
GRAIL : Graphical Representation of Activity,
Interconnection and Loading

Susan Stepney

GEC-Marconi Research Centre, West Hanningfield Road,

Great Baddow, Chelmsford, Essex, CM2 8HN.

1 Introduction
It can be very difficult to know just what is going on inside your Transputers. Are they
executing efficiently, or are they spending all their time waiting? And if so, just who is
waiting where for whom?

All this assumes you have some program running. But what if your problem is more
fundamental? How good are different algorithms for solving a problem? How does changing
the topology affect the performance of an algorithm?

These questions need to be answered, and answering them needs tools. ParSiFal is an
Alvey backed collaborative project1 to build Transputer-based hardware and occam-based
software tools. The aim is to help researchers, analysts and programmers gain the insight
they need to understand, design and write parallel programs.

2 Graphical Occam
One of the tools being developed as part of ParSiFal is GRAIL. It represents an occam
program graphically, in a way that highlights the parallel structure and communications.
Activity information can be overlayed in colour.

The current implementation uses a colour Sun workstation for the display. Interaction
takes place via the mouse.

2.1 Processes
The display is based on occam’s hierarchical process structure. Processes are drawn in
nested rectangular boxes. Different style boxes are used for the different constructs SEQ,
WHILE, IF, PAR and ALT. Sequential structures and deterministic choice (IF) are drawn
vertically, as in the conventional way of writing the language. Parallel structures and
non-deterministic choice (ALT) are drawn horizontally.

Consider a hypothetical parallel program with the following structure (here the lines
represent flow of control, not communication channels):

Susan Stepney. “GRAIL: Graphical Representation of Activity, Interconnection and Loading.”
In T. Muntean, editor, 7th Technical meeting of the occam User Group. IOS Amsterdam, 1987.

1 The seven ParSiFal partners are Cambridge University Engineering Department, FEGS Ltd.,
GEC Research Ltd., Inmos Ltd., Logica p.l.c., Manchester University Computer Science Department
and the Polytechnic of Central London.

The occam for such a structure is:

SEQ
 initialize
 PAR
 processl
 SEQ
 process2
 PAR
 p3a
 p3b
 p3c
 process4
 terminate

It is not very easy to relate this linear text to the parallel and sequential structure of the
program. The GRAIL display of the above occam text is

Now you can see, at-a-glance, which processes are in parallel, and which are sequential.

2.2 Folds
In order to make the display manageable, the concept of folds has been carried across from
the Inmos TDS folding editor. Folds may be opened, closed, entered and exited, using the
mouse.

 2

2.3 Channels
Channel information can be optionally overlaid on the process structure diagrams.

Channels are drawn as directed arrows between the processes they connect. The
graphical display shows channels entering and leaving closed folds and procedure calls. It
groups all the end points of a channel together, and indicates direction.

In occam, a simple pipeline might be written

PAR
 ... kbd handler
 ... filter
 ... gather

This gives no indication of the communication between the processes, except a hint in the
fold names. In GRAIL, this would (if the hints are correct) be displayed as

3 Activity by Colour
The GRAIL display is also used to show the activity of a monitored run of the program.
“Hot” areas, where a lot of activity is occurring, are shown in red. “Cold” areas of low
activity are shown in blue. Either process or channel activity can be displayed.

Currently this activity is deduced by profiling a running program. As part of ParSiFal
modifications have been made to the Inmos TDS compiler, implementing a profiling option.
Statement execution counts are gathered as a program runs, and when it has finished (or
deadlocked!) these results are wormed out of the Transputers. They are used to deduce the
activity.

The next stage of our work in ParSiFal is to include timing information, to show where
the communication bottlenecks are. Eventually we hope to have a fully dynamic version,
which will show the activity as a program is running, so that hotspots that are localized in
time, as well as space, can be observed.

4 An Example - a Mandelbrot program
I have chosen a relatively well-known example to illustrate GRAIL, so that you do not have
to cope with understanding a new program at the same time as trying to understand the new
way of displaying it.

The example is the ubiquitous Mandelbrot pipeline. The ray-tracing example described
in Inmos Technical Note 7 has the same structure, only the worker part is different.

