
Retrenchment and the Atomicity Pattern

Richard Banach,
Czeslaw Jeske

School of Computer Science,
University of Manchester,
Manchester M13 9PL, UK
{banach,cj}@cs.man.ac.uk

Anthony Hall
Independent Consultant,

United Kingdom
anthony@anthonyhall.org

Susan Stepney
Dept. of Computer Science,

University of York,
Heslington,

York YO10 5DD, UK
susan.stepney@cs.york.ac.uk

Abstract

The issues surrounding the question of atomicity, both in the
past and nowadays, are briefly reviewed, and a picture of an
ACID (atomic, consistent, isolated, durable) transactionas
a refinement problem is presented. An example of a simple
air traffic control system is introduced, and the discrepan-
cies that can arise when read-only operations examine the
state at atomic and finegrained levels are handled by re-
trenchment. Non-ACID timing aspects of the ATC example
are also handled by retrenchment, and the treatment is gen-
eralised as the retrenchment Atomicity Pattern. The utility
of the pattern is confirmed against a different case study, the
Mondex Electronic Purse.

1 Introduction

Atomicity is by no means a new issue in the design of com-
puter systems: insights about mutual exclusion primitives
and their consequences have developed since the earliest
days of the subject [12, 33, 30, 29]. The deepening under-
standing of atomicity mechanisms led to the development
of efficient distributed operating systems [38, 24, 18], and
bolstered with maturing knowledge about data representa-
tion, has led to the flowering of a database industry offering
products which are sufficiently reliable, and sufficiently eas-
ily usable, that they now occupy mission critical positionsin
many organisations [13, 22, 20, 16, 28, 41]. The vast infor-
mation resources available on the web provide ever increas-
ing opportunities for applications in all spheres to benefit
from a distributed approach.

The watchword of the implementation of an atomic ac-
tion in these pardigms is the ACID (atomic, consistent, iso-
lated, durable) transaction [25]. This provides the default
goal to which implementations now aspire, providing the
maximum possible conceptual clarity for the transaction
concept, convenient for higher levels of applications.

At the heart of the atomicity question is some notion of re-
finement. One has a picture of a task, performed atomically
at the abstract level, but broken up into fragments, usually
co-operating via a protocol, at a more concrete level. The
two are supposed to achieve the same ends, so the concrete
ought to be some sort of refinement of the abstract. We do
not debate here the optimal formulations of refinement for
this: in fact many adequate possibilities exist.

In the ideal ACID-refinement-based formulation, the
protocol always either runs to a successful conclusion, or
the whole attempt gets wiped, leaving no trace. Nowadays
however, although the ACID ideal is still highly prized, the
necessity to relax some or all of its precepts to avoid ex-
cessive performance penalties is widely recognised. This
is prompted by scenarios such as web services, long-lived
workflows, highly concurrent and highly distributed envi-
ronments.

Our aim in this paper is to illustrate the capabilities of
retrenchment [8, 9, 31, 10, 32] in dealing with the various
kinds of circumstance which arise that can spoil the ideal
ACID based refinement view of atomicity. On the one hand,
the ‘atomic action refined to distributed algorithm’ perspec-
tive generates a strong pull to find common structure across
many such situations. On the other, the necessity of depar-
ture from the ideal can arise in a myriad ways, leading to
a proliferation of incompatible special cases if a common
account is pitched at an inappropriate level. It turns out that
retrenchment can provide a vehicle for capturing a useful
degree of commonality across such situations, while leav-
ing room for incompatibilities regarding specific details.

The commonality arises via the retrenchmentAtomicity
Pattern, which we introduce in this paper. This is an ar-
rangement of refinements and retrenchments that we show
is common to atomicity situations. The idea is developed in
the remainder of this paper as follows. In Section 2 we in-
troduce our main example, a pidgin air traffic control (ATC)
display application, abstracted from the CDIS development
[23], in which critical pieces of information must reach a

family of displays in the correct order (and ultimately in a
timely fashion). An ‘ideal specification’ of this is atomic;
a ‘more realistic specification’ captures some of the reali-
ties of asynchrony and of constraints on timing delays. The
gap between them is bridged by a series of small retrench-
ments. (The small size of the model evolution steps is rather
reminiscent of the Event-B approach [1, 2], and of many
practical ASM refinements [15, 14].) In Section 3 we in-
dicate how one might proceed towards an implementation
from such a starting point. In Section 4 we abstract from
the phenomena introduced thus far, into a general structure
for capturing a whole class of similar situations involving
atomicity, its refinement and its possible breakdown: the
Atomicity Patternitself. In Section 5 we confront theAtom-
icity Patternwith a different scenario, namely the atomicity
issues arising in the Mondex Purse [39], and we see that the
proposed structure can account adequately for the phenom-
ena in Mondex. Section 6 recapitulates and concludes.

