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1 Introduction

In this paper we present a method for using generic components in formal spec-
ications. This approach results in a exible generic system description that
separates the concerns of structure and data types. The generic specication
can be extended and modied in a natural manner, to track requirements as
they inevitably evolve during the development process. In addition, the speci-
cation can readily be specialised to use more concrete data types without the
need for a formal renement, using explicit generic instantiation. Such generic
instantiation also allows operation preconditions to be strengthened; this is not
allowed by classic renement, but it permits a separation of concerns by allow-
ing preconditions relevant to specialised data types to be added only when they
become relevant.

Here we use the Z specication language and a simple entity-relationship form
as demonstration notations. No new notation or theory is presented; rather it is
the use of Z's generic schemas to structure and specialise a specication that is
somewhat dierent from the classical Z specication style described in much of
the literature. We believe that this approach could also be applicable to other
formal methods.

2 The Case for Z, and Z Generics

Z is similar to many model based notations: it applies typed set theory and
predicate logic to system description; it permits rigorous analysis and proof of
system properties; it expresses a system description in precise terms.

Z's most recognisable feature is the schema box, used to help structure spec-
ications by grouping together denitions. Z also allows generic denitions that
may be instantiated on use with any set of any type; schemas may themselves
be generic. Most Z speciers conne their use of generics to global toolkit-style
constants used with implicit instantiation; few fully exploit the possibility of
generic schemas with explicit instantiation.

2.1 Generic denitions in dening Z toolkits

Z has used generic denitions from its earliest public appearances. In his deni-
tive Z Reference Manual [1] Spivey gives a generic Mathematical Toolkit for the



Z language. All Z text books (for example [2{4]) demonstrate generic denitions
of operations on sets, sequences and bags, as well as more customised operations.

An example of such a generic denition (used in our case study below) is a
generic optionality denition [5].

optional [X ] == f a :  X j #a  1 g

This can be used to model an item that may be present or absent. If y is declared
to be y : optional [Y ], then y is a set that is either empty (absent) or a singleton
(containing a single element of the actual parameter set Y ). The type of the set
is controlled by the type of the parameter Y .

It may be tempting to see this basic use of Z generic denitions as fullling
the dream of 1980s programmers, regarding generic data types. Although fun-
damental to the use of the Z notation, however, these generic denitions do not
contribute to the process of developing systems.

2.2 Generics for secondary toolkits

The widespread development of formal/structured integrations in the 1990s (see
summary papers [6, 7]) has seen the use of Z generic schemas to dene represen-
tations of structured model components. For example, the SAZ Method [8{10]
includes generic representations of entities and the various forms of relationship
encountered in its data modelling notation.

SAZ is an interpretive method (guidelines are used to convert a structured
specication in to a formal notation), rather than a formal translation approach;
the SAZ generics form a toolkit that is imported in to the formal document
environment, giving a uniform appearance to the formal description.

SAZ generic toolkit denitions have advantages and disadvantages.
On the plus side, they reduce the tedium of transliteration, and provide

recognisable components for a reviewer of the formal description. There is little
doubt, for example, that the component

CustomerSet == EntitySet [CID ; Customer ]

represents a set of entity instances. In addition, such generics conceal or defer
low-level decisions about details of components, such as an implementation type
for Customer .

On the other hand, the component generic denitions become extremely com-
plex, so the simplicity gained in the system description merely masks, rather than
removes, a complexity of meaning. For example, the various SAZ relationship
generics have formal parameters that are instantiated implicitly in both the dec-
laration and predicate parts. Current Z tool support often fails to expand these
generics fully, and then cannot assist in proof of many properties of systems that
use them.

Again, these generic usages simply help to express systems; they do not oer
any real contribution to the system development process.



2.3 Generic systems

The approach advocated here is to use generic denition at the system level. This
approach has some well-known precursors, although neither has the simplicity
or applicability of the approach demonstrated below.

One example is Flinn and Srensen's CAVIAR case study [11, chapter 5].
This includes generic modules, providing a super-structure for the specication,
and promotes the development of generic specication libraries, as the authors
advocate. The module concept is very similar to the use below, but uses an
extension to the Z notation to bring this about.

