Reflections on the Simulation of Complex Systems
for Science

Fiona A. C. Polack,

Paul S. Andrews, Teodor Ghetiu,
Mark Read and Susan Stepney
Department of Computer Science

University of York
York, UK YO10 5DD
Email: Fiona.Polack@cs.york.ac.uk

Abstract—In studying complex systems, agent-based simula-
tions offer the possibility of directly modelling components in
an environment. However, the scientific value of agent-based
simulations has been limited by inadequate scientific rigour.
The paper focuses on agent-based simulations that are used in
biological and bio-medical research. Starting from a review of
best practice in simulation engineering, the paper identifies some
of the key activities in developing complex systems simulations
that support scientific research, and how these contribute to
the essential development of mutual trust among developers and
scientists. Examples from the authors’ own experience illustrate
how a range of studies have manifested these key activities, and
identifies some successes and problems encountered.

Keywords: Complex system modelling; scientific simulation;
simulation validation

I. INTRODUCTION

A computer simulation is an executable model that abstracts
away from the real system that it models in order to focus
attention on particular features and dynamic aspects. This
paper is primarily concerned with agent-based simulations that
are constructed to support exploration of complex biological
systems.

Agent-based simulations comprise many interacting agents;
these can be used to model selected biological and envi-
ronmental components of systems. The scope for individual
variation and the flexibility that the agent-based paradigm
offers is potentially attractive to the scientific study of complex
systems. In section II, we consider the reasons for lack of
exploitation of the technology. We note that scientists use
methods that they trust, even when the methods are less-that-
completely appropriate or accurate for the defined purpose.
This leads us to consider how the approach to collaboration,
and to the engineering of simulations, can support use of
agent-based simulation as a scientific technology.

In our experience of modelling and simulating biological
and bio-medical systems, a trusting relationship between sci-
entists and simulation developers is the essential basis for
scientifically-useful and acceptable simulation. In section VI,
we outline five of our own collaborative projects, showing how
close collaboration and careful development practices have
contributed to useful scientific simulations. The practices that

Jon Timmis
Department of Computer Science
and Department of Electronics
University of York
York, UK YO10 5DD
Email: jtimmis@cs.york.ac.uk

Adam T. Sampson
School of Computing
University of Kent
Canterbury UK CT2 7NF
Email: A.T.Sampson@kent.ac.uk

we have used are not very different from other successful
collaborations between computer modellers and biological
research (for example the work of Calder et al. [1] or of Harel
and Cohen’s group [2]). In all such simulations, validation is
crucial and thorough. Our ongoing work differs from others
in the emphasis placed on arguing the validity — in terms of
fitness for purpose — of our simulations. This aspect, which
uses critical-systems engineering techniques, is alluded to
throughout, but is not the main focus of this paper: a fuller
coverage can be found in [3]-[5].

All these successful biological simulations are characterised
by active, close collaboration. The simulation must be devel-
oped and presented in such a way that the developers and
scientists understand its strengths, limitations and applicability.
This requirement dominates all the conventional engineering
rationale — how to design, how to implement, what to record,
what validation means.

II. OBSERVATIONS ON SIMULATION AND SCIENTIFIC
RESEARCH

It is widely asserted that much of the state-of-the-art in
agent-based simulation is inadequate for scientific use, because
the engineering basis of simulation is unclear (at least to those
other than the developers) [6]-[9]. Wheeler et al. [8] identify
the need to address deep questions of comparability: to keep
a record of experience; to understand how good solutions are
designed to rationalise choice of parameters and to calibrate
agents, and, above all, to validate complex system simulations.
Bray [16] observes that computer modellers have tended to
stray from strict interpretation of scientific evidence, intro-
ducing arbitrary factors, for instance to make the simulation
appear more significant by boosting its sensitivity.

Further insight into the requirements for scientifically-useful
simulation can be gained through consideration of how scien-
tists do research. Although it can be shown that the popular
view of “scientific method”, as a process of either logical
induction or logical deduction from objective observation, is
at worst a myth and at best an optimistic oversimplification
[10]-[12], the practice of science requires careful observation
and recording, and rational design of experiments. Scientific

research could be characterised by a culture of mutual trust:
even if scientists disagree, or challenge the results of other
groups, there are common standards of working, enforced
through accepted ways of presenting research, experiments and
results — many biological publications, for example, have a
methods and materials section that contributes to the readers’
understanding, and thus trust, of the theory or results pre-
sented.

Trust extends to methods and techniques. In undertaking
research, scientists, individually and as a community, use tech-
niques that they understand or trust; they reject techniques that
they do not trust. There is some anecdotal observation that oft-
the-shelf packages (including simulators) that are in general
use in teaching or using science are accepted for research use
— presumably because their widespread use engenders trust.
It is apparent that scientists are sometimes led astray by their
trust, even though it is well-founded and community-based.
Ecological communities, for example, tend to be modelled as
stable communities that respond to external events [13], but
these are, in reality, systems in dynamic equilibrium, with be-
haviours due to time and internal interactions. It is sometimes
the case that scientific analysis loses sight of the limitations of
models. Heuristic solutions, equational and statistical methods
in non-linear systems analysis, have known weaknesses in
certain situations [14], that may be overlooked. Furthermore,
in mathematical approaches such as ODE modelling, it is
sometimes the case that scientists overlook the limitations of
standard mathematical methods (such as Euler’s method) —
ODE integration methods may be applied outside their reliable
envelope [15].

In relation to agent-based simulations, the starting position
is that, currently, most scientists do not trust agent-based
computer simulations. Lack of trust may arise either because
the presentation of the simulations does not give sufficient
insight to engender trust, or because the simulations are not
used by others in the community. There is a need to address
two connected problems: the threat of novelty, and the question
of how to engage scientists appropriately in the development
and use of agent-based simulations. Before considering how
simulations can be constructed in scientifically-credible ways,
we briefly review the ways in which simulations (of traditional
as well as complex systems) are engineered.

A. Engineering and Simulation

There are many existing development methods for multi-
agent systems (reviews can be found in [17], [18]). Many
methods are tailored versions of general software engineering
development methods: for example, ADELFE [19] is a cus-
tomisation of the Rational Unified Process. Most methods are
tailored to specific forms of agent-based simulation (ADELFE
is for adaptive multi-agent systems with co-operative agents
[19]). There are a few general simulation approaches, such
as Prometheus [20]. The engineering problems of existing
methods can be summarised as follows (based on [5]):

e Methods typically provide a range of complementary
views (the agents, their data and interactions, actions

and object message-passing), but do not provide strong
support for consistency between views.

e The views provided by methods relate to a particular
programming paradigm, rather than to critical features of
complex systems — the components, their environment,
and desired or undesirable emergent behaviours.

o Whilst methods provide seamless routes to implementa-
tion if the developer is using the appropriate family of
languages, the languages supported are not always the
most appropriate for simulation.