N.B. We express all our models using the Z notation, for
its relative conciseness (which we amplify by taking occa-
sional notational liberties). An Appendix summarises the
refinement and retrenchment rules we use.

2 The Abstract Pidgin ATC System

In an air traffic control system, there is (among other things)
a family of workstationsWS, at which the air traffic con-
trollers sit and do their work. The workstations display a
variety of items of information to the controllers, some of
them more critical than others. For the most critical items,
correct ordering and timeliness are important issues: the
controllers must be made aware of changes in the critical
items as they occur, within a tightly controlledLATENCY,
so that safety in the aerodrome is not compromised.

For simplicity, we assume that there is just one critical
item, theQNH value (modelled as a natural number say),
and that this is the only item on the workstation display.
For an air traffic control system this is, admittedly, a rather
drastic simplification.

The system ideal is atomic update of all the displays,
so we can build an abstract A model consisting of a single
QNH value, updated by anANewQnhoperation, and ob-
served by anAShowWsoperation which outputs theQNH
value displayed on each workstation:1

Aworld
Aqnh: QNH

1N.B. Each model-specific schema and variable is prefixed by a letter
or two indicating the relevant model: A for abstract, AH for Awith history,
etc.

ANewQnh
∆Aworld
Aqnh? : QNH

Aqnh′ = Aqnh?

AShowWs
Aworld
Adisp! : WS→ QNH

Adisp! = WS× {Aqnh}

The atomicity of the ideal model is reflected in the fact
that AShowWsalways outputs a constant function. How-
ever, the reality is that the updates to the systemQNH value
are broadcast to the individual workstations over a network.
This generates transmission delays, and the various toler-
ances in the system cause these to be observable, within
limits. These aspects require a more detailed model than
the ideal A model, and we approach the construction of the
appropriate ‘realistic specification’ in a number of steps.

First we build the AH model, which just includes history
information:

AHworld
AHhist : seq

1
QNH

AHNewQnh
∆AHworld
AHqnh? : QNH

AHhist′ =

AHhista 〈AHqnh?〉

AHShowWs
AHworld
AHdisp! : WS→ QNH

AHdisp! =
WS× {last AHhist}

With suitable initialisations, it is not hard to see that the
A and AH models are interrefinable under (equality output
relations and) the retrieve relation:

RA,AH

Aworld
AHworld

Aqnh= last AHhist

Next, we build the AA model, which introduces asynchrony
by allowing theAAShowWsoperation to output a selection
of values from the history; the only restriction being that
displayingQNH values out of order is forbidden. The latter
is achieved by keeping a record of the currentQNH value
for each workstation, and allowing it to advance using the
operationAAWsUpdate:2

AAworld
AAhist: seq

1
QNH

AAseq: WS→ N

ran AAseq⊆
1 .. #AAhist

AAShowWs
AAworld
AAdisp! : WS→ QNH

AAdisp! =
AAseqo

9 AAhist

2Henceforth, the phraseRestSame...... means that any other variables
in scope but not explicitly assigned to are to remain unchanged, something
handled less tersely in legal Z.

AANewQnh
∆AAWorld
AAqnh? : QNH

AAhist′ =

AAhista 〈AAqnh?〉
RestSame......

AAWsUpdate
∆AAworld
AAws? : WS

(AAseq′ AAws?) ≥
(AAseq AAws?)

RestSame......

This time conventional refinement is too demanding a no-
tion to describe the relationship between AH and AA, since
the outputs of theShowWsoperations do not match up.3 We
need the greater flexibility of retrenchment to capture what
is going on. The retrenchment needed is given by the re-
trieve relationRAH,AA and the output relation forShowWs,
with all other retrenchment data trivial:4

OAH,AA,ShowWs

AHworld′

AAworld′

AHdisp! : WS→ QNH
AAdisp! : WS→ QNH

AAdisp! = AAseq′ o

9 AAhist′

AHdisp! = WS× {last AAhist′}

RAH,AA

AHworld
AAworld

AHhist= AAhist

A retrenchment output relation generalises a refinement
one, in the sense that it can refer to the state variables in
relating the observed outputs, whereas a refinement output
relation can’t. This extra flexibility is needed here: the AH
output is the constant value resulting from the latest atomic
update, whereas the AA output is a selection of potentially
older values from the system history, since there may be
some workstations which are not completely up to date.