Another example is a proof of compliance to a security policy model, sum-
marised in [2, chapter 4]. Here, a generic top level specication is dened, and it
is demonstrated that this has the generic security properties. The specication
is instantiated with suitable parameters (input structures, output structures,
states), without need to re-prove the high level properties. Again, the approach
is closely related to that demonstrated below. The entire specication is cast as
an axiomatic state transition relation, however.

3 System Development in Z

Literature on system development in Z concentrates on formal renement [23, 2,
4], neglecting simpler or more intuitive development options. Formal renement
in Z as part of the development of commercial applications is a reality (for
example, [12, 13]), but it requires considerable eort, and can still justify its
costs only for critical applications. Limitations of renement (in addition to the
diculty of performing them) are also being recognised among the academic
formal methods community [14, 15].

Here we explore the use of generic instantiation rather than renement as the
formal process for developing a system. The development process can be seen
as a progressive reduction in options, as the detail in the system description
increases and becomes more targeted to specic implementation media [16, 17].
We use a simple development lifecycle to illustrate possible development paths.
Although this is not taken forward to implementation, the techniques demon-
strated can be reiterated until the required level of specialisation is attained.

4 Entity-Relationship description of the Case Study

To illustrate our approach, we use a simple case study derived from the SAZ
project [9, 10].

In this section we give an informal description of the system. In the next
section we formalise the system state and some sample operations as a generic
Z specication. In section 6 we perform a rst specialisation, by dening the
objects in the data-dictionary, and instantiating the specication with them. In
section 7 we describe how the generic structure of the specication makes it
relatively easy to extend and modify both the structure and the components
seperately.
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Fig. 1. The data model for the case study, using SSADM v4 notation [18].

4.1 Scenario

A publishing company accepts orders for books. An order must be placed by
a customer; details of customers placing orders are kept on le. The company
processes orders and notes whether each order line is met in full.

4.2 Data Model

A data structure to support this system is given in gure 1, as an Entity-Relation-
ship Diagram (ERD).

4.3 Events and Processing

The system receives events to create, modify and delete elements of the data
structure. These could be modelled dynamically, using entity life histories or
state charts; here they are simply described.

Receiving an order: Receipt of an order from a new customer triggers the
creation of a new customer instance. Receipt of any order triggers the creation
of an order instance, and of a set of instances of order line. The processing
includes validation checks to determine whether the customer is known or new,
and on the composition of order lines.

Customer and Order modications: Customer details, especially ad-
dresses, may be changed at any time. Order details are never changed; a re-
order would be a new instance. However, additional lines might be added to an
existing order. Customers are deleted from the records if they have not placed
an order for 5 years. Orders are deleted from the records when the customer is
deleted, or after 10 years if this is sooner.



Processing an order and its component order lines: An order instance is
processed by rst processing each of its order lines. The details of the processing
are not included here, but involve checking that at least some of the order lines
can be met and that an order line is not for the same book as another order line
on the same order.

If an order has no order lines that can be met (that is, all supplied stock
entries are zero), the order is required to be returned to the customer marked
\unmet", with some suitable covering letter; the order instance is deleted, but
the customer information is retained. Again, the detail is not pursued here.

5 Top-level generic specication

This section presents a top-level Z specication, such as may be used to derive
and clarify requirements. It demonstrates the scope of the system and outlines its
structure. The Z description focuses on the state and operations of the system.
It excludes low-level information, such as attributes and detailed operation pre-
and post-conditions. The approach is derived from the SAZ method, in that the
starting point is a data model and the formal description expresses the entities
and relationships from that model1.

Even with a predetermined approach and style, there are a number of pos-
sible representations in Z for the system described. One approach might be to
represent each entity such as Order as a set of instances, and each relationship
as a relation between the instances of the entities involved. Here, a less abstract
but more intuitive approach is used: we model each entitiy as a mapping from
identier to instance. This removes the need to modify the underlying structure
using a formal renement of the specication.