Engineering is an exercise in quality control as well as
development. Validation checks that the right system is built
— it is about meeting requirements and quality (whereas
verification checks that the system is built right — it is about
correctness of construction). Validity implies both adequate
abstraction, and adequate development processes.

In high-integrity systems engineering, the validation of
simulation has been a focus of interest since the late 1970s.
Recent interest in complex systems validation [4], [21], [22]
takes inspiration from Sargent’s development lifecycle [24],
shown in Figure 1. The problem entity is the phenomenon
to be modelled. From understanding the problem entity, a
conceptual model is developed in a suitable representation —
Sargent reviews diagrammatic models [24], and also considers
mathematical or logical representations [23]. The comput-
erised model implements the conceptual model as a simulation.

Problem Entity
- -
-7 (System) R
v ’ S 9 1
Operational Colr\l/f;[i);m
Validati -

d,l ation Validation

K Analysis Y

B Experimentation Data and \

' Modeling !

'

! Validity \
* / \\ ;

Computerized Computer Programming Conceptual
Model and Implementation Model
v, 7
el Computerized /,/’/
"T--- Model ---7°
Verification
Fig. 1. Sargent’s model of the simulation development process [24]

The experimentation link between the problem entity and the
computerised model allows iterative (even agile) trial-and-
error simulation, with the models and results compared to the
problem entity at each step. Sargent explicitly incorporates
verification (in the software engineering of the computerised
model) and validation — of all models against the problem
entity, and of the data used to test or populate the conceptual
and computerised models. The lifecycle has much in common
with conventional software engineering lifecycles — it presents
a high-level summary of the necessary attributes of a develop-
ment, rather than a comprehensive guide to achieving a high-

quality engineered product.

Elsewhere [25], we consider how complex systems differ
from conventional systems, and use this understanding to
propose an extension to Sargent’s process [4], [26]. Essen-
tially, the components of a complex system can be designed
and verified by a conventional engineering process, but the
complex effects of the components only become apparent
when they are considered in their environmental context. A
small change in the environment can dramatically change the
nature, and even the occurrence, of high-level behaviours. In
describing the problem entity and developing the conceptual
model, the extraction of relevant environmental characteristics
is as important as the modelling of the components. In [5], we
show that the quality of software engineering, and particularly
the feasibility of verification, is enhanced by continuity and
consistency in engineering of environment, components and
their interactions. Sargent [23] reminds us that a model should
be developed for a specific purpose... and its validity deter-
mined with respect to that purpose. The level of assurance also
depends on the purpose of the simulation, and should be set
independently of the development of the simulation — good
software engineering practice.

Traditional techniques for validation of simulations [23],
[27] do not transfer easily to complex systems simulation. For
instance, one of Sargent’s proposals entails detailed analysis
of the simulated and real systems in terms of event validity
and traces: if we knew the workings of a complex system
well enough to understand event validity and traces, we would
not need a computer simulation to help us understand it.
Other tests, such as face validity [28], are even less sufficient
for evaluating complex systems simulations (though these
traditional techniques may be appropriate for parts of complex
systems: event validity and traces can be appropriately applied
in the design of component behaviour).

The most useful of Sargent’s suggestions [23] is the analysis
of assumptions. This approach is typical of critical systems
techniques, where methods based on flaw hypothesis and
systematic challenge are used to extract and document assump-
tions and side-effects. Techniques using argumentation can be
used to structure assumptions and the engineering rationale.
These approaches can also be applied to validation in complex
system simulation [3], [5].

III. DOMAIN AND DOMAIN MODEL FOR A SIMULATION

The domain and domain model are the starting points in
developing a simulation to assist in scientific study. These
define not only the scientific context and scope of a simulation
exercise, but also who is involved. Without these considera-
tions, a simulation is unlikely to be understood and accepted
for research use.

A. Scientists and developers

It is necessary to establish who the simulation is constructed
for, and who it is constructed by — in software engineering
terms, we need to establish the stakeholders. Here, the scientist
stakeholder comprises a group of scientists investigating a

particular scientific subject: the scientific subject forms the
domain. The developer stakeholder is the team that is to en-
gineer a suitable simulation. The labelling of the stakeholders
is for convenience in exploring and explaining the process
of doing science with simulations, which is fundamentally a
collaborative enterprise.

The team of scientists and developers could comprise one
or more people, but we assume here that the scientist is not the
developer. It is not unusual for scientists to produce computer
simulations, and the result is likely to be satisfactory for small-
scale demonstration, but, in general, scalability and good-
quality engineering requires specialist knowledge. Without
engineering expertise, it is unlikely that a simulation can be
scaled to the millions of components that are needed to mimic
many natural systems. It is also unlikely that the simulation
can be easily modified or maintained to support ongoing
scientific experimentation and the investigation of new or
variant scientific hypotheses. Finally, in the same way that
people who are not mathematical experts accidentally abuse
mathematical techniques, credible scientific use of simulation
results requires deep understanding of the construction and
limitations of the simulation.

Section VI summarises a number of simulation studies in
which the key to success was a collaboration that engendered
mutual trust. It is hard to write about collaboration and
the development of trust without separating out the parties
involved — trust is a state of mutual understanding between
independent parties. Furthermore, this paper is presented from
the point of view of the developers, and is targeted at an
audience of developers, so it is inevitable that the scientific role
is presented as, in some sense, separate. However, in relation
to collaboration of stakeholders, the simulation is only useful
to a scientist if the scientist trusts the simulation; trust is a
mutual state, arrived at by sharing.

The criticality of close collaboration sounds a note of
caution: not all scientific researchers and not all computer en-
gineering proficients are able or willing to enter the sort of col-
laboration needed. Commitment and openness are necessary
on both sides. Both sides need to be able to ask naive questions
and challenge the other side’s traditions, and both sides need
to be prepared to spend time recording and checking their
sources. In sections VI-A and VI-B, we summarise studies
in which computer scientists and immunologists collaborated
to produced simple models that allowed insight into aspects
of systems that could not be studied directly in laboratory
experiments. Here, the collaboration was initially established
by a meeting of the whole team, but subsequently involved
a close working relationship between one scientist and one
developer, with clear links to the rest of the team. A similarly-
close relationship exists in the EAE study, section VI-C.
In the plant studies (section VI-D and VI-E), collaboration
is established more formally through co-supervised doctoral
students.

