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Abstract

The engineering of systems that are acceptably correct is a hard problem. On the one hand, semi-formal
modelling approaches that are used in practical, large-scale system development, such as the UML, are not
amenable to formal analysis and consistency checking. On the other hand, formal modelling and analysis re-
quires a level of competence and expertise that is not common in commercial development communities, and
formal approaches are not well integrated with the rest of the development process. This paper advocates
an approach to building engineering environments (or frameworks) for rigorous model-driven development
(MDD) that is based on combining semi-formal notations with formal modelling languages. To support
the approach, there is a formal language of templates, which captures patterns of formal development and
enables an approach to proof with templates. This allows the construction of catalogues of patterns (rep-
resented as templates) and meta-theorems for frameworks. The paper presents and illustrates a framework
for sequential systems that combines UML and the formal language Z.

Keywords: UML, MDD, Z, patterns, templates.

1 Introduction

Model-driven development (MDD) [17] tries to raise the level of abstraction by

electing models, rather than code, as primary artifacts of software development.

Models describe the domain and required behaviour of a system, being useful in

the stages of construction and maintenance of software. The analysis of models

uncovers flaws and brings up fundamental issues related with the requirements and

design of the system. It is in the early stages of development, when code does not

yet exist, that model analysis is most rewarding, exposing problems that cost much

more to fix if not discovered until later.
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Mainstream software engineering uses semi-formal techniques for MDD. 4 These

are based on diagrammatic notations, which are used to describe different aspects of

systems. It is their graphical nature and their pragmatic approach to development

that makes them popular. In fact, semi-formal notations are intuitive and provide

easy to read sketches of different aspects of systems. Furthermore, some semi-formal

notations, such as UML and entity-relationship diagrams, are de facto modelling

idioms among software engineers. However, it is in the details that we find their

weaknesses. Semi-Formal notations lack a formal semantics, thus: models are likely

to be ambiguous, inconsistent and not amenable to mechanical semantic analysis.

The semantics issue is aggravated by the fact that semi-formal notations have many

semantic interpretations: the choice of semantics becomes a matter of convenience,

developers use one semantics or the other depending on the kind of problem at hand.

Moreover, not all properties of systems can be expressed with diagrams; usually,

developers resort to textual notations to describe detailed system constraints.

Formal techniques, on the other hand, are used mostly in niche domains that

require rigorous development (e.g. safety-critical systems). Formal modelling lan-

guages (e.g. Z, B, CSP, Alloy) are based on mathematics and formal logic and they

embody years of research and best practice in formal development. The resulting

models are precise, unambiguous, and amenable to formal analysis. However, for-

mal modelling and analysis requires a level of competence and expertise that is not

common in commercial development communities, and formal approaches are not

well integrated with the rest of the development process.

There have been numerous attempts to introduce formal techniques in main-

stream model development [2]. Some approaches propose a translation from dia-

grams into a formal modelling language, but give no support to the analysis itself

(e.g. [13,14,18]); to explore analysis users are required to be experts in the formal

language. Other approaches spend effort in developing yet another special-purpose

formal language, rather than building on existing mature work (e.g. [15,7,8]). Most

approaches do not take into account the multiple semantics of semi-formal nota-

tions (see [2] for examples); however, developers may want alternative semantics

for certain high-level modelling concepts, even within the same development, so, to

cope with this, a flexible and practical approach to define semantics of semi-formal

notations is required.

To tackle these problems, in [2] we draw on the ideas of pattern-based devel-

opment [10] and problem-driven methods [11] to advocate an approach based on

frameworks for rigorous, but practical MDD. Our MDD frameworks are environ-

ments for engineers to construct, analyse and refine models of software systems

that are designed to address the needs of a specific problem domain. They use

diagrams and formal modelling languages, with the diagrams acting as a graphi-

cal interface for the formality that lies beneath. The aim is to hide the formality

completely, but this is not always possible.