The retrenchment just introduced is of a special kind. We
call it a retrenchment-enhanced refinement (RE-Ref), since
it falls short of being a refinement by the smallest of mar-
gins. Thus, if we removed the outputs from the systems, we
would have a perfectly good refinement, and the observed
relationship between the outputs would be derivable from it.
Putting it another way, if it is only asynchrony that a change
of model is introducing, then the true information contained
in the state histories is not being lost, so any disagreementin
the outputs of read-only operations on the states, should be
explicable from the state histories; i.e. the change of model
indeed ought to be capable of being described by an RE-
Ref. Of course, similar observations apply when it is the in-
puts at stake rather than outputs. In that case the asynchrony
considerations mean that corresponding inputs arrive at dif-
ferent times in the two models. This can be handled in the

3Also, the AA operationAAWsUpdate, does not correspond to any AH
model operation. However, we can allow this in a refinement ifthe new
operation refines an (unstated) AH operation whose body isskip. Since
AAWsUpdateonly manipulates theAA variableAAseq, which is invisible
(via the retrieve relationRAH,AA) to theAH model, it does indeed refine
skip. See the Appendix.

4I.e. given by identities on inputs and outputs,false for concessions.

within relation of the later occurring operation; a case in
point is to be found in Section 5. The utility of RE-Refs in
handling issues of asynchrony is the first contribution that
retrenchment makes to the atomicity arena.

The next step is to introduce the time aspect, so that we
can bring the asynchrony under control. This leads to the
AT model, containing anATtimenowvariable with values in
TIME (which is the naturals say), and which is updated by
anATTickoperation. Also each update of theQNH value is
timestamped in theAThisttimevariable:

ATworld
AThist: seq

1
QNH

ATseq: WS→ N

ATtimenow: TIME
AThisttime: seq

1
TIME

#AThist= #AThisttime
ran ATseq⊆ 1 .. #AAhist
∀ i, j : domAThisttime• i ≤ j |

AThisttime(i) ≤ AThisttime(j)
last AThisttime≤ ATtimenow

ATTick
∆ATworld

ATtimenow′ =
ATtimenow+ 1

RestSame......

ATNewQnh
∆ATworld
ATqnh? : QNH

AThist′ = AThista 〈ATqnh?〉

AThisttime′ = AThisttimea 〈ATtimenow〉
RestSame......

ATWsUpdate
∆ATworld
ATws? : WS

(ATseq′ ATws?) ≥
(ATseq ATws?)

RestSame......

ATShowWs
ATworld
ATdisp! : WS→ QNH

ATdisp! = ATseqo

9 AThist

Thus far we have a straightforward superposition refine-
ment [4, 21, 27] of the AA model, since we have just added
some new data and operations (and no new observations of
the new data), old ones remaining unchanged. A retrieve
relation that simply forgets the time in abstracting from the
AT model easily proves it. However this is not enough. We
need to distinguish well behaved workstations from badly
behaved ones. The former get their updates done within
LATENCY timesteps, the others don’t. A well behaved
workstation satisfies:

ATWellBhWs
ATworld
ws? : WS

∀ sq : (ATseq ws?) + 1 .. #AThist•
ATtimenow− (AThisttime sq) ≤ LATENCY

i.e. all its unprocessed updates were introduced less than
LATENCYago. We want the refinement part of the eventual
relationship between the AA and AT models to insist that all
workstations are well behaved:5

RAA,AT

AAworld
ATworld

AAworld “ = ” ATworld
∀ws? : WS• ATWellBhWs

To deal with the (small but nonzero) possibility that network
delays turn out to be greater than desirable, leading to the
failure of the retrieve relation, we need the full power of
retrenchment. It is actually the innocuousATtickoperation
we need to focus on, since it is the passage of time which
causes workstations to become badly behaved. At this point
we stub our toe on a small retrenchment pebble.

