>[<ids> =3, <st>" = o]
= [by set theory and propositional calculus]
<I>'[<ids> = @, <st>' .= O]

And if I is instantiated with true, then the formula reduces to true.

6 Discussion

The Z language supports generic structures, but these are not a substitute for
templates. Z generics only allow parameterisation with sets. This makes it im-
possible, for instance, to represent the templates presented here with Z generics.

4 Template inference rules are preceeded by T.
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FTL was defined formally with the aim of mechanical metaproof. However,
the language became much clearer, we gained a better understanding of what
templates are, what can be done with them, and of metaproof, and it also makes
the construction of an FTL tool a simple extension of our work so far.

Testing the FTL semantics and IC with the Z/Eves prover helped to uncover
many errors. Placeholders are simple and easy to get right, but more complex
constructs (such as lists) required a lot more testing to get their definitions right.
The consistency between the calculus and the semantics was tested, and a full
proof of consistency was not yet done at this stage. In fact, both the IC and the
actual semantics give the semantics of FTL: the actual semantics does it in terms
of total instantiations, whereas the IC does it in terms of partial instantiations.

As said above, inference rules related with characteristic instantiation are, for
now, axioms (unproved) of the template-Z logic, which would have to be proved
for the logic to be claimed sound. We believe that this is proved by applications
of the generalisation rule in a proper meta-world of Z (as discussed in sec. 5).
metatheorems capture our experience in proving theorems with instances of some
structure; they formalise something done and perceived in practice.

As the example shows, templates may need to be constrained so that useful
results can be extracted. So, template design needs to consider what is to be de-
scribed, and the results to be proved. The most attractive aspect of metaproof
is the property true by construction. Often, however, metaproof gives a simplifi-
cation of the original conjecture, which, in many cases, is sufficient to allow the
prover to discharge the remaining formula automatically.

Metaproof has been applied to proofs that are more complex than the one
presented here. For example, metatheorems for our object-oriented (OO) style
for Z [6], such as, initialisation of the whole system (built as composition of
components), promoted operations, and composite system operations [12].

The approach presented here was used to build a catalogue of templates
and metatheorems for a framework to construct UML-based models [12,14].
Templates capture the form of OO Z models [6], metatheorems capture model-
consistency results, so that UML models are represented in Z by instantiating
templates, and required consistency conjectures simplified with metatheorems.

7 Related Work

Catalysis [15] proposes templates and hints at variable substitution for instan-
tiation, but this is defined informally. Moreover, its template notation has fewer
features than FTL (Catalysis has only placeholders; FTL has lists and choice).

Patterns have been used in the setting of temporal logic [2, 3]. These works
use schematic representations of patterns (similar to logical inference rules);
instantiation is variable substituion. However, this has less abstraction contructs
than FTL (placeholders only), and mechanisation is not addressed.

The approach behind FTL and the IC is akin to term-rewriting systems [16],
which are methods for replacing subterms of a formula with other terms based on
rewriting rules. In our approach, the FTL semantics and IC define rules for the
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substitution of placeholders, lists and choice. Term-rewriting is used to capture
the form of objects; L-Systems [17], for instance, is a string rewriting system
designed to capture the form of plant growth, which has many application in
computer graphics. FTL captures the form of formal language sentences.

The term template is sometimes used to refer to generics (e.g. C++ tem-
plates), which allow parameterisation based on types, and may involve subtyping
and polymorphism. Generics are more restricted than FTL templates.

8 Conclusions and Future Work

This paper presents FTL, a language to express templates, a calculus of instan-
tiations for FTL templates and an approach that explores templates of formal
models for proof. FTL allows the representation of structural patterns of mod-
elling and proof and their mechanical instantiation. This enables reuse in formal
development, which contributes to reduce the effort involved in formal modelling
and verification. In our experience, the use of modelling patterns allow us to con-
centrate more on the problem and less on formalisation issues, and metaproof
helps to reduce the proof overhead associated with formal development.

Our approach tries to address several requirements. We want to capture
the form of sentences of any language, trying to separate form from content,
and use templates for reasoning. So, FTL has a very general semantics, and
requires further work to be integrated with some target language for reasoning.
There is a separation of concerns: on one side the language to describe form, on
the other the approach to reason with those representations. This constitutes
a pragmatic and non-intrusive approach, rather than extending a language to
support templates, we designed a general language to capture form.

Formal development requires expertise in the use of proof tools. Our approach
allows experts to build templates and prove metatheorems (perhaps assisted by
proof tools), so that software developers who are not experts in formal-methods
can still build formal models that are proved consistent.

Future work will look at completing the proof logic for template-Z, by prov-
ing the inference rules that are now laid as axioms of the logic. We also want to
add more features to FTL, such as, naming of templates and conditional instan-
tiation. It would be interesting to apply FTL to another formal-method, and
then plug a template-logic to enable formal metaproof.

This work lays the ground for tool support for FTL and metaproof. So that
users can automatically generate models by instantiating templates of a cata-
logue, and to simplify conjectures by instantiating metatheorems. It would also
be interesting to define a theory for template-Z logic in a prover, such as Proof-
power [18], to enable mechanical theorem proving with template-Z.
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Z Inference rules [9]

I'-3Sce P 3 Sc] '3 z:AePAzxz=v [onepoint]
I'+-3S5cD o P A ScP I'Plz:=v]ANveA [z & FV(v)

Sc is any schema; ScD is its declarations
and ScP its predicate. P is any predicate.