To support the construction of frameworks, we develop the Formal Template

Language (FTL) [2,6], a language of templates enabling proof with template repre-

4 They are called semi-formal because their notations have a formal syntax, but no formal semantics.
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sentations. FTL allows the representation of patterns of formal development (e.g.

a model structure) and to reason at the pattern-level using meta-proof (e.g. cal-

culating a pre-condition or proving an initialisation theorem at the pattern level)

to establish meta-theorems. Templates and meta-theorems are assembled in the

frameworks catalogue, so that every pattern instance is generated by instantiating

a template, and, if applicable, the proof of consistency for the pattern instance is

simplified (often to the trivial case) by instantiating a meta-theorem. [2] develops a

framework for sequential systems that combines the modelling languages UML and

Z — the UML + Z framework.

This paper gives an overview of the general approach to build generative frame-

works advocated in [2] and the UML + Z framework in particular, also developed

in [2]. It illustrates a generative model development with the UML +Z framework,

where the Z model is generated from templates of the UML + Z catalogue. The

paper shows how published results related to the research reported here can be used

in the wider context of the UML + Z framework. In particular, it shows how the

language FTL developed in [2,6] can be used to build a catalogue of templates and

meta-theorems for UML+ Z , how the catalogue can be used to generate a Z model

with the object-oriented (OO) style developed in [2,3] by applying UML + Z to a

simpler version of the case study developed in [4], and how the resulting UML + Z

model can be formally analysed by using the snapshot analysis technique developed

in [2,5].

The following starts by giving a brief overview of FTL and its meta-proof ap-

proach. Then, it gives an overview of the method proposed to build frameworks in

general and the UML+Z framework in particular. Next, it illustrates the UML+Z

framework by applying it to a simple problem. Finally, it discusses the results of the

research presented here, compares it with related work, and makes the conclusions.

2 FTL and Meta-proof

Templates capture the form (or shape) of sentences of some language, generate,

upon instantiation, sentences of that language whose form is as prescribed by the

template, and can be used to describe those commonly occurring structures that

make a pattern. Our Formal Template Language (FTL)[6,2] is a language to express

templates that enables proof with template representations.

For example, FTL can be used to capture the state of a Z promoted ADT [20]:

P == [ ids : ID ; st : ID �→ S |

dom st = ids ∧ I ]

This introduces five placeholders, P , ids, ID , st , S and I , which are to be replaced

by some text values when instantiated. This template can be instantiated to yield:

Bank == [ accs : ACCID ; accSt : ACCID �→ Acc |

dom accSt = accs ∧ true ]
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Any formal sentence or sentences of some formal language (here Z) can be rep-

resented as templates expressed in FTL. Is it possible to reason (or do proof) with

these template representations? If it were possible, that would have substantial

practical value. It would mean that reuse could be brought to the level of proofs:

meta-theorems for certain templates would be proved once, but could be applicable

every time those templates are instantiated. This approach of proof with templates

is called meta-proof. First, the practical value of meta-proof is motivated with an

example.

In Z, the introduction of a description of the state space of an abstract data

type (ADT), such as Bank above, into a specification, entails a demonstration that

the description is consistent: at least one state satisfying the description does exist.

This involves defining the initial state of the ADT (the so-called initialisation) and

proving that the initial state does exist (the initialisation theorem). The initialisa-

tion of Bank assumes that in the initial state there are no accounts:

BankInit == [ Bank ′ | accs ′ = ∅ ∧ accSt ′ = ∅ ]

To demonstrate the consistency of Bank , one is required to discharge the conjecture

�? ∃ BankInit • true, which is automatically discharged in the Z/Eves theorem

prover [16].

This proved theorem applies to the Bank ADT only. The question is: does it

apply to all promoted ADTs that are similar in form to Bank? And if it does, can

this result be proved once and for all, so that developers don’t have to do it again

and again?

The empty initialisation of a promoted ADT and the associated conjecture is

represented with templates :

P Init == [ P ′ | ids ′ = ∅ ∧ st ′ = ∅ ]

�? ∃ P Init • true

We can reason with these templates by analysing their well-formed instanti-

ations. In those cases, P , id and st hold names, ID and S are sets, and I is a

predicate. By expanding the template schemas using the laws of the schema calcu-

lus, and apply the one-point rule (see proof above), we get the formula,

dom ∅ = ∅ ∧ ∅ ∈ ID ∧ ∅ ∈ ID �→ S

∧ I ′[ ids ′ := ∅, st ′ := ∅]

which reduces to, I ′[ ids ′ := ∅, st ′ := ∅]. 5 If I is instantiated with

true, then the formula reduces to true. This establishes two meta-theorems, where

the latter is a specialisation (or a corollary) of the former, that are applicable

to all promoted ADTs instantiated from these templates. The specialised meta-

theorem gives the nice property of true by construction: whenever these templates