 3

4.1 Program Structure
The work is handed out by a controller to a pipeline of n worker Transputers:

The program on each Transputer has a structure like

In occam this would be something like (ignoring complications of PRI PARs):

PAR
 ... router
 ... worker
 ... mixer

The corresponding GRAIL display is

 4

Entering the mixer fold in occam results in something like:

SEQ
 ... initialize
 WHILE state <> C1oseDown
 ALT
 fromNext ? tag
 IF
 ... stop
 ... result
 ... from this
 ... terminate

and the corresponding GRAIL display is

Here you can see the way GRAIL draws IFs and ALTs. Channels entering and leaving folds
show up clearly.

4.2 Program Activity
This program has been run on a pipeline of Transputers, and has been profiled. The colour
photographs are actual screen shots of GRAIL’s display.

The first photograph shows the results for the program described above. There are
various windows which show different information, and allow the user to interact with the
display.

 5

The top left window shows the name of the procedure (or entered fold) currently displayed.
The one below it shows the colours used to represent activity, from blue (inactive) to red
(most active). Below that is a window showing the total activity of each Transputer. The
currently displayed Transputer, 0 in this case, is shown with a black border. Another
Transputer can be made current by clicking the mouse over the relevant square. The large
window shows the currently selected procedure (or entered fold) on the current Transputer.
Other procedures can be selected, and folds entered or opened, by clicking the mouse over
the relevant rectangle.

The smaller windows down the right hand side also allow interaction with the display.
For example, the second one allows the user to open, close or exit all fold in the current
procedure at one go.

The third window changes the colour scope. Red corresponds to the “most active”
process; this window allows that process to be the whole program, the process on the current
Transputer, the current process, the entered fold being displayed on the screen, or none at all
(to get rid of the colour).

The bottom right hand window is a procedure menu. The colours indicate the activity of
each procedure on the current Transputer. The current procedure is indicated in reverse
video.

Note how the Transputers at the end of the pipeline are “cooler”, less red, than those near
the beginning. They are less active, because they are being starved of work. The well known
solution to this is to make the communications (router and mixer) take place at
high-priority, the calculations (worker) take place at low priority, and add a buffer process
to each input of mixer:

 6

The next photograph shows the result of this.

Now all the Transputers are glowing “red hot”. In this picture the current procedure is
mixer, on Transputer 0. Notice how the branch of the ALT taking input from the next
Transputer is much more active than that taking input from its own worker. Also, most of the
work in this branch is being done in the “result” branch of the IF, rather than the “stop”
branch (as would be expected).

The third photograph shows a different behaviour on Transputer 4, at the end of the pipe.

 7

Now most of the work in the ALT is in the branch taking input from its own worker process.
The only work done in the other branch is the receipt of the “stop” signal. There are no
results (indicated by a white box), since there are no Transputers further down the pipe
sending them on.

The procedure menu window (bottom right) shows the activity in the different
procedures. Notice how on Transputer 4 the worker is green (more active) than the
communication processes router and mixer; the opposite is true on Transputer 0.

Eventually, as the pipe gets longer, the first Transputer will be doing all routing and no
work. The pipe is then saturated, and making it longer will not result in any speedup. The
picture can give a crude estimate of when this will happen. It is not at five Transputers,
however! For purposes of this example an artificially small packet size was chosen. GRAIL
lets us experiment with different size work packets, and see how the comms/compute ratio
changes.

5 Conclusions
GRAIL provides a way of looking at occam programs that highlights their parallel structure
and communications. With a little practice these diagrams can be easier to understand than
linear code.

Using colour to indicate activity allows potential troublespots and bottlenecks to be
spotted early. The information gained can be used to make reasoned choices of allocation of
processes to Transputers. GRAIL is integrated with ParSiFal’s Topology Tool to help
automate the generation of PLACE statements.

This method of displaying occam can have uses other than displaying activity. Ones that
have been suggested are as an occam editor, and as an interface to a debugger.

 8

	Introduction
	Graphical Occam
	Processes
	Folds
	Channels

	Activity by Colour
	An Example - a Mandelbrot program
	Program Structure
	Program Activity

	Conclusions