In most published Z case studies, given sets are used to achieve the required
level of abstraction. A given set provides a pool of elements with no internal
structure, and is a suitable model in a specication that abstracts away from
such internal structure. However, in the development of a system, the high-level
description needs to be capable of elaboration as further information about the
data and processing structures emerges during development. The traditional
approach is to rene a given set to a set of structured elements with the desired
low-level properties. Such a renement requires a proof to show that it has been
performed correctly, which in turn constrains the kind of instantiations that can
be made. Instead of using given sets to model entities, we present a description
made up almost entirely of generic schemas.

5.1 Unique identiers

In our high level Z representation, the data model entities that make up the state
are modelled as functions from some unique identier to the instance. Although

1 There is no attempt to check that the formal and informal descriptions are equivalent,
since it is the formal development that is of interest here. A true development method
would need to document the extent of equivalence of the descriptions in the dierent
notation and levels of abstration.



these identiers could be introduced as generic parameters, they are in fact
genuinely uninteresting. They have but one role: to provide a unique identity
for otherwise potentially identical instances of an entity. The only interest in an
identier arises at implementation, when uniqueness must be guaranteed. We
do not consider implementation here, so we model these identiers with given
sets2.

[CID ; OID ; OLID ]

CID are customer identiers, OID are order identiers, OLID are order line
identiers. (We choose not to specify the BOOK component yet: that is intro-
duced to illustrate system extension in section 7.2.)

5.2 System state

Rather than specify the entire state space in one chunk, we split it into logically
separate components [2, chapter 11]. Dotted lines (optional relationships) on
the ERD are good places to think about splitting the state.

The customer entity is independent of the others. We model it using a simple
schema, mapping customer identiers to customer instances, generic in the type
of those instances3.

CustomerBase[CUST ]
customer : CID  CUST

As described in the ERD and text, an order must have some order lines; an
order line must be related to one order. The order and order line entities are
thus dependent, as dened by the required relationship isPartOf between the
respective identiers.

OrderBase[ORDER; OLINE ]
order : OID  ORDER

orderLine : OLID  OLINE

isPartOf : OLID # OID

isPartOf 2 (dom orderLine)  (dom order)

To capture the meaning of the `crows foot' on the isPartOf relationship, we
constrain the Z relation to be a total surjection (an order line instance is related

2 In Z, given sets are disjoint. This may constrain their use to some extent, requiring
the specication of a given set as a super set, and then more detailed subsetting.
For any particular given set, such subsetting can be achieved using a free type. Z
does not support generic free types, however.

3 One dierence in style between the use of generic denitions and generic schemas is
the naming of the generic formal parameters. In the former, a parameter tends to
be a single letter; in the latter it tends to be a short word indicating its role. The
longer names lead to formatting problems in the case of multiple parameters.



to no more than one order instance, hence functional; each order line instance
is related to an order instance, hence total; each order instance is related to at
least one order line, hence surjective).

The full system state includes these two substate components, and the is-

MadeBy relationship between them.

OrderingSystem[CUST ; ORDER; OLINE ]
CustomerBase[CUST ]
OrderBase[ORDER; OLINE ]
isMadeBy : OID # CID

isMadeBy 2 (dom order) " (dom customer)

The isMadeBy relation is constrained to be a total function (each order instance
is related to precisely one customer instance, hence functional and total; but not
necessarily all customer instances take part, hence not surjective).

5.3 Sample operations

The events that aect this small system are the receipt and deletion of orders,
and the creation, modication and deletion of customers. (The processing of an
order is not described, because the book description has been omitted.) Generic
operations are dened to model these events. (In the examples below, we omit
the error case schemas, for brevity.)

Having specied the state as independent substates, it is useful to dene
schemas for updating just these substates [2, chapter 10]. When we update on
the customer substate, we do not change the isMadeBy relation; when we update
the order part, we may change this relation.