5 P [x := val ] denotes the Z expression that results from substituting the free variable x in P by the value
val . We resort to this special notation because in Z the usual logical substitution operator symbol, /, is
used to denote variable renaming in a schema reference.
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are instantiated, such that I is instantiated with true, then the initialisation

conjecture is simply true. Even when I is not instantiated with true, the formula

to prove is simpler than the initial one.

The argument outlined in this meta-proof is rigorous and valid, but it is not

formal. To follow a formal approach towards meta-proof, a formal semantics has

been given to FTL [6]. This allows the definition of proof rules for Z template

expressions, which are proved by appeal to the semantics of FTL [6].

3 The UML + Z framework

In [2], we develop a framework for modelling sequential systems in the object-

oriented paradigm, which is based on the modelling languages UML and Z. The

UML + Z framework (Figure 1) uses UML class, state and object diagrams, which

are represented in a Z semantic domain.

Fig. 1. Models in the UML + Z framework.

In the following, we discuss the three main components of MDD frameworks,

using the UML + Z framework.

3.1 Modelling

The modelling components of frameworks are defined following the denotational

approach of semantic definitions [19]. This includes a set of diagram types, which

constitute the syntactic domain (every diagram of the framework’s models is an

instance of these diagram types), a catalogue of FTL templates, which capture the

structure of the semantic domain (every formal sentence of a model is generated

by instantiating a template from the catalogue), and the semantic mapping, which

maps diagrams to template instantiations.

In the UML + Z framework [2], there is a Z semantic domain to express OO

models [3] so that every diagram of a UML+Z model is represented in this semantic

domain. There is also a catalogue of templates and meta-theorems related to model

consistency, which capture the structure of the Z semantic domain; every Z sentence

of a UML + Z model is generated by instantiating one of the templates of the

catalogue. The formal definition of the semantic mapping of UML + Z is left for

future work; currently it is performed by hand.
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3.2 Analysis

The analysis component defines an approach to analyse the framework’s models.

[2,5] defines an approach to analyse UML + Z models based on formal proof and

Catalysis [9] snapshots: snapshot-based validation.

This technique is based on drawing snapshots (object diagrams). A snapshot

describe one state of the modelled system. Snapshots can be used in pairs to describe

the effects of an operation upon the state of the system: one snapshot describes

the before state, the other the after state. The analysis consists of representing

snapshots in the Z semantic domain, and then proving, in the Z world, that the

snapshot or snapshot pair is satisfied by the model of the system. In the examples

used here, these proofs are performed using the Z/Eves theorem prover [16].

3.3 Refinement

The refinement component defines a strategy to refine the framework’s models, and

includes a catalogue of model transformations (refactorings). The transformations

of the catalogue are expressed in FTL.

The refinement component of UML + Z is left for future work. The aim is to

define a strategy to refine UML + Z models, based on the theory of refinement for

Z [20], and some example model transformations. The idea is to use FTL to capture

refactorings and to explore meta-proof to reduce the proof overhead associated with

these refactorings. The process is similar to the one followed in modelling: (a)

refactorings and associated correctness conjectures are captured with templates;

(b) meta-proof is applied upon these representations to simplify (and in some cases

fully prove) correctness conjectures. This will allow model transformations to be

carried out by instantiating templates: the associated correctness proofs can then

be simplified to smaller proofs after applying the associated meta-theorems.

4 Illustration

This section illustrates the UML + Z framework with a use case of a trivial system

to track orders that are placed on products. This use case is a simpler version of

the one modelled in [4]. For reasons of space, only illustrative parts of the model

are given. Further details about a model for this case study can be found in [4].

First, we build a model of the system, and then we analyse it with snapshots.

4.1 Modelling

A UML + Z model is divided into a UML part and a Z one. The UML part of the

ordering system comprises one class diagram and one statechart.