Since there is noTick operation in the AA model, nor-
mal retrenchment policy dictates that there will be no re-
trenchment data (i.e. within, output or concedes relations)
associated withTtick. The normal policy is justified by ob-
serving that genuinely new operations introduced during a
model evolution step, will concern aspects absent from the
prior model, and thus any attempt to relate them to the prior
model are likely to appear artificial. However, the passage
of time may reasonably be taken as a universal (if usually
unstated) feature of models, so that viewing the present case
as a retrenchment of an unstatedskip is entirely justified.
This understood, the retrenchment’s within and output rela-
tions can be trivial, the concession being where the interest
lies:

CAA,AT,Tick

∆AAworld
∆ATworld

∀ws? : WS• ∃ sq : (ATseqws?) + 1 .. #AThist•
ATtimenow− (AThisttime sq) = LATENCY
⇒ ¬ ATWellBhWs′

This shows that any workstation with aLATENCY-old up-
date outstanding, will become badly behaved at the next tick
unless it is updated beforehand.

We now have a route from the utterly atomic A model, to
model AT, which abstracts the inevitable asynchrony of an
implementation, but which allows the quality of that asyn-
chrony to be quantified via a retrenchment. The A model
specifies an unattainable perfection, while the AT model
represents a more complex but more realistic specification.

5We use“ = ” between schemas to abbreviate a set of equalities be-
tween corresponding variables that differ only in the model-identifying
prefix.

Refinement alone can never reconcile these two widely sep-
arated viewpoints, but retrenchment can.

A

C D

U

AH AA AT

∗

Figure 1. Models, refinements (vertical ar-
rows), retrenchments (horizontal arrows),
making up a commuting diagram of the ATC
specification development.

The retrenchment from A to AT itself is the composition
of the A-AH refinement with the AH-AA and AA-AT re-
trenchments [6]. We omit the details of the calculation, save
to say that the situation is sufficiently straightforward, that
the result is obtained by simply translating the variables oc-
curring in the non-trivial bits of the earlier retrenchments to
those of the A and AT models, in the obvious way.

The retrenchment utilises theLATENCYparameter and
permits a stochastic analysis of the circumstances under
which the relevant concession becomes valid. Such an anal-
ysis can provide a useful negotiating pivot between cus-
tomer and supplier — the customer would be interested in a
precise statement of what constituted timing failure and how
often it occurred, but the details of what happened subse-
quently would be more a matter for the supplier, taking into
account the higher level invariants demanded of the system.
This scenario illustrates in minature the second contribu-
tion that retrenchment makes to the atomicity issue, namely
the straightforward incorporation into a formal account, of
matters that make implementations of atomic actions insuf-
ficiently ACIDic.

What we have so far is the solid arrows of the upper layer
of Fig. 1, which is a commuting diagram of verical refine-
ments and horizontal retrenchments. These connect a fam-
ily of models involved in our ATC development, abstracted
from CDIS [23]. Customarily, the refinement component of
the A-AT retrenchment (i.e. A-AH) would enable the A-AT
retrenchment to be lifted to generate a more abstract model
U using results in [26]. However the fact that A and AH are
interrefinable, means that nothing useful would be gained
by doing this.

3 Towards an Implementation of the Pidgin
ATC System

Considering the move towards an implementation of the
ATC System, we refine our preceding models. We start with
model AA, since that is the first along the A-AT path which

incorporates asynchrony, which is unavoidable in any im-
plementation. For lack of space our remarks will be merely
indicative rather than comprehensive. We sketch model C,
a refinement of AA. Here is its state schema:

Cworld
Cmaxseq: SQNO
Cwsseq: WS→ SQNO
Cwsqnh: WS→ QNH
Cethqnh: SQNO 7→ QNH

domCethqnh= 1 .. Cmaxseq
Cwsqnh= Cwsseqo9 Cethqnh

Model C’s ‘more realistic’ description of the system con-
tains a family of workstations, each containing its own por-
tion of the system state; hence the mapCwsqnh.6 The net-
work is modelled as an ‘ether’ of messages containingQNH
updates, to which individual workstations help themselves.
To disambiguate and preserve order, we have a sequence
number typeSQNO(modelled as a positive natural number
say), and the ether thus becomes a mapCethqnhfrom se-
quence numbers toQNH values. Each workstation keeps
track of where it is up to with a local copy of the latest se-
quence number it has processed (via the mapCwsseq).