It is important to note that, although the scientist is, and
remains, the domain expert, the development of the collabora-
tion should involve, and probably requires, a mutual transfer of

expertise. It is certainly the case, in the examples considered,
that the key developer in each team has gained considerable
knowledge of a small part of the domain. The scientists have
also learnt about the process and potential of agent-based
simulation; they become better able to identify their own (and
the developers’) assumptions, to present the environment of
their research, and to respond to apparently-naive questions
with appropriate information.

It is tempting to see the close working relationship between
scientists and developers as representing an agile develop-
ment. Scientific-simulation development shares many features
of agility — customer involvement, changing requirements,
motivated individuals, sustainable development etc (see /agile-
manifesto.org/) — it differs in the crucial respect that scientists
and developers need to construct sketches, diagrams and other
static models to record their understanding of the domain, and
of what, from the whole domain, is represented in the simu-
lation. These development models are communication media,
used to help the developers and the scientists understand and
trust the simulation.

B. Establishing domain, domain model and purpose

The domain is a definition of the scope, from the perspective
of the scientist. From the domain, the scientist and developer
determine the purpose of the simulation, to guide the developer
towards an appropriate form of simulation.

The developer is seeking to simulate part of the scientists’
model of reality; the developer is not modelling the domain
itself. If the domain represents all the scientists’ knowledge
about the relevant subject area, then the domain model repre-
sents the mutual understanding of a subset of that knowledge,
the developers’ starting point for simulation. In one sense, the
domain model can be thought of as a development contract:
the developer relies on the scientist to provide appropriate
information about the domain, and guarantees a suitable sim-
ulation; the scientist relies on the developer to use the domain
information appropriately, and guarantees to work with the
developer to ensure that this is the case.

In some cases, simulation development is prompted by the
need to address a clearly-defined question that cannot be
answered by laboratory experiments. The studies summarised
in sections VI-A and VI-B both address the dynamics of
internal cell interactions that are not observable directly. Here,
the domain model and the purpose of simulation is easy to
establish — though there is still a lot of mutual transfer of
expertise.

In other cases, the fact of needing to define a domain model
and purpose become part of the scientific research. This is
well illustrated by the EAE autoimmune study summarised
in section VI-C. Here the development of the simulation has
been, itself, a part of the research in to understanding the
internal processes of the natural system. A lot of modelling
took place before it was clear which specific hypotheses
could be addressed by agent-based simulation. The scientist-
developer relationship here is similar to the relationship in a
research laboratory that allows scientists working together to

build on and use each others’ results without each researcher
having complete knowledge of everyone’s work. This has led
to laboratory-style practices such as calibration and sensitivity
analysis being applied to the simulation, to help demonstrate
the validity of the computer model.

C. The value of the act of finding out

In most of our studies, the scientist would refer the devel-
oper to standard texts, research papers and graduate students,
for information about a domain. It is part of the trust rela-
tionship that the developers are able to query all this material
(and the scientists’ models) — to ask for explanations in the
context of the domain model, and to check the meanings that
are inherent to the science but not obvious to the outsider.

Scientists may model a domain in a specific notation,
or describe it informally (for example in text or ‘“sketch”
diagrams). If a specific notation is used, then the developers
need to probe to ensure that they have sufficient understanding
of the semantics of the notation, as well as the concepts that
are expressed in the models. Where the domain is described
in sketches, however, the developers need to understand the
informal role of the sketch; they must not assume hidden
semantics, but should probe to find the “formal” details behind
the sketch.

These “finding out” activities need to be recorded. In [4],
[5], we give some examples of the sort of hidden assumptions
that were elicited by the developers’ probing. The developers
also kept notes of the sources that were used as background
or in answer to questions. Scientists may have to revisit
background material, or even their own results, to be able to
answer the developers’ naive questions — and, in some cases,
had to initiate new research to check a previously-assumed
fact. Eliciting and recording information in a collaboration
is an important activity, not least because it opens the eyes
of the stakeholders to the problems inherent in each other’s
fields. To a developer, it is illuminating that a scientist may
not be able to give dimensions, flow rates, etc to within
an order of magnitude; to a scientist, the inherent scientific
assumptions made in interpreting observations are illuminated
by the developer’s need for concrete dimensions and facts from
which to construct the simulation.

There is currently little technical support for “finding out ac-
tivities”, other than the traditional lab-book. However, as noted
above, the elicitation of assumptions is part of engineering
practice in safety- and security-critical systems. In these fields,
as in collaborative scientific simulation, the establishing of
trust through quality underpins the activities undertaken. The
critical systems discipline has techniques, and some tools, that
can be adapted to support collaborative scientific simulation.

IV. MODELLING FOR THE SIMULATION

Developers typically interpret the domain models into soft-
ware engineering design models, but they need to do so in
ways that allow the dialogue between stakeholders to continue
in a meaningful way.

In general, the scientist is interested in understanding what
the simulation does and does not capture; the developer’s
choice of design language is of more relevance (to the sci-
entist) than the implementation language. A developer with
a software engineering background would be comfortable
working at a high level of abstraction and accustomed to
moving between abstraction levels (since this is what happens
in specifying, designing and implementing software). In the
researching EAE autoimmunity (section VI-C) Read et al. [30]
use adapted UML models, because a range of views is needed
to explore and express the complex structures and interactions
of EAE, whilst Andrews et al. (section VI-A) find simple state-
transition diagrams sufficient to capture a mutually-agreed
model of the abstract concepts of a lymphocyte migration [4],
[5]. Once design models are created, the simulation exercise
could be seen as a conventional software engineering exercise,
though with a strong emphasis on validation.