CustomerBase[CUST ; ORDER; OLINE ]
OrderingSystem[CUST ; ORDER; OLINE ]
OrderBase[ORDER; OLINE ]

isMadeBy 0 = isMadeBy

OrderBase[CUST ; ORDER; OLINE ]
OrderingSystem[CUST ; ORDER; OLINE ]
CustomerBase[CUST ]

Customer creation is straightforward. The customer details (for the moment
simply a generic parameter) are input, and the new customer identier is output.



CreateCustomer [CUST ; ORDER; OLINE ]
CustomerBase[CUST ; ORDER; OLINE ]
cust? : CUST

cid ! : CID

cid ! =2 dom customer

customer 0 = customer [ fcid ! 7! cust?g

When an order is created, the appropriate order and order line entity instances
are created, and the relationship between their identiers, and between the order
identier and the identier of the customer placing the order, are updated. This
could all be specied in a single operation, say by having the input include a
sequence of the order lines that comprise the order. However, that leads to a
relatively complicated denition that is not reusable for the purpose of adding a
single order line. So we model the eect of the complete operation in two parts.
The rst creates an order with one attached order line4. The second adds an
order line to an existing order.

CreateOrder [CUST ; ORDER; OLINE ]
OrderBase[CUST ; ORDER; OLINE ]
orderLine? : OLINE

order? : ORDER

cid? : CID

olid ! : OLID

oid ! : OID

cid? 2 dom customer

oid ! =2 dom order

olid ! =2 dom orderLine

order 0 = order [ foid ! 7! order?g
orderLine 0 = orderLine [ folid ! 7! orderLine?g
isPartOf 0 = isPartOf [ folid ! 7! oid !g
isMadeBy 0 = isMadeBy [ foid ! 7! cid?g

4 We cannot create an order with no order lines, because of the surjectivity require-
ment. Now would be a good time to check if that requirement is too strong.



AddOrderLine[CUST ; ORDER; OLINE ]
OrderBase[CUST ; ORDER; OLINE ]
orderLine? : OLINE

oid? : OID

olid ! : OLID

oid? 2 dom order

olid ! =2 dom orderLine

order 0 = order

orderLine 0 = orderLine [ folid ! 7! orderLine?g
isPartOf 0 = isPartOf [ folid ! 7! oid?g
isMadeBy 0 = isMadeBy

There are several operations to change the details of entity instances. These
include an operation to select a specic customer (by identier) and change the
value of the instance that it identies, and an operation to change the value of
an instance of customer however many identiers it has linked to it. The former
is illustrated. The customer's relationships do not change.

ChangeCustomer [CUST ; ORDER; OLINE ]
CustomerBase[CUST ; ORDER; OLINE ]
cust? : CUST

cid? : CID

cid? 2 dom customer

cid? 7! cust? =2 customer

customer 0 = customer  fcid? 7! cust?g

Deletion is similar to modication, with the stronger precondition that a cus-
tomer instance cannot be deleted if there are still orders for that customer.

DeleteCustomer [CUST ; ORDER; OLINE ]
CustomerBase[CUST ; ORDER; OLINE ]
cid? : CID

cid? 2 dom customer n ran isMadeBy

customer 0 = fcid?g  customer

Similar operations can be dened for the other entities.

5.4 Discussion

The above Z specication is a simple, but precise, account of (part of) an abstract
ordering system. It captures the essential relationships between entities without
discussing any internal structure of those entities. (It captures the ERD, but no
details from the underlying Data Dictionary.) It species how those relationships



may be modied, incorporating all constraints that can be expressed without
reference to internal entity structure.

Such a specication can be used as a starting point for discussion with cus-
tomers, for example in a discussion of business rules or operational details for
the system. Additional information is added in the next development phase,
which is at a lower level of abstraction.

This rst Z document has many possible instantiations, representing dierent
development scenarios and customer requirements. Although it could be instan-
tiated at this stage, there is nothing to be gained by doing so; the abstraction
level requires no extra details, and the instantiation would simply use given sets
for the actual parameters.

6 Design by Instantiation

The full development process is likely to be iterative; this case study merely
captures one step in the development.