Figure 2 presents the class diagram of the system. There are two classes, Order

and Product, each representing a set of objects (the orders and products of the sys-

tem). Each Order object has a quantity attribute, referring to the ordered quantity

of a product, and each Product object has a stock attribute, recording how much
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of the product is available in stock. Order and Product are related through an as-

sociation, which says that each order refers to exactly one product, and that each

product may be referred by many orders.

Order

 quantity: NAT

Product

 stock: NAT

References

1*

Fig. 2. The UML class diagram of the trivial ordering system.

The objects of Order have distinct states that can be identified. This is described

in the UML state diagram (or statechart) of Figure 3. When an Order object

is created its state is pending . When invoiced, an Order changes from the state

pending to the state invoiced .

pending invoiced
invoice()

cancel()

Fig. 3. The UML state diagram for the class Order .

The following presents a partial Z model of the ordering system for each view of

the OO Z style (structural, intensional, extensional and relational; see [3,2] for fur-

ther details). The Z model is generated from templates of the UML + Z catalogue,

by instantiating them with information coming from the diagrams and extra infor-

mation coming from the user. Appendix B presents the templates used to generate

the Z presented here. The templates use Z generics from the UML + Z toolkit (the

ones used here are given in Appendix A).

The Z generated from templates is referred to in the following text with the

terminology:

• fully generated — the Z is fully generated from templates with instantiation

information coming from diagrams. If we had a tool, the Z would be automatically

generated.

• partially generated — the instantiation depends on information not coming from

UML diagrams and that needs to be explicitly added by the user (usually con-

straints not expressible diagrammatically).

4.1.1 Structural View

The definitions from this view are fully generated. We need to define the set of all

possible object atoms of each class of the model. So, first, we define the set of all

classes (represented as atoms) of a model, by instantiating template T1:

CLASS ::= OrderCl | ProductCl
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There is a set of all object atoms, OBJ , which is defined in the toolkit (Ap-

pendix A). The set of all possible object atoms of a class (a subset of OBJ ) is given

by the function O , which is defined by instantiating template T2:

O : CLASS → 1 OBJ

disjointCLASS � O

Using this function, the set of objects of, say, Order can be obtained with the

expression O OrderCl .

4.1.2 Intensional View

This view defines the state space and initialisation of the objects of each class.

The intension of Order is fully generated from template T3, for classes with a state

diagram: 6

There is a Z type representing the possible states of Order, as defined in the

state diagram:

OrderST ::= pending | invoiced

The state space includes the fields quantity (coming from the UML class dia-

gram), and state (holds the current state of an object as defined in the state dia-

gram). The initialisation sets the state field to the initial state of the state diagram,

and quantity to some value received from the environment:

Order

state : OrderST

quantity :

true

OrderInit

Order ′

quantity? :

state ′ = pending

quantity ′ = quantity?

The consistency of this definition is checked by proving two conjectures (also

generated from the template). The first, the well-formedness conjecture,

�? ∀ quantity? : • quantity? ∈

is proved automatically in Z/Eves. The second, the initialisation conjecture,

�? ∃OrderInit • true

is true by construction by appeal to meta-theorem init-int-ni of the template.

6 The intension of Product would be instantiated from the template for classes without state diagram,
see [2] for details.
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4.1.3 Extensional View

This view defines the set of existing objects of a class. The state extension and

initialisation of Order is fully generated from template T4:

SOrder == SCL[O OrderCl ,Order ][sOrder/os, stOrder/oSt ]

SOrderInit == [ SOrder ′ | sOrder ′ = ∅ ∧ stOrder ′ = ∅ ]

This definition uses the SCL generic from the ZOO toolkit (Appendix A). The

initialisation conjecture is true by construction by meta-theorem init-ext of the tem-

plate.

We now define the operation to create new Order objects (also fully generated).