A key feature in the design of the simulation is arriving at
an appropriate level of abstraction. Most simulations consider
one component level and one emergent level. For example, in
the lymphocyte migration study, section VI-A, lymphocytes
are the components, and capture rates are at the emergent
level [4], [5]. Here, considerably discussion was needed to
arrive at a mutually-acceptable model; the result abstracts
from the bio-chemistry but otherwise maps well to the domain
understanding of the scientists. It is essential that the whole
team understands what has been omitted through abstraction,
in order to understand what the simulation is telling. In gen-
eral, a complex-system simulation could be made up of many
layers: we could have simulated bio-chemical interactions and
other concepts at other levels of abstraction. The decision to
abstract from these should not be made by either stakeholder
alone, since neither is fully aware of the other’s field. Thus,
for example, a scientist may specialise in lymphocytes, which
circulate in blood for part of their lifecycle. If the scientist
unilaterally decides to abstract from the blood-chemistry, the
developer may not be prompted to ask pertinent questions
about lymphocyte dynamics, and important issues such as
flow-characteristics or vesicle form may be overlooked. If
the developer decides unilaterally to abstract from the blood-
chemistry, then the scientist will not be able to interpret the
results correctly.

The agreement on an abstraction also focuses attention on
the need to simulate both the system that the scientist wishes
to study and the environment in which that system exists.
Abstraction applies to both, and, if the simulation ultimately
does not match the expectations of the scientists, the mismatch
could be in either the system (the agents of interest in an
agent-based simulation) or the environment. One way that the
stakeholders can engage with the issues here is to construct an
argument, akin to a safety assurance argument, that addresses
the question of adequacy of each aspect of the design. The
argument presents the rationale and evidence for adequacy,
and is evaluated by the stakeholders. If both stakeholders
are happy with the argument and evidence, then development
proceeds. If the simulation does not behave as expected, then

the adequacy argument is revisited to identify possible flaws
in the component or environment designs.

V. SOFTWARE ENGINEERING, IMPLEMENTATION AND
BEYOND

Software engineering is the field of the developer; it is the
expertise in quality software development that is their contribu-
tion to the collaboration. Verification and validation are critical
engineering activities. Most simulation development, at least
in support of science, needs a relatively lightweight approach,
but with an emphasis on quality. There is unlikely to be a large
development team with related management practices; agile
development is likely to be appropriate. However, the trust
motive means that a good standard of communication, and
good recording of assumptions and decisions is as important
in the implementation as it is in the modelling stages.

Rather than re-invent software engineering, here we draw
attention to some existing practices that have real or potential
value in engineering simulations of complex systems.

A. Mapping models to code

Engineering an implementation (as well as later activities
relating to maintaining and adapting the implementation) is
often simplified if there is a clear semantic mapping between
design concepts and implementation concepts. This reduces
the possibility of implementing something other than what was
agreed with the scientists. If we want to maintain lightweight
development processes, we need to record how concepts in the
design are represented in the simulation; a more heavyweight
approach would rework design models produced in determin-
ing abstraction levels into design models appropriate to imple-
mentation, with appropriate demonstrations of acceptability.

In simpler simulations, it is relatively easy to select mod-
elling approaches that can be easily understood and map
cleanly to code. In the lymphocyte migration study (section
VI-A), we show how a scientist’s sketch relates to a design
diagram, and the abstract design diagram maps to the code-
design [4], [5]. This simulation has a simple environment and a
limited range of component types, and this level of comparison
was appropriate to the purpose of simulation.

In more complex studies, such as the EAE autoimmunity
study (section VI-C), the need to communicate through di-
agrams was the key determinant in the choice of UML-like
modelling. This was one (of several) factors in deciding to
implement in an object-oriented language. However, the need
to record and communicate understanding also led to modi-
fications of the UML semantics, and additional diagramming
to capture parallel structures, explore possible hypotheses etc.
[29].

B. Recording decisions and assumptions

Although simulation engineering tends to be agile and
lightweight, the recording of design decisions and assumptions
is essential. Anything that has implications for understanding
how the domain model has been rendered by the simulation

must be discussed by the stakeholders. Maintaining the dia-
logue becomes harder as the developer moves to implemen-
tation, as the scientist is unlikely to want to know the detail
of the coding. This is where the trust built up in design is
critical — the scientist must trust the developer not to introduce
flights of fancy, and to discuss any essential simplifications
(or complications) that become necessary to implement the
design. Not least of these is the need to be clear about the
scale of the simulation: if data is handed to the scientist on the
basis of a few tens of component agents, but reality has tens
of thousands, the scientist needs to know and to understand
that emergent behaviours of the natural system may not
be reproducible. Deviational analysis (e.g. what-if, HAZOP)
from critical systems engineering can be used to challenge
assumptions, dimensions, rates, etc. Argumentation techniques
can be used to record the rationale behind the simulation
— an argument can be constructed that the simulation is a
mutually-acceptable executable model of the domain model.
Recording rationale as an argument helps to develop trust, but
is a relatively tedious activity. However, when the scientists’
domain knowledge changes (either from their own work, or
from insights developed through the simulation exercise), the
rationale for simulation changes: the ways in which it changes
need a comparator.

C. Iterative, incremental development

In our studies, a recurring theme is the limitations of
scientific knowledge. Modelling and simulation activities help
to clarify scientific understanding, and an incremental develop-
ment means that there is always a partial simulation (working
and verified) on which to develop and test ideas about the
domain.

Part of the trust relationship is that the scientist needs to see
where the development is difficult or incomplete, just as the
developer needs to be aware of which aspects of the science
are uncertain.

In relation to quality issues, agile approaches that promote
incremental development mean that interim tests of the simu-
lation are encouraged — checks that particular abstractions or
simplifications are acceptable in practice as well as in design;
investigations of computational feasibility of agreed solutions,
etc.

D. Maintainability

Best-practice in software engineering leads naturally to
maintainability, through principles such as modularity, in-
code documentation standards, version control, and keeping
records up to date. There are two principle motivations for
maintainability. The first is the maintenance of trust: just as
the scientist contracted to answer naive questions from the
developer, the developer contracts to answer probing questions
from the scientist about what is going on in the simulation.
The second motive is that collaborative scientific simulation
is not a closed process: having a simulator constructed for an
initial purpose inevitably prompts new in silico experiments
that can be addressed by extending or modifying the initial

implementation. This is one of the big pay-backs of agent-
based simulation for science.

VI. EXAMPLES OF ENGINEERED SIMULATIONS

The CoSMoS project is working on principled approaches
to modelling and simulating complex systems. A number
of simulations have been constructed, either as part of the
project or in collaboration with the project, to assist scientific
investigations. These are summarised from an engineering
perspective, as exemplars (in part at least) of the approaches
considered here.