The objective of this design is to record the logical details of data and pro-
cessing. When considering a formal development, the static and dynamic con-
straints are an area of particular interest. This is where formal approaches add
most value for limited eort, compared to the traditional diagram-and-text mod-
els, which are generally poor at recording and exploring these system rules [19,
20].

The system description is constrained only in so far as the development out-
comes are genuinely determined at this phase of the development. The specica-
tion of data must capture known client requirements. It is a matter of policy as
to how such a specication captures additional data formatting and constraints;
managers of development projects should determine whether requirements in
this area are to be expressed at this stage.

As noted earlier, traditional Z development uses given sets for data that has
not yet been fully dened. When the data types are elaborated, a renement is
required to move from given sets to the new types. Here we show how instead
our generic formulation can be instantiated, to provide a rst specialisation of
these data types. In section 6.1 we illustrate the instantiation process by giving
a `traditional'-style given sets instantiation of the CustomerBase. In section 6.3
we show how the generic approach may be used at each level.

6.1 Traditional specication of the customer entity

The Data Dictionary says that a customer has a name, an address, the date
when they become a customer, and a credit limit. The credit limit must be
within some globally imposed limit. An address, in turn, comprises a house
identier, a street, a town, and a postcode. Furthermore, a house identier may
be a number or a house name.

First we specify the house identier, using a free type. Simple free types,
enumerated types, allow the specier to make clear the specic values that an



attribute can take, for example for status-check attributes, and for use in the
processing specication. This is a step that is often overlooked in structured
method developments, where the specier may concentrate too early on the
potential implementations of enumerated attribute domains. Enumerated types
are often modied in the course of the development, as more or fewer statuses
become necessary5 .

[HOUSENAME ]

HOUSE ::= number j nameHOUSENAME 

Where a domain for a particular attribute is a subset of a wider set, it is given a
specic domain name as an abbreviation for the wider. This acts as a reminder
that there may need to be more detailed specication of constraints on the
domain. So we introduce limit , which may need to be further constrained, for
example, to be within some global limit.

limit == 1

maxLim : limit

Schema types are used where some structural information is already known about
a type. A typical example concerns the format of an address.

[STREET ; TOWN ; POSTCODE ]

Address0
house : HOUSE

street : STREET

town : TOWN

postcode : POSTCODE

We are now in a position to specify the customer entity.

[DATE ; NAME ]

Customer0
name : NAME

address : Address0
creditLimit : limit

registeredDate : DATE

creditLimit  maxLim

5 In Z, enumerated types must have unique values; thus, a value such as notFound

cannot be part of more than one enumerated type. This can cause frustration in
large specications; however, the bonus is that, in complex operations, the status or
message information is clearly readable.



The traditional Z style would then instantiate the customer substate as follows,
but would eventually require the elaboration of most of its component types.

TradCustomerBase == CustomerBase[Customer0]

One advantage of this specication is that the Z toolkit operators for integers
can be used when putting constraints on credit limits. The main disadvantage
is that types become established, and developers are not prompted to consider
how best features such as limits and maxima should be implemented.

6.2 Operator denition

In what follows, we use generic types to represent quantities such as credit limit.
We still want to be able to specify that the limit must be less than some global
maximum. So we generically specify the set of all total orders (that is, reexive,
antisymmetric, transitive and total), and we specify our generic comparison
operator to be one such total order6 7.

relation ( 4 )

[X ]
4 : f r : X # X j id X  r ^ r \ r  id X

^ r  r  r ^ r [ r = X  X g

The use of a dened order avoids the use of meaning-free type operators that
rely on the semantic understanding of the operator name8, or the completely
unacceptable provision of general purpose type operators (for example, a general
dateComparison operator).

6.3 Generic specication of the customer entity

Continuing our style of using generics to model as yet unelaborated data types,
we can use generic parameters in place of many of the above data types, de-
pending on the extent to which type details are determined by the developers
and clients.

6 Note that this is a loose generic denition. Spivey Z has a proof obligation that a
generic denition is uniquely determined for all possible instantiations. Standard Z
permits loose generics; the proof obligation is that the denition is well formed at
each point of instantiation.