Noting thatSQNO== N1, the reader will quickly re-
alise that this is (mathematically) little more than a slightly
more verbose restatement of the state schema of the AA
model, with an additional dependent variable,Cwsqnh.
Recognising this, if we now map the operations in the obvi-
ous way (details omitted), we conclude that the given C will
be interrefinable with AA. Obviously we could contemplate
more dramatic refinements of the AA model, but what we
have will do for purposes of illustration.

Similarly, we can build a model D, refining AT. Here is
its state schema, again omitting the operations:

Dworld
Dmaxseq: SQNO
Dwsseq: WS→ SQNO
Dwsqnh: WS→ QNH
Dethqnh: SQNO 7→ QNH
Dtimenow: TIME
Dethtime: SQNO 7→ TIME

domDethtime= domDethqnh= 1 .. Dmaxseq
Dwsqnh= Dwsseqo9 Dethqnh

The two refinements AA-C and AT-D will be related by
not only the AA-AT retrenchment, but a retrenchment C-
D. This latter retrenchment will be the obvious counterpart
of the AA-AT retrenchment at the (supposedly) lower level

6This is best captured formally via Z promotion, though for brevity we
will not use that here.

of abstraction of C and D. Done properly, it all yields a
commuting square of retrenchments and refinements in the
lower right half of Fig. 1. In fact, not only can one build
this commuting square independently, but one can gener-
ate the D model and the AT-D and C-D constructions (up
to interrefinability) using the Postjoin Theorem from [26].
Obviously, one could develop the C and D models further
towards implementation by making the modelling increas-
ingly realistic.

The above takes care of the lower layer of Fig. 1, aside
from the model labelled ‘*’. Model ‘*’ refines AH and is
retrenchable to C. It can be obtained via the lowering con-
struction in [26] from AH, AA, C and their relationships, or
independently, again yielding a commuting square. The fact
that AA and C are interrefinable, means that ‘*’ contains
nothing new beyond AH, and the fact that its workstation
updates must be atomic, means that it is unrealistic.7

A

C D

U

RE-Ref

Ret

Ret

Ref

Figure 2. The Atomicity Pattern

4 The Retrenchment Atomicity Pattern

The last few remarks indicate that a protocol implementa-
tion at the most abstract level possible8 has to be refinable
from C, not from A. And yet A captures the most transpar-
ent expression of what one would like the protocol to do, so
it would be regrettable to exclude it from a rigorous devel-
opment. The way to reconcile these views, is to pursue the
suggestion that an RE-Ref can indeed be usefully viewed as
a kind of refinement, rather than as a retrenchment, which,
strictly speaking, it is. This straightens out the composition
along the path A-AH-AA-C, into an RE-Ref, collapsing the
left hand part of Fig. 1. The resulting RE-Ref from A to C
now expresses a useful change in modelling perspective, in
the vertical direction, as an almost-refinement. Moreover,
incorporating the ACIDity losing aspects of the retrench-
ment C-D via the composition A-C-D and then perform-
ing the lifting construction from [26], results in a model U
entirely equivalent to the one constructed before, since the
overall composition A-C-D yields the same overall com-
posed retrenchment from A to D as before. This is a useful
observation since it is often initially easier to express the

7Unrealistic because of the intepretation of the model as a distributed
system, rather than any mathematical difficulty.

8I.e. incorporating the fewest constraints while retainingimple-
mentability.

ACIDity losing aspects in a more concrete model than in
a more abstract one. The collection of models A, C, D,
U, and their interrelationships constitute the retrenchment
Atomicity Pattern, instantiated for this particular example;
see Fig. 2.

Referring to Fig. 1, we see that it is an instance of the
Tower Pattern[11]. This makes theAtomicity Patterna spe-
cial case of theTower. However, a number of features make
theAtomicity Patterndeserve to be singled out specially.

First and foremost is the use of RE-Refs (specifically
avoiding more general kinds of retrenchment) in the left
hand side of the diagram — this collapses the zig-zag that
would result if the retrenchment aspects were singled out as
such there. Pure loss of atomicity implies that abstract and
concrete states can be adrift of the ideal part way through
the protocol, but only in a very controlled way, since the
concrete is still a refinement of the abstract in the ab-
sence of I/O. This close, yet non-ideal relationship between
the states, means that observed inputs and outputs which
closely reflect those state values will also be in a close, yet
non-ideal relationship. For this reason, the very restricted
RE-Refs are sufficient for this kind of situation.