A. Lymphocyte migration [4], [5]

The CoSMoS lymphocyte study investigated dynamic pro-
cess related to migration of lymphocytes (types of white blood
cells that are key agents in immune responses) from blood
circulation to lymph nodes. During immune responses, blood
vessels dilate, but how this affects the rate of lymphocyte
migration is not known. Simulation was used because it was
infeasible to monitor dynamic processes inside living animals
using traditional laboratory techniques.

1) Domain and domain modelling: The domain is research
on lymphocyte migration at the York Centre for Immunol-
ogy and Infection, with collaborators Mark Coles and Lisa
Scott. The domain model was derived from research articles,
“sketch” diagrams, data on population, rate and timing from
experimental work, the scientists’ interpretations of standard
and specific models at various levels of abstraction, and insight
into the (lack of) precision of published and observed data.
Much of the information was summarised in sketches of the
biological processes, at various levels of abstraction. A key
step in the development was agreeing an appropriate level
of abstraction for the domain model, based on the domain
information.

2) Modelling for the simulation: From the biological
sketches of the domain model, a simple state chart was used
to model the stages in the transition of a lymphocyte from
the blood circulation to the lymph node. The state transition
was driven by rates from laboratory experiments and published
research.

3) Implementation: The implementation is in occam-7, a
powerful process-oriented language that supports visualisation
and distribution. The design model was close to the simu-
lation model, with clear mappings from lymphocyte states to
occam-7 processes. The implementation re-used patterns from
existing (well-engineered and verified) simulations (see [25],
(311, [32)).

4) Beyond implementation: The simulation provided nu-
merical data output, which was the primary requirement of
the scientists. In addition, the occam-m patterns provided a
visualisation, which proved of interest to the scientists, because
it revealed subtleties of behaviour that might be relevant to
their interpretation of observational data.

The visual simulator raised issues about the applicability of
the rates provided by the scientists. The rates are derived from
one-dimensional observations — for example estimates of the

proportion of lymphocytes in each state. In the visual simula-
tion, space is explicit: a lymphocyte’s chance of changing state
is partly determined by its adjacency to the blood vessel wall.
The connotations of this were discussed between the scientists
and developers, and affect the treatment of the results.

5) Engineering issues: A range of issues relating to the en-
vironment arose. For instance, laboratory-based immunology
takes the circulatory system as a given, but the simulation
needs a model of the environment. Much discussion was
involved in determining appropriate dimensions for blood
vessels and lymphocytes, concerns over accuracy, and whether
blood-flow characteristics might influence migration and tran-
sition rates. In many, cases, the simulation required arbitrary
decisions, which were all recorded as possible limiting factors
in the applicability of results.

B. Granuloma formation in Leishmaniasis [33]

A granuloma is a structure made up of various types of
immune cell, that forms around certain parasite-infected cells.
This study, undertaken as a masters project under CoSMoS
supervision, addressed the question of why some granulomas
form faster than others.

1) Domain and Domain Modelling: As in the lymphocyte
migration study, the domain is well-defined; it is the research
of John Moore and Paul Kaye from the York Centre for
Immunology and Infection. The domain model draws on the
expertise of immunologists and relevant scientific papers. Data
was available for various rates of cell movement, size and
interaction, though there was no direct data relating to the
whole granuloma formation.

Two hypotheses of granuloma formation are (a) a positive
feedback system, or (b) so-called more-efficient cell signalling.
The simulation purpose was to test these hypotheses.

2) Modelling for the simulation: Modelling uses UML-like
state charts and activity diagrams to represent the agents iden-
tified in granuloma formation and their interactions. Sequence
diagrams were used to abstract models of the two hypotheses.

3) Implementation: The simulation was implemented in
Java, and employed the MASON simulation framework [34],
[35]. Mason provides a useful graphical interface that made it
easy to visualise the formation of the granuloma structures.

4) Beyond Implementation: In this domain, the data rates
are not robust or complete enough to support data generation.
However, the visualisation gave useful qualitative insights, that
were taken forward into targeted laboratory experiments.

C. Autoimmune modelling [29], [30]

EAE is an autoimmune disease, similar to multiple scle-
rosis, that attacks the central nervous system in mice [36].
Some exhibit spontaneous recovery following the induction
of autoimmunity, which motivates this detailed study. In the
disease, many types of immune cell interact across a range
of body compartments. Conflicting feedback mechanisms are
known to influence disease progression. Simulation offers a
route through which hypotheses about the nature of the disease
can be investigated in the context of established knowledge.

1) Domain and domain modelling: The domain expert is
immunologist Vipin Kumar, and his laboratory at the Tor-
rey Pines Institute for Molecular Studies, San Diego, USA.
Much of the domain model was derived from text books and
immunological theory, all of which was discussed with and
approved for incorporation by Dr Kumar.

2) Modelling for the simulation: UML-style diagrams were
used to express various aspects of system behaviour: activity
diagrams conveyed how emergent behaviours (such as autoim-
munity and recovery) were hypothesised to manifest from the
interactions of cell types at an abstract level; class diagrams
depicted static relationships, each diagram focusing on a single
emergent behaviour, to limit diagram complexity; state charts
captured low-level dynamics of the various cell types involved.
The state charts formed the specification for agent behaviours.

3) Implementation: The simulation again used Java and
MASON [34], [35]. The powerful visualisation framework is
useful in observing the simulated progression of the disease,
and for testing the simulation. Java and MASON provide much
of the simulation infrastructure. The result is portable, and
there is a clear mapping from the design diagrams to facilitate
understanding of the simulation — an important consideration
when collaboration takes place across oceans.

4) Beyond implementation: The act of creating the simu-
lation has raised many questions of the domain. Modelling
the disease as an agent-based simulation requires a compre-
hensive low-level specification of each cell type’s dynamics.
Laboratory techniques such as observing system-wide effects
of unnatural perturbations provide data at the level of cell pop-
ulations, but it took significant research to extrapolate to details
of cell-type dynamics. Simulation has allowed investigation of
a system from the bottom up, integrating existing knowledge
in an effort to recreate observed emergent phenomena. Where
data is not available, hypotheses can be formed and tested
within the context of what is already known. The simulation
is never “complete”; it is a dynamic tool that is continually
modified to explore different aspects of the domain, and to
remain consistent with the developing understanding.

5) Engineering issues: The simulation behaviour is com-
posed at two levels: the behavioural dynamics encoded as cell
states and actions; and parameter values, such as the duration
of a cell state, that fine-tune the behavioural dynamics. A mile-
stone in the simulation was the identification of a “baseline”, a
representation of EAE that Dr. Kumar accepts to be a faithful
representation of the disease in vivo. Significant validation,
including calibration and systematic sensitivity analysis has
been required to reach this milestone.