7 This may all seem a little over-complicated. But consider the case of dates or times.
We do not want to be forced to model a date as a simple number, neither do we
want to be forced to model it as a complicated structure yet. But we certainly want
to be able to say one date is before another. Using a generic order, and requiring
date to be ordered, solves the problem.

8 The problem has not been solved entirely, however. An unwanted instantiation of X

and 4 is  and  . A validation process is always required at instantiation.



Assuming that the address structure is accepted, this can be re-expressed as

Address[HOUSE ; STREET ; TOWN ; POSTCODE ]
house : HOUSE

street : STREET

town : TOWN

postcode : POSTCODE

A generic limit is dened.

[LIMIT ]
maxLimit : LIMIT

The customer type is dened as a generic, incorporating elaborated types9.

Customer [NAME ; HOUSE ; STREET ; TOWN ; POSTCODE ; LIMIT ; DATE ]
name : NAME

address : Address[HOUSE ; STREET ; TOWN ; POSTCODE ]
creditLimit : LIMIT

registeredDate : DATE

creditLimit 4 maxLimit

The order and order line entities can be similarly dened.

Order [DATE ]
orderDate : DATE

[AMOUNT ]
minAmount : AMOUNT

OrderLine[AMOUNT ; NOTE ]
quantity ; supplied : AMOUNT

note : NOTE

minAmount 4 quantity

supplied 4 quantity

9 It would be nice if Z had some support for grouping the generic parameters, to
highlight the fact that some are relevant only to the further instantiation of Address,
for example.



6.4 Instantiating the state

The instantiation uses the entity types to dene all necessary sets and relation-
ships. The full state includes the full list of generic parameters.

SystemI [NAME ; HOUSE ; STREET ; TOWN ; POSTCODE ; LIMIT ;
DATE ; AMOUNT ; NOTE ] ==

OrderingSystem[Customer [NAME ; HOUSE ; STREET ; TOWN ;
POSTCODE ; LIMIT ; DATE ];

Order [DATE ]; OrderLine[AMOUNT ; NOTE ]]

Substates may also be dened by instantiation, and constraints can be added
if necessary. Although the quantity of generic parameters in this expression
is unwieldy, this has an advantage in terms of traceability. Since the innards
of the system types are explicit, it is clear what needs elaborating at a later
stage, and where each component is used in the substates. This is analogous
to an automatic, in-line indexing, which could form the basis for a development
documentation tool.

6.5 Operations

Operations are also specied by instantiation, both of state components, and of
the operations. However, most operations require elaboration of pre- and post-
conditions, taking account of the greater state information, and research into
business rules. A developer seeking additional predicates should, for example, be
encouraged to check the attributes of all the entities in the specication, looking
for range constraints, default entry values, derivation formulae, and relationships
to the values of other attributes in the system.

The specication of an operation is illustrated for the creation of a customer.

CreateCustomerI [NAME ; HOUSE ; STREET ; TOWN ; POSTCODE ; LIMIT ;
DATE ; AMOUNT ; NOTE ]

CreateCustomer [Customer [NAME ; HOUSE ; STREET ; TOWN ;
POSTCODE ; LIMIT ; DATE ];

Order [DATE ]; OrderLine[AMOUNT ; NOTE ]]
today? : DATE

cust?:registeredDate = today?
\Additional predicates to enforce state invariants"

cust?:creditLimit 4 maxLimit

Notice that this operation has additional preconditions. So some attempted
uses of the operation for certain values of Customer will fail, where the abstract
operation succeeds for any value of generic CUST . Along with elaborating
the data type, we have strengthened the precondition, and so we do not have
a formal renement (which permits only weakening the precondition). Generic
instantiation has allowed us to separate concerns. The preconditions that depend



on details of the entity structure are omitted until that entity is elaborated: a
dierent elaboration could result in a dierent precondition. This permits a
more abstract top-level specication, where the concrete instantiations are not
classic renements.

