
Understanding Multi-Transputer Execution

Susan Stepney

GEC-Marconi Research Centre, UK.

ABSTRACT
An understanding of parallel execution as good as, if not. better than, our
current. understanding of conventional von Neumann execution is required in
order to exploit the potential offered by multi-Transputer and other parallel
systems.

ParSiFal's GRAIL display and occam profiling tools have been recognized
as providing valuable visualization of how occam programs execute in
Transputer arrays.

Here I explain how the GRAIL interface has been designed and used to
enhance understanding of occam program structure and activity.

Introduction Grail Display
Transputers (1) provide an ideal building
block for parallel computers, all the way
from small real-time control systems or
personal computers, containing tens of
processors, up to supercomputers with
thousands of processors.

The pictorial representation used in
GRAIL is two dimensional. The vertical
dimension (down the page) is used in the
conventional way to represent. sequential
execution, and deterministic choice (IF).
The horizontal dimension (across the page)
is used to indicate parallelism and
non-deterministic choice (ALT). The
various parallel threads of execution are
drawn side by side.

In order to program such systems
effectively, it is necessary to have a good
understanding of the execution of occam
(2) programs. But even the static structure
of an occam program is considerably more
difficult to visualize and understand than
that of a conventional, sequential one.

The GRAIL display uses the process as
its fundamental unit. An occam process is
drawn in a rectangular box, and each
process can be hierarchically composed of
other processes.

An occam program has many threads
to the computation, and each thread can
have all the complexity of structure of a
sequential program. In addition, there can
be a complicated communication structure
between these threads. Pictorial methods
can help make the structure more visible.

Channels are drawn as arrows between
the processes they connect, and show the
direction of the communication. Folds are
used to control the amount of information
being displayed.

Once the static structure has been
visualised, data about. program execution
can be more readily grasped, especially if
it is presented in a similar manner.

Figure 1 shows the GRAIL display of
the well known processor farm pipeline:

PRI PAR

In this paper I describe GRAIL
(Graphical Representation of Activity,
Interconnection and Loading), one of the
software tools being developed in the
ParSiFal project to aid the design and
understanding of occam programs.

 PAR
 router(...)
 mixer(...)
 worker(...)

Susan Stepney. “Understanding Multi-Transputer Execution”.
IT UK 88, University College Swansea, 1988.

Figure 1 : GRAIL display of the program running on one Transputer in a processor farm

Figure 2 : GRAIL display of a 3-to-1 multiplexer

router(...) collects work from the
previous Transputer in the pipe, and sends
it to its own worker, if requested, or to the
next Transputer. mixer(...) collects
results from its own worker and the next
Transputer and sends them to the previous
Transputer.

Figure 2 shows the GRAIL display of a
simple channel multiplexer, (similar to the

mixer process of Figure 1, except. that it
has three input. channels). It. is an ALT
inside a WHILE loop. The ALT waits for
input from the three channels fromA,
fromB and fromC, and merges them onto
the channel out. This structure is clear
from the picture, but not from the occam
text.

 2

Dynamic Profiling The GRAIL display is described in
more detail in (3), and is formally
specified in (4).

The static profiler, although useful, does
not. give enough information for a
complete understanding of program
execution. Transient. bottlenecks and
trouble spots are averaged out. So the
monitoring work is being extended to
monitor activity in a program as it is
running, and to display activity
dynamically.

GRAIL (currently running under
SunView on a Sun Workstation) is
interactive; the user can select. which
procedure to look at, can manipulate folds,
and can display or hide channels, using the
mouse.

Static Profiling The static profiling mechanism can be
used on any network of Tranputers - the
links are used to gather the data after the
program has finished executing. Dynamic
monitoring requires the extraction of data
at the same tine as the program is
executing. Using the links would cause
unacceptable distortion. The backplane
bus of the ParSiFal T-rack is used as the
route to extract this data.

Another tool developed in ParSiFal is an
occam profiler running on an array of
Transputers. As the program executes, the
profiler counts statement. executions, and
when the program has terminated, the
profile results are wormed out. of the
array.

GRAIL was originally developed in
order to display this profiling data.
Activity information is given as a colour
overlay. Blue indicates inactive processes,
with a gradual change in colour to red for
the most active processes.

Any other Transputer hardware with a
similar structure can use the same scheme.

GRAIL is being extended to cope with
the extra dimension of information - time -
that is being displayed. This leads to
interesting problems in how to display
such information. The obvious way is to
have a time varying display. This works
for spotting sudden changes in an
otherwise quasi-static system, provided the
user is given a rewind option. However, if
the whole system is very dynamic, the
main reaction is confusion (if not
sea-sickness)! A static display of graphs
(for example, plotting colour against.
time), also has its own advantages and
disadvantages. In keeping with the idea
that different displays are suitable under
different circumstances (and for different
users) a range of options is being provided.

This paper’s medium of static, black
and white text is not a very satisfactory
way of describing an interactive colour
graphical display. The colour in the
display allows interesting areas of the
program to be found “at a glance”; blocks
of a particular colour are much easier to
identify than one anomalous number out of
a list of many. Worryingly hot, or
unexpectedly cold, areas of the program
can be identified with ease. The
interactive aspect allows the user to
examine these areas in more detail, by
entering folds and zooming in, or to step
back and look at the overall, global pattern
of activity.

Colour is used to identify the
interesting areas, but once quantitative
results are required, the actual profiling
information can be displayed on the screen
in a textual form. Thus GRAIL uses
graphics to display structure and
behaviour, but can revert to text when
detailed data is required. Using GRAIL
for displaying static profiling data is
described in more detail in (5).

This dynamic monitoring information
is being used to highlight transient features
of program execution, and to help gain
greater understanding of how parallel
components of occam programs interact
and work together.

 3

Understanding
The aim of this work is to develop
understanding, in order to identify various
standard solution frameworks to certain
identified classes of problems. This is
being done as a set. of case studies within
ParSiFal, with applications including
neural networks, vision processing, finite
element analysis, and network simulation.

Conclusions
Occam programs can be complicated, not.
only in their structure, but. in their
execution patterns. Graphical tools can aid
understanding, by providing a high-density
display of structure and activity data in a
readily graspable form. GRAIL is one
such tool.

References
1. Inmos Ltd., The Transputer Family,

product information, 1987.
2. Inmos Ltd., occam 2 Reference Manual,

Prentice-Hall International, 1988.
3. S. Stepney, “Pictorial Representation of

Parallel Programs”, in A.C. Kilgour and
R. A. Earnshaw, eds. Graphics Tools for
Software Engineering, BCS Proceedings,
Cambridge University Press, 1989.

4. C. Rees, “Z Specification of the GRAIL
Display”, PSF/GEC/1JP3/88/9

5. S. Stepney, “GRAIL - Graphical
Representation of Activity,
Interconnection and Loading”, in T.
Muntean, ed. 7th Technical Meeting of the
occam User Group, IOS Amsterdam,
1987.

 4

	Introduction
	Grail Display
	Static Profiling
	Dynamic Profiling
	Understanding
	Conclusions
	References