The challenge of such a simulation exercise should not
be underestimated. There is no complete scientific model of
the disease in terms of the cell population dynamics. The
domain model comprises imprecise statements (“at day 10
cell population x should peak, and the peak is probably
bigger than that of cell population y.”). The construction is
iterative: if (when) the simulation’s behaviour does not match
the observational evidence, the fault may lie in any or all
of: parameter values; inappropriate abstraction of behavioural

dynamics from observed in vivo behaviours; incorrect or
incomplete facts from the domain. The collaboration is used
for careful deliberation to devise strategies to reconcile the
fault. Decisions must be recorded: the simulation is always an
abstract representation of the real-world system, and its results
must be appreciated in that context.

D. Trait-based plant ecology [3]

The CoSMoS plant ecology study is based on research
at the SIMBIOS Centre, Dundee. The domain expert, who
co-supervises this doctoral study, is James Bown. The orig-
inal study uses “traits” to introduce individual variation into
traditionally-population-based modelling of plant ecology; the
research used in-house simulations that needed to be scaled up
to support further study. Unlike the other studies, the domain
model here is based on the original simulation. The study
uses critical-systems argumentation techniques to evaluate the
acceptability of the new simulation relative to the existing one
and to the underlying science.

1) Domain, domain modelling, and modelling for the sim-
ulation: The domain is the SIMBIOS research on trait-
based modelling of plant communities. The new simulation
study started by reverse-engineering a domain model from the
original simulation, represented by the C/C++ code and related
literature (e.g. [37]). The stakeholders collaborated to separate
the scientific underlying model from the implementation-
specific design decisions, but it has not always been possible
to separate out the science from the design of the original
simulation. As a result, the new domain model contains
features more akin to simulation modelling than in other
case studies. The main task in modelling the design of the
new simulation is translating class diagrams derived from the
original C/C++ code into models of (concurrent) occam-7
processes and synchronisations needed for the new simulation
[3].

2) Implementation: The new simulation was implemented
in occam-7r, which supports distribution and explicit, light-
weight concurrency. As in the lymphocyte migration study,
occam-7 implementation patterns facilitated aspects of the
simulation, such as visualisation and spatial layout [31].

3) Beyond implementation: Converting from a sequential
simulation to a process-oriented concurrent simulation raised
some interesting general issues. Process-oriented modelling
supported a naturalistic model of plants and their interaction
with the resource environment — plants were represented as
individual processes with separate threads of control, and
interacted directly with environmental processes. However,
the model of concurrency sometimes requires an unnatural
dialogue: a seed falling from a plant (a new process) must
ask a location (an environmental process) if it is attached to a
plant process; if the location has a plant, then the seed decides
to die (its process terminates).

In the course of re-engineering the domain and simulation
models, it became apparent that the original domain model
and the implementation were interdependent. In common with
other individual-based ecological models, the modelling was

predicated on a two-dimensional, grid-based environment [38].
This raises interesting issues: in principle, the implementation
should be free to adopt whatever simulation infrastructure
is considered appropriate, but here, the scientific background
assumes particular infrastructural features.

Considerable effort was put into identifying assumptions
and abstractions that were built into the model and simulation.
As in other studies, this improves the ability to validate the
scientific basis of the model, and to show where the simulation
diverges from reality.

4) Engineering issues: Working from a simulation in one
language to a new simulation in another does not remove
the need for the developer to acquire domain knowledge; the
level of understanding needed to create the new simulation
still involved the collaborative dialogues seen in other studies.
Indeed, an additional dialogue is needed to uncover the moti-
vation for features of the original design, and to determine if
these are necessary features of the new design.

The study devised a strategy for maintaining “adequate
equivalence” between simulations, agreed between stakehold-
ers [3], which has been worked in to an agreed “argu-
ment of adequate equivalence”, using the GSN argumentation
technique [39]. This technique is useful both in developing
collaborative trust and in supporting the extension of scope
and scale to be undertaken with the new simulation.

E. Auxin transport canalisation [40], [41]

Auxin is a plant growth hormone. In a plant stem, auxin
transport canalisation is a process that occurs between auxin
production sites and auxin sinks, and results in vascular
tissue development. This is a complex self-organising process,
regulated in the cells of the plant. The question of interest
here is the role of “PIN” proteins within cells in regulating
the direction of auxin transport (the “canalisation process”).

1) Domain and domain modelling: The domain is the
research Ottoline Leyser’s team at the University of York.
A doctoral study is attempting to simulate the process of
canalisation in a multi-cellular slice of plant stem. The do-
main model is derived from research papers and through co-
supervision by Ottoline Leyser. Discussion focused on gaps in
existing knowledge and hypotheses of PIN placement within
the cell. In modelling, PIN placement should use biologically
plausible local information, yet result in a global polarisation
in the direction of the emergent canal.

2) Modelling for the simulation: There were two phases of
modelling in this study. Initially, a UML-style class diagram
captured the important entities in the canalisation process,
including the emergent canal. State charts capture the auxin
transport process and express the different hypotheses for the
PIN placement process.

Subsequently, a “software simulation model” was derived.
This adds detail relating to simulation (for example, how space
is modelled, and user interface issues) and removes features
that are not directly implemented (for example, the auxin
transport canal no longer appears as a class, as it is a required
emergent property).

3) Implementation: The implementation is in Java. The
software follows the simulation model, with features to support
the agent-based style of specification, and to support visual-
isation. One important feature is the use of 2D cells, with
parameters modified to correspond to the 3D reality.

4) Beyond implementation and Engineering issues: The
main issue in this study was the number of system parameters
(concentrations, rates, etc), and, again, the fact that, in many
cases, their biological values are not well known. A meta-
heuristic (evolutionary) search over parameter values was per-
formed, and those that gave the “best” canalisation checked for
biological plausibility. The result showed that, in simulation,
the PIN proteins needed to stay in place on the cell membrane
for longer than originally thought before disassociating and
moving to a new site. Subsequently, experimental data has
shown that this is in fact the case in plants.

The simulation is slow, with tens of cells and thousands of
agents taking several hours to run. This impacts most on the
meta-heuristic search techniques.