6.6 Discussion

The abstraction level of the specication presented here is similar to the level of
abstraction achieved in published case studies that use integrations of Z with a
structured technique or method. In the integrated methods area, it has generally
been the case that the formal system description has been derived once, from
data models (with dynamic and/or process models as relevant) with low-level
documentation10.

There are intuitive or aesthetic arguments in favour of specication by in-
stantiation. There is a clear separation of concerns; the developer is encouraged
to think abstractly and not to make premature decisions about implementation
or design features.

However, the utility of the approach comes down to an argument between
readability, or adaptability of formal descriptions, and simplicity in the formal
structures used. The use of generics increases the complexity of the Z descrip-
tions. Indeed, the assistance provided by support tools has, in the authors'
experience, been jeopardised where proofs are required of features of descrip-
tions that contain such nested generic instantiations.

7 Reusing and Elaborating through instantiation

There would seem to be a number of advantages to arriving at this level of
description via instantiation.

{ It is easy to modify the initial analysis-derived description, for example to
amend the scope of the system developed, since the essential data and pro-
cessing structures are not lost among lower-level details.

{ It is easy to modify the data domains where a client corrects the analysts'
interpretation or changes their mind about domains, or where a developer
is required to produce another system with a similar structure but dier-
ent details. Processing descriptions can be modied to include pre- and
post-conditions, not as a renement, but as a description of a dierent spec-
ication that can be derived from the analysis.

These advantages are further illustrated by changing the detail of the instanti-
ation, both in terms of the data dictionary, and in terms of the static structure
of the system.

10 See for example, SAZ case studies [8, 19, 10], Semmens et al [21], Josephs et al [22].



7.1 Data dictionary modications

The most common changes to a specication during the development of a sys-
tem concern the details of data and constraints. In structured modelling, these
are generally held in some form of textual data dictionary, and support the dia-
grammatic models. Formal specication is particularly clear in the areas of data
domains and static and dynamic constraints; the generic form can easily adapt
to capture alterations made. The problem reduces to a versioning issue, which
is beyond the scope of this paper.

To illustrate the accommodation of such changes, consider the modications,

{ there are no more than n customers in the system;
{ orders met in full have a marker attribute set.

These changes do not aect the high-level generic state, which captures the
structure of the system (section 5); they aect only the details of the rst in-
stantiation of the structure, section 6.

First, the order entity type is modied to add the new attribute.

RevOrder [DATE ; MARKER]
orderDate : DATE

metInFull : MARKER

This specication replaces Order in subsequent instantiations. None of the op-
erations on order need modifying, since none makes explicit reference to the
component data attributes of the order. In general, however, an operation that
made explicit reference to the component data attributes of a changed entity
would require modication.

The constraint on the number of customers can be introduced as an elabo-
ration to the state schema.

customerLimit : 1

RevOrderSystem[NAME ; HOUSE ; STREET ; TOWN ; POSTCODE ; LIMIT ;
DATE ; AMOUNT ; NOTE ]

OrderingSystem[Customer [NAME ; HOUSE ; STREET ; TOWN ;
POSTCODE ; LIMIT ; DATE ];

Order [DATE ]; OrderLine[AMOUNT ; NOTE ]]

#customer  customerLimit

Since the signature of the schema is unchanged, there are no knock-on eects in
the operations. However, there is a new pre-condition in AddCustomer : a new
customer cannot be added if it would take the system over the newly-imposed
limit. It is a matter of style whether this pre-condition is left implicit or made
explicit.



7.2 Structural modications

During development of a system, it may be necessary to perform some extension
or specialisation. The most obvious illustrations of this are the addition of an
entity, and the subtyping of an entity in the system data model or state. Al-
though fundamental changes to the data structure would require respecication,
specialisation and extension to the model can generally be accommodated more
simply. This promotes the reuse of formal descriptions.

Extending the state: The scenario data model (gure 1) shows an additional
entity, BOOK . This can be dened generically and added to the system state.
Side issues are the addition of the relationship with existing entities and the
expression of any new constraints on the structure.