First, there is the definition of the new promotion frame for Order, which is generated

from template T5:

ΦSOrderNew

ΔSOrder

Order ′

oOrder ! : O OrderCl

oOrder ! ∈ O OrderCl \ sOrder

sOrder ′ = sOrder ∪ {oOrder !}

stOrder ′ = stOrder ∪ {oOrder ! �→ θOrder ′}

The operation to create new Order objects is generated from template T6:

SΔOrderNew == ∃ Order ′ • ΦSOrderNew ∧ OrderInit

The meta-theorems of the template are used to calculate the precondition of

this operation, and to prove that the operation is consistent. The precondition is

obtained by instantiating meta-theorem pre-ext-nop of the template:

pre SΔOrderNew = [ SOrder ; quantity? : | O OrderCl \ sOrder 
= ∅ ]

The consistency conjecture is always true by meta-theorem epre-ext-nop.

4.1.4 Relational View

This view defines the Z representation of UML associations. The state space, ini-

tialisation and association link schema are fully generated from template T7. The

state space definition and initialisation for the association References are:

AReferences == [ rReferences : O OrderCl ↔ O ProductCl ]

AReferencesInit == [ AReferences ′ | rReferences ′ = ∅]

The initialisation conjecture is true by construction by appeal to meta-theorem

assoc-init.
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The link schema links the objects referred to in an association to existing objects

(objects of class extensions) and states the association multiplicity constraint. This

is used to build the system structure in the global view (below). The required

constraints of this schema are expressed using the mult generic of the UML + Z

toolkit (see Appendix A):

LinkAReferences

AReferences; SOrder ; SProduct

mult(rReferences, sOrder , sProduct ,mo, ∅, ∅)

This says that the association References is a many-to-one (mo) association. The last

two arguments to mult (here they take the value ∅) are used when the association

has user-defined sets of multiplicity constraints (e.g. 1 . . 5).

When a new order is entered into the system, there is a tuple, made up of the new

order and the ordered product, that needs to be added to the association relation.

This is described by an operation that adds a new tuple to the association, which

is fully generated from template T8:

AΔReferencesAdd

Δ AReferences

oOrder? : O OrderCl

oProduct? : O ProductCl

rReferences ′ = rReferences ∪ {oOrder? �→ oProduct?}

The precondition of this conjecture is given by meta-theorem assoc-pre-atop of

the template; it gives a true predicate (it is a total operation). The consistency

conjecture is true by construction (meta-theorem assoc-pre-atop).

4.1.5 Global View

This view defines the system as a whole. The state space and initialisation of

the system is generated from template T9. In this case, as there are no global

constraints, this is fully generated. There is a schema representing all the system

constraints, as there are no global constraints this includes just the association link

schema:

SysConst == LinkAReferences

The system state space is defined by including all classes and associations, and

the system constraint schema:

System

SOrder ; SProduct ; AReferences

SysConst
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The system initialisation is the initialisation of the classes and associations of

the system:

SysInit == System ′ ∧ SOrderInit ∧ SProductInit ∧ AReferencesInit

The system initialisation conjecture,

�? ∃ SysInit • true

is true by construction by meta-theorem sys-init-ni of template T9.

We now define the new order system operation, which is partially generated.

First, we defined the frame of the operation by instantiating template T10:

ΨNewOrder == ΔSystem ∧ ΞSProduct

The actual system operation creates a new object of the class Order, and adds

a link (or tuple) with the object to an association. This kind of system operations

is captured by template T11; the instantiation of this template for this system

operation gives:

SysNewOrder == ΨNewOrder ∧ SΔOrderNew

∧ AΔReferencesAdd [oOrder !/oOrder?]

The meta-theorems of the template are used to calculate the operation’s pre-

condition and to prove the operation’s consistency conjecture. Using meta-theorem

pre-sop-newadd and Z/Eves, the precondition of the operation is:

[System; quantity? : ; oProduct? : O ProductCl |

O OrderCl \ sOrder 
= ∅ ∧ oProduct? ∈ sProduct ]

The consistency conjecture (also generated from the template),

�? ∃ preSysNewOrder • true

reduces by meta-theorem epre-sop-newadd-ncs to something that is easily provable

in Z/Eves.

The model presented here has been generated from two diagrams by instantiating

templates, and its consistency proved by instantiating template conjectures and

associated meta-theorems, which are used to discharge the proofs. It is now time

to check if the model satisfies the system requirements.