VII. DISCUSSION

This paper set out to review state of the art engineering
techniques that can assist credible scientific simulation, but
much of the discussion is about development of trust. It is
pertinent that the critical systems techniques that we have
investigated to support modelling, analysis and validation of
complex systems simulations are also related to the develop-
ment of trust. For instance, safety critical systems engineering
must produce certifiable products; certification is dependent
on convincing expert reviewers that the system is engineered
and constructed to be safe. To do this, assumptions must
be stated, mutual understanding established, and, ultimately,
certifiers must trust the argument and evidence presented by
the developers.

Collaborative simulation development is a form of inter-
disciplinary research, and, like other such areas, there is an
investment to be made, which must be balanced against the po-
tential pay-back for both stakeholders. It is unlikely that a good
collaboration would develop if the scientist could see a cost-
effective conventional scientific way to address the questions
posed by their domain. In many of our studies, collaboration
has started cautiously, as a side-line from the main scientific
research. On the developers’ side, significant effort has gone
into developing adequate domain knowledge and scientifically-
robust recording and reporting. Techniques of analysis and
argumentation from critical systems engineering have proved
beneficial here, and help to attain a scientific level of precision
in the presentation of engineering products.

There is an obvious question about the wider feasibility
of the resources required to support collaborative simulation
in scientific research. This paper reviews scientific simulation
collaborations that range from small, focused studies that ad-
dress specific questions, to significant research contributions.
It is feasible to undertake the small-scale focused studies
as one-off exercises (note that one of those above is a 6-
month masters project). Larger studies involve doctoral or

post-doctoral researchers on both sides. In these cases, once
the initial commitment is made, the studies develop their
own momentum — initial modelling and simulation iterations
overcome the steepest learning curves on both sides, and the
marginal returns on extending simulation to related hypotheses
rise steeply as the collaboration develops.

Finally, to make explicit a point that is implicit throughout
the previous discussions, collaborative scientific simulations
do not produce simple answers. Complex systems are lay-
ered amalgamations of interacting components and systems;
they are hard to understand and hard to model. Systems-
based approaches to science are now widely practiced, and
well-engineered, scientifically-acceptable simulations have a
significant potential role, so long as scientists and developers
understand the limitations inherent in these tools.

We have not reviewed the considerable research literature on
trust — mostly from the security domain; it is possible that such
a review would help to understand how and why the activities
that we describe produce the necessary trusting collaboration.

As noted above, the CoSMoS project is working on prin-
cipled approaches to simulation and modelling of complex
systems. We are constructing guidelines for development,
focusing on the key stages of modelling and validation: the
studies reviewed here are helping to derive these guidelines,
and new studies are using the guidelines.

To support practical collaborative scientific simulation, tool
support for modelling, validation, and argumentation also
needs to be considered. Support is needed for identification
and analysis of assumptions and design decisions. State of the
art modelling and model management can be used to construct
integrated tool suites, but these need to respect the overarching
concerns of collaboration: communication among people from
different disciplines.

VIII. CONCLUSION

This paper presents a range of issues that inhibit and
promote the use of agent-based simulations in scientific study
of complex systems. We summarise earlier work on simulation
engineering that draws on simulation of conventional (decom-
posable) systems, and critical systems engineering work that
seeks to contain, rather than exploit, the emergent effects of
systems of systems. We highlight key engineering issues such
as validation, recording of design decisions, and identification
of assumptions.

From engineering concerns, the paper moves to an outline
of key stages in the collaborative development of scientific
simulations, discussing appropriate techniques, as well as the
ways in which mutual trust is maintained. Five studies are
summarised, to show how the issues identified relate to actual
scientific simulations.

ACKNOWLEDGMENT

This work is part of the CoSMoS project, EPSRC grants
EP/E053505/1 and EP/E049419/1. The authors would like to
to acknowledge the key role of all our scientific collaborators,
many of whom are identified in the text of the paper.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

M. Calder, S. Gilmore, and J. Hillston, “Modelling the influence of RKIP
on the ERK signalling pathway using the stochastic process algebra
PEPA,” Transactions on Computational Systems Biology VII, vol. 4230,
pp. 1-23, 2006.

A. Sadot, J. Fisher, D. Barak, Y. Admanit, M. J. Stern, E. J. A. Hub-
bard, and D. Harel, “Towards verified biological models,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2007.

T. Ghetiu, R. D. Alexander, P. S. Andrews, F. A. C. Polack, and J. Bown,
“Equivalence arguments for complex systems simulations - a case-
study,” in Workshop on Complex Systems Modelling and Simulation.
Luniver Press, 2009, pp. 101-140.

P. S. Andrews, F. Polack, A. T. Sampson, J. Timmis, L. Scott,
and M. Coles, “Simulating biology: towards understanding what the
simulation shows,” in Workshop on Complex Systems Modelling and
Simulation. Luniver Press, 2008, pp. 93-123.

F. A. C. Polack, P. S. Andrews, and A. T. Sampson, “The engineering
of concurrent simulations of complex systems,” in Congress on Evolu-
tionary Computation. 1EEE Press, 2009, pp. 217-224.

G. F. Miller, “Artificial life as theoretical biology: How to do real
science with computer simulation,” School of Cognitive and Computing
Sciences, University of Sussex, Tech. Rep. Cognitive Science Research
Paper 378, 1995.

E. D. Paolo, J. Noble, and S. Bullock, “Simulation models as opaque
thought experiments,” in Articial Life VII. MIT Press, 2000, pp. 497—
506.

M. Wheeler, S. Bullock, E. D. Paolo, J. Noble, M. Bedau, P. Husbands,
S. Kirby, and A. Seth, “The view from elsewhere: Perspectives on alife
modelling,” Artificial Life, vol. 8, no. 1, pp. 87-100, 2002.

J. Bryden and J. Noble, “Computational modelling, explicit mathemat-
ical treatments, and scientific explanation,” in Artificial Life X. MIT
Press, 2006, pp. 520-526.

H. Poincare, Science and Method. Dover Publications, 1958, transl. F.
Maitland, from the French, 1908.

W. L. B. Beveridge, The art of scientific investigation.
Educational, 1957.

P. B. Medawar, Induction and Intuition in Scientific Thought. Methuen,
1969.

J. Uchmanski and V. Grimm, “Individual-based modelling in
ecology: what makes the difference?” Trends in Ecology &
Evolution, vol. 11, no. 10, pp. 437-441, 1996. [Online]. Available:
http://dx.doi.org/10.1016/0169-5347(96)20091-6

P. Deuflhard, “From molecular dynamics to conformation dynamics in
drug design,” in Trends in Nonlinear Analysis, M. Kirkilionis, S. Krmker,
R. Rannacher, and F. Toni, Eds. Springer, 2003, pp. 269-288.