[BID ]

BookState[BOOK ]
book : BID  BOOK

BookOrderSystem[CUST ; ORDER; OLINE ; BOOK ]
OrderingSystem[CUST ; ORDER; OLINE ]
BookState[BOOK ]
refersTo : OLID # BID

refersTo 2 (dom orderLine) " (dom book)
8 o : ran isPartOf  (isPartOf )fog  refersTo 2 OLID  BID

The additional predicate state that no two order lines of an order may refer to
the same book. Operation schemas need amending accordingly.

Specialising entities: Specialisation is illustrated by subtyping the customer
entity to express two dierent kinds of customer:

Corporate[HOUSE ; STREET ; TOWN ; POSTCODE ]
invoiceAddress : Address[HOUSE ; STREET ; TOWN ; POSTCODE ]

[RATING ]
minRating : RATING

Private[RATING ]
creditRating : RATING

minRating 4 creditRating



The customer type is now composed of the common elements (dened in the
original specication), and optional components of these types11. A predicate
can require that a customer is of one subtype only. (The optionality mechanism
is dened in section 2.1.)

SpecialCustomerSpec[NAME ; HOUSE ; STREET ; TOWN ; POSTCODE ;
CREDITLIMIT ; DATE ; RATING ]

Customer [NAME ; HOUSE ; STREET ; TOWN ; POSTCODE ;
CREDITLIMIT ; DATE ]

private : optional [Private[RATING ]]
corporate : optional [Corporate[HOUSE ; STREET ; TOWN ; POSTCODE ]]

#private = 1 , #corporate = 0

Selectors for private and corporate customers can be written [5]. Again, opera-
tions need extending and modifying accordingly.

8 Discussion

Traditional Z development uses given sets for initially unstructured data types
that can be elaborated during the development. It relies on formal development
methods such as renement to move towards an implementation goal.

In contrast, we describe an approach that uses generic specication with
elaboration by instantiation. It has the following properties:

{ Separation of data and relationships. The abstract specication captures re-
lationships between entities as captured by the ERD; the generic parameters
are instantiated with structures dened from the data dictionary. Each can
be modied independently of the other.

{ Elaboration by instantiation. No proof obligations are generated by the in-
stantiation. Dierent instantiations of the same specication can be used to
produce dierent systems. Preconditions on operations can be introduced at
the appropriate level of abstraction; development remains valid even though
such precondition strengthening does not follow the formal renement rela-
tionship.

It is notoriously dicult to document a development. Features that are devel-
oped successively to an implementation are scattered across models and within
models, and traceability becomes a major problem. Whilst the generic devel-
opment presented does not contribute any large-scale improvement in this area,
the inclusion of all the required types in the headings of the generic schemas at
least ensures that these are all available to the developer without searching the
document for given sets and other type instantiations.

11 This slightly clumsy formulation, or something equivalent, is needed in the absence
of generic free types.



The case study example is small, and although we assert that the approach
scales, it is not entirely clear how the levels of complexity introduced aect the
readability and usability of the development products. The approach would
denitely be improved by better Z support for

{ formatting long lists of generic formal parameters
{ grouping generic parameters
{ generic free types

A tool to support a rigorous development following the approach described here
(as opposed to a tool to support the formal descriptions and proofs) might be
expected to have at least the following characteristics:

{ discrimination between levels of detail in the development descriptions, en-
couraging the developer to work consistently through lower levels of ab-
straction (but, to support practical working, not necessarily requiring the
developer to complete one level of abstraction before attempting a lower
level);

{ good visualisation and expansion of generic structures and generic instanti-
ations, allowing the developer to explore structures, construct proofs and so
on, without resorting to a complete expansion of all schemas;

{ support for the development and use of templates, where a design follows
the outline of the specication but with dierent structural details, or where
routine structures such as entity sets, renement retrievals, and structural
proof conjectures, are required.

Support tools might also take design on to generation of, for example, relations
for a relational database, or, at a less specic level, might provide guidance on
the form of design and specication specialisation needed for dierent media
(programming or database paradigms).
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