4.2 Analysis

The model of the system is now analysed using snapshots. First, single snapshots

are used to analyse the state space, and then snapshot pairs are used to analyse

system operations.
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4.2.1 State space

State space analysis is illustrated with a requirement of the ordering system that

says that each order must reference one product only. To check that the model

satisfies this requirement, we draw a snapshot of a negative case, that is, it describes

a state that should not be accepted by the model of the system. Figure 4 presents

a snapshot with an Order object referring to two Product objects.

O1 : Order

PX : Product

PY : Product

Fig. 4. Snapshot of an Order associated with two products.

To check whether the model accepts this snapshot or not, first the snapshot is

represented in Z, and then a conjecture is proved. The representation of a snapshot

is fully generated by instantiating some template of the full catalogue (see [2]). A

partial representation of the snapshot in Z is:

StSnap1

System

sOrder = {oO1} ∧ stOrder = {oO1 �→ O1}

sProduct = {oPX , oPY } ∧ stProduct = {oPX �→ PX , oPY �→ PY }

rReferences = {oO1 �→ oPX , oO1 �→ oPY }

(Here, System is the Z schema that defines the system as whole, see above.)

As the snapshot should not be accepted by the system, we prove the conjecture

(the negation of the positive case):

�? ¬ (∃ StSnap1 • true)

And this conjecture is true (it has been proved in Z/Eves [16]), meaning that the

state described by the snapshot is not accepted by the model of the system.

4.2.2 Operations

We now analyse the model of the system operation to add orders to the system.

Figure 5 describes two snapshot pairs. In the first, before the operation there is a

product with no orders, and after the operation there is a new order in the system,

which references the product. In the second snapshot pair, the before state is the

state with the product being referenced by one order, and the after state is the

product being referenced by two orders. These two state transitions should be

accepted by the system.

Snapshots are represented in Z as shown above (instantiated from templates).

The validity of a snapshot-pair is checked by proving two conjectures. The first

demonstrates that the before state snapshot and inputs to the operation describe a
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O2 : Order

quantity = 2
state = pending

O1 : Order

quantity = 2
state = invoiced

PX : Product

stock = 1

O1 : Order

quantity = 2
state = invoiced

PX : Product

stock = 1

NewOrder(oProduct? = PX, quantity? = 2)

Fig. 5. Snapshot for operation new order, one order made on a product.

valid state of the system that satisfies the operation’s precondition:

�? ∃ preSysNewOrder • BOpSnap1 ∧ IOpSnap1

The second conjecture demonstrates that the snapshot pair describes a valid state

transition as specified by the system operation:

�? ∃ SysNewOrder • BOpSnap1 ∧ IOpSnap1 ∧ AOpSnap1 ′

All the required conjectures for the two snapshot pairs given above are provable

in Z/Eves: the operation new order satisfies the state transitions described by the

snapshot. See [5,4] for other examples of analysis with snapshots.

5 Discussion

The MDD frameworks advocated here aim to hide the formal language from the

user. In UML + Z this could not be fully achieved. At least one expert is required

to write Z operation specifications and invariants that are not expressible in terms

of UML diagrams. Nevertheless, the UML + Z framework allows non-Z experts

to engage in the modelling and analysis effort, by drawing class, state and object

diagrams.

The semantics problem of semi-formal notations is addressed by considering one

semantics that is suitable to the problem domain targeted by the framework. If a

framework requires variants of a modelling concept, then these can be defined as

UML stereotypes, each given a unique semantics.

The snapshot-based validation still requires creativity in the construction of a set

of suitable snapshots “test cases”. However, this is done in the diagram language,

not the formal language. The analysis is then done formally.

The use of template patterns and frameworks tailored to problem domains helps

to foster knowledge reuse. MDD frameworks encapsulate knowledge and experience

in the form of patterns (captured with templates); this grows as the framework is

applied to more problems. The same body of work can be reused and adapted to
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meet the needs of other problems (either within the same framework, or for new

frameworks exploring new problem domains).

Our pattern-based approach, based on FTL and meta-proof, contributes to make

formal methods more practical. FTL allows the representation of structural pat-

terns, so that they can be reused (or adapted to a context) by instantiation. Meta-

Proof allows reasoning at the level of patterns to establish meta-theorems so that

the same reasoning effort can be reused. In UML+Z , all Z is generated by template

instantiation, and the proof effort associated with consistency-checking is reduced

by applying meta-theorems.