A. Hone, “On non-standard numerical integration methods for biological
oscillators,” in Workshop on Complex Systems Modelling and Simula-
tion. Luniver Press, 2009, pp. 45-66.

D. Bray, “Bacterial chemotaxis and the question of gain,” PNAS, vol. 99,
no. 1, pp. 7-9, 2002.

J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf, “Evaluation of
agent-oriented software methodologies — examination of the gap between
modeling and platform,” in AOSE 2004, ser. LNCS, vol. 3382. Sringer,
2004, pp. 126-141.

C. A. Iglesias, M. Garijo, and J. C. Gonzdlez, “A survey of agent-
oriented methodologies,” in International Workshop on Intelligent
Agents, Agent Theories, Architectures, and Languages, ser. LNAI, vol.
1555. Springer, 2000, pp. 317-330.

C. Bernon, M.-P. Gleizes, S. Peyruqueou, and G. Picard, “ADELFE:
A methodology for adaptive multi-agent systems engineering,” in Engi-
neering Societies in the Agents World, ser. LNCS, vol. 2577. Springer,
2003, pp. 70-81.

L. Padgham and M. Winikoff, “Prometheus: A methodology for devel-
oping intelligent agents,” in AOSE II1, ser. LNCS, vol. 2585. Springer,
2003, pp. 174-185.

R. Alexander, “Using simulation for systems of systems hazard analy-
sis,” Ph.D. dissertation, Department of Computer Science, University of
York, 2007.

O. Paunovski, G. Eleftherakis, and T. Cowling, “Framework for empiri-
cal exploration of emergence using multi-agent simulation,” in Workshop
on Complex Systems Modelling and Simulation. Luniver Press, 2008,
pp. 1-31.

Heinemann

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

R. G. Sargent, “Verification and validation of simulation models,” in
37th Winter Simulation Conference. ACM, 2005, pp. 130-143.

——, “The use of graphical models in model validation,” in /8th Winter
Simulation Conference. ACM, 1986, pp. 237-241.

F. Polack, S. Stepney, H. Turner, P. Welch, and F. Barnes, “An ar-
chitecture for modelling emergence in CA-like systems,” in European
Conference: Advances in Artificial Life, ser. LNAI, vol. 3630. Springer,
2005, pp. 433-442.

F. A. C. Polack, T. Hoverd, A. T. Sampson, S. Stepney, and J. Timmis,
“Complex systems models: Engineering simulations,” in ALife XI. MIT

press, 2008.

B. P Zeigler, “A theory-based conceptual terminology
for M&S VV&A;” Arizona Center for Integrative Mod-
eling and Simulation, Tech. Rep. 99S-SIW-064, 1999,

www.acims.arizona.edu/PUBLICATIONS/publications.shtml.

H. Stanislaw, “Tests of computer simulation validity: what do they
measure?” Simulation and Gaming, vol. 17, no. 2, pp. 173-191, 1986.
M. Read, P. S. Andrews, J. Timmis, and V. Kumar, “A domain model of
Experimental Autoimmune Encephalomyelitis,” in Workshop on Com-
plex Systems Modelling and Simulation. Luniver Press, 2009, pp. 9-44.
——, “Using UML to model EAE and its regulatory network,” in
International Conference on Artificial Immune Systems, ser. LNCS, vol.
5666. Springer, 2009.

P. S. Andrews, A. T. Sampson, J. M. Bjorndalen, S. Stepney, J. Timmis,
D. N. Warren, and P. H. Welch, “Investigating patterns for the process-
oriented modelling and simulation of space in complex systems,” in
Artificial Life XI. MIT Press, 2008.

A. T. Sampson, J. M. Bjgrndalen, and P. S. Andrews, “Birds on the Wall:
Distributing a process-oriented simulation,” in Congress on Evolutionary
Computation. 1EEE Press, 2009, pp. 225-231.

A. J. Fliigge, J. Timmis, P. Andrews, J. Moore, and P. Kaye, “Modelling
and simulation of granuloma formation in visceral Leishmaniasis,” in
Congress on Evolutionary Computation. 1EEE Press, 2009, pp. 3052—
3059.

G. C. Balan, C. Cioffi-Revilla, S. Luke, L. Panait, and S. Paus,
“MASON: A Java multi-agent simulation library,” in Agent 2003
Conference. Argonne National Laboratory, 2003. [Online]. Available:
http://agent2002.anl.gov/Agent2003.pdf

S. Luke, C. Cioffi-Revilla, L. Panait, and K. Sul-
livan, “MASON: A new multi-agent simulation toolkit,”
in Swarmfest Workshop, 2004. [Online]. Available:

http://cs.gmu.edu/ eclab/projects/mason/publications/SwarmFest04.pdf
V. Kumar, J. Maglione, J. Thatte, B. Pederson, E. Sercarz, , and E. S.
Ward, “Induction of a type 1 regulatory CD4 T cell response following
V38.2 DNA vaccination results in immune deviation and protection
from experimental autoimmune encephalomyelitis,” International Im-
munology, vol. 13, no. 6, pp. 835-841, 2001.

J. Bown, E.Pachepsky, A. Eberst, U. Bausenwein, P. Millard, G. Squire,
and J. Crawford, “Consequences of intraspecific variation for the struc-
ture and function of ecological communities: Part 1. model development
and predicted patterns of diversity,” Ecological Modelling, vol. 207, no.
2-4, pp. 264-276, October 2007.

U. Berger, C. Piou, K. Schiffers, and V. Grimm, “Competition among
plants: Concepts, individual-based modelling approaches, and a proposal
for a future research strategy,” Perspectives in Plant Ecology, Evolution
and Systematics, vol. In Press, Corrected Proof, 2008.

T. P. Kelly, “Arguing safety — a systematic approach to managing safety
cases,” Ph.D. dissertation, Department of Computer Science, University
of York, 1999, yCST 99/05.

P. Garnett, S. Stepney, and O. Leyser, “Integrative hybrid modelling
of plant shoot branching,” in Workshop on Functional Structural
Plant Models, 2007, pp. 9.1-9.5. [Online]. Available: http://www-
users.cs.york.ac.uk/ susan/bib/ss/nonstd/fpsm07.pdf

——, “Towards an executable model of auxin transport canalisation,”
in Workshop on Complex Systems Modelling and Simulation. Luniver
Press, 2008, pp. 63-91.