Tool support would bring MDD frameworks into full bloom. Currently, tem-

plates are instantiated by hand and users need to switch from the UML tools to

Z tools. However, we envisage a tool that could automate most of the process,

minimising the exposure of developers to Z tools.

6 Related Work

The work presented here borrows ideas from several sources. The idea of devel-

opment based on patterns comes from the work on design patterns [10], which, in

turn, is inspired by the work of Christopher Alexander in Architecture [1].

The idea of problem-driven methods and frameworks that are tailored to problem

domains is inspired in the work of Michael Jackson [11,12], who advocates that

different problems demand different methods and the use of different concepts and

notations.

A work that is close to ours is Catalysis [9], a modelling method based on the

UML. Like Catalysis, we also use the idea of model frameworks and templates to

make models reusable assets, the ideas of model refinement with UML diagrams,

and the idea of defining semantics of UML constructs adapted to the context in

which they are used.

Our approach differs from these works in that it is fully formal. Our frameworks

are designed to integrate formal and semi-formal modelling languages for the pur-

pose of rigorous development. UML + Z for instance is designed for the combined

use of UML and Z. Another key feature is that our approach is based on FTL, a

formal language to express patterns, which is used to build a catalogue of templates

for a a framework. Such a catalogue has been illustrated above in the context of

UML + Z .

7 Conclusions

This paper advocates an approach to build frameworks for rigorous MDD. To sup-

port this approach, the paper presented a language of templates (FTL) that enables

proof with templates (meta-proof). FTL is used to construct catalogues of patterns

(expressed as templates) and meta-theorems for frameworks; so that pattern in-

stances are generated by instantiating templates and some properties of patterns

can be proved at the pattern-level, so that proof at the instance level is either simpli-

N. Amálio et al. / Electronic Notes in Theoretical Computer Science 191 (2007) 3–2316



fied or not required (true by construction). The paper also presents and illustrates a

framework for sequential systems that combines the formal specification languages

UML and Z . In the illustration, a formal model has been built by instantiating

templates from a catalogue, the consistency of the model has been demonstrated

by using meta-theorems of the catalogue, and the model has been analysed based

on snapshots and formal proof (the analysis strategy of the UML + Z framework).
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A Condensed Z Generics Toolkit

This appendix contains the Z generics that are used in the illustration in section 4.

For the full toolkit see [2].

[OBJ ]

OBJ 
= ∅

SCL [OS ,OST ]

os : OS

oSt : OS �→ OST

dom oSt = os

MultTy ::= mm | mo | om | mzo | zom | oo | zozo | zoo | ozo | ms | sm | ss

| so | os | szo | zos

[X ,Y ]

mult : ((X ↔ Y ) × X × Y × MultTy × × )

∀ r : X ↔ Y ; sx : X ; sy : Y ; s1, s2 : •

(mult(r , sx , sy ,mm, s1 , s2)) ⇔ r ∈ sx ↔ sy

∀ r : X ↔ Y ; sx : X ; sy : Y ; s1, s2 : •

(mult(r , sx , sy ,mo, s1 , s2)) ⇔ r ∈ sx → sy

...
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B Condensed Catalogue of Templates

This appendix contains the templates used in the illustration in section 4. For the

full template catalogue see [2].

Template T1 (Set of class atoms)

CLASS ::= Cl Cl (|,””)

Template T2 (Set of objects of a class)

O : CLASS → 1 OBJ

disjoint(CLASS � O )

Template T3 (Intensional state space and initialisation with state dia-

gram)

Cl ST ::= initSt | oSt

Cl

at : atT

state : Cl ST

CLI

Cl Init

Cl ′

ii ? : iiT

at ′ = iv

state′ = initSt

�? ∀ ii ? : iiT • iv ∈ atT

�? ∃ Cl Init • true

Meta-Theorems.

Γ � ∃ Cl Init • true
[ int-init ]

Γ � ∃ ii ? : iiT •

CLI ′ [ at ′ := iv , state′ := initSt ]

Γ; CLI � ∃ Cl Init • true [init-int-ni]

true [ atT �= ∅ ]

Template T4 (Extensional state space and initialisation)
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S Cl == SCL[O Cl Cl , Cl ][s Cl /os, st Cl /oSt ]

S Cl Init == [ S Cl ′ | s Cl ′ = ∅ ∧ st Cl ′ = ∅ ]

Meta-Theorems.

Γ � ∃ S Cl Init • true [init-ext]

true

Template T5 (New promotion frame)

ΦS Cl N

ΔS Cl

Cl ′

o Cl ! : O Cl Cl

o Cl ! ∈ O Cl Cl \ s Cl

s Cl ′ = s Cl ∪ {o Cl !}

st Cl ′ = st Cl ∪ {o Cl ! �→ θ Cl ′}

Template T6 (New class operation)

SΔ Cl New == ∃ Cl ′ • ΦS Cl N ∧ Cl Init

Meta-Theorems.

� pre SΔ Cl New [pre-ext-nop]

[ S Cl ; ii ? : iiT | O Cl Cl \ s Cl �= ∅ ]

� ∃ pre SΔ Cl New [epre-ext-nop]

true

Template T7 (Association state space and initialisation)

A As == [ r As : O ClA Cl ↔ O ClB Cl ]

A As Init == [ A As ′ | r As ′ = ∅ ]

LinkA As

A As ; S ClA ; S ClB

mult(r As , s ClA , s ClB , multE , MS1 , MS2 )
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Meta-Theorems.

Γ � ∃A As Init • true [assoc-init]

true

Template T8 (Association, add tuple operation)

AΔ As Add

ΔA As

o ClA ? : O ClA Cl

o ClB ? : O ClB Cl

r As ′ = r As ∪ {o ClA ? �→ o ClB ?}

Meta-Theorems.

pre AΔ As Add • true [assoc-pre-atop]

[ A As ; o ClA ? : O ClA Cl ; o ClB ? : O ClB Cl ]

Γ � ∃ pre AΔ As Add • true [assoc-epre-atop]

true

Template T9 (System state space, initialisation and constraints)

Const SConst

S ConstCl ; A ConstAs

Const

SysConst == LinkA As ∧ Const SConst

System

S Cl ; A As

SysConst

SysInit == System ′ ∧ S Cl Init ∧ A As Init

�? ∃ SysInit • true
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Meta-Theorems

Γ � ∃ SysInit • true [sys-init]

Γ � Const ′ [ s Cl ′ := ∅, st Cl ′ := ∅ , r As ′ := ∅ ]

Γ; Const � ∃ SysInit • true [sys-init-ni]

true

Template T10 (System operation frame)

Ψ sOp == ΔSystem ∧ ΞS fCl ∧ ΞA fAs

Template T11 (System operation new object and add tuple)

Sys sOp == Ψ sOp ∧ OpConst opConst ∧ SΔ nCl New

AΔ aAs Add [o nCl !/o nCl ?]

�? { Cl } = { nCl , fCl } ∧ { As } = { aAs , fAs }

�? ∃ pre Sys sOp • true

Meta-Theorems

pre(Ψ sOp ∧ OpConst opConst ∧ SΔ nCl New

∧ AΔ aAs Add [o nCl !/o nCl ?])
[ pre-sop-newadd ]

System ∧ pre SΔ nCl New

∧ ∃ o nCl ! : O nCl Cl ; nCl ′; A aAs ′ •

(SysConst ′ ∧ OpConst opConst )[

θS fCl ′ := θS fCl

, θA fAs ′ := θA fAs ,

s nCl ′ := s nCl ∪ {o nCl !},

st nCl ′ := st nCl

∪{o nCl ! �→ θ nCl ′} ]

∧ nCl Init

∧ AΔ aAs Add [o nCl !/o nCl ?]
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� Const ∧ opConst ,

� ∃ pre(Ψ sOp ∧ OpConst opConst

∧ SΔ nCl New

∧ AΔ aAs Add [o nCl !/o nCl ?]) • true
[ epre-sop-newadd-ncs ]

pre SΔ nCl New

� ∃ o nCl ! : O nCl Cl ; A aAs ′ •

LinkA aAs [ θS fCl ′ := θS fCl

s nCl ′ := s nCl ∪ {o nCl !} ]

∧ AΔ aAs Add [o nCl !/o nCl ?]
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