Second, is the fact that the fairly large gap between the
A and C models encourages us to take a broader perspec-
tive on how an atomic and a non-atomic model can be
synchronised. The synchronisation mechanism is in fact
captured in the retrieve relation between the two models.
Considering our example, the finegrained path A-AH-AA-C
strongly suggests an early synchronisation; i.e. in each pro-
tocol run,ANewQnhis synchronised via the retrieve relation
with CNewQnh,9 with the rest of the concrete protocol fol-
lowing behind. This gives an A-C refinement with retrieve
relationRA,Cearly below. However, this is but one possibility.

In general, the single step of an atomic protocol can be
mapped to practically any step of a concrete protocol which
implements the atomic one, provided the various (in general
nondeterministic) outcomes of the two descriptions match
up via the retrieve relation. Different choices merely lead
to different retrieve relations between the two models.10

As an example, consider a late synchronisation option in
our CDIS example. This matchesANewQnhwith the last
CWsUpdatein a protocol run, identified viaCWsUpdatelast

9Many conventional refinement notions demand that abstract opera-
tions are refined by operationswith the same name. However this is just a
technical convenience, and is easily generalised to the case where for each
concrete step of interest, one can identify a step ofsomeabstract operation
of which it is a refinement; official Z refinement is like this. Our discussion
presupposes this generalisation where necessary.

10Observe an interesting phenomenon. When a refinement preserves the
atomicity, i.e. abstract and concrete steps match up 1–1 in related runs, it
is usually the case that the retrieve relation is ‘obvious’:there is essen-
tially only one choice that makes sense. The situation changes dramati-
cally when atomicity isnot preserved. Then, the variety of synchronisa-
tions leads to a variety of retrieve relations, and rarely are any of them
‘obvious’.

below, and implicitly requires thatCNewQnhand all earlier
occurrences ofCWsUpdatebecome refinements of abstract
skips. Such a synchronisation is given by retrieve relation
RA,Clate.

RA,Cearly

Aworld
Cworld

Aqnh=
Cethqnh Cmaxseq

RA,Clate

Aworld
Cworld

Aqnh=
Cethqnh(minranCwsseq)

CWsUpdatelast

CWsUpdate

∀ws : WS•
ws 6= ws? ⇒ (Cwsseq ws) > (Cwsseq ws?)

(N.B. In our example, both early and late formulations of
the refinement areforward simulations, since the broadcast
protocol is deterministic; i.e. all the workstations always get
successfully updated (assuming weak fairness). In general,
early synchronisation requiresbackwardsimulation to han-
dle nondeterminism after the synchronisation point.)

Third, is a fact prompted by the preceding parenthetic re-
mark. The detailed complexities of simulations in which the
concrete state is matched to the abstract state after each con-
crete step of the protocol, can be largely avoided if we take
a more coarse grained approach to refinement, à la ASM
refinement [15, 14, 34, 35]. Here, the refinement becomes
insensitive to state values in the middle of a concrete proto-
col run, and the retrieve relation is only required to match up
abstract and concrete states at the beginning and end. This
en blocapproach can yield considerable simplifications in
the description of a single run of the protocol, but makes
the description of interleaved concurrent protocol runs by
independent agents rather more problematic.

In our example,ANewQnhtogether with a suitable col-
lection ofAShowWss would be refineden blocto an entire
concrete protocol run with suitableCShowWss interspersed.
Done properly, this would make the previously observed
discrepancies between abstract and concrete outputs disap-
pear, since the coarser grain would enable us to schedule
the abstract and concreteShowWss so that they matched up,
the details of the scheduling being concealed in the interior
of the coarse grained refinement. We do not give the details
here, due to the technical complexity of dealing with the
interleavings of independent updates. This approach gives
further encouragement to the view that an RE-Ref is after
all a species of refinement.

5 The Mondex Purse

Having developed theAtomicity Pattern, in this section we
confront it with a different but nevertheless realistically

grounded example, the Mondex Purse, to verfy the generic-
ity of the description of atomicity situations that it furnishes.

The Mondex Purse is a smartcard electronic purse for
containing genuine money, and as such, is a security crit-
ical application. The 1990s development of Mondex was
the first such development to achieve the highest possible
ITSEC rating of E6, equivalent these days to a Common
Criteria rating of EAL7 [19]. The ITSEC E6 rating re-
quires there to be an abstract model, a concrete model, and
a proof of correspondence between them; for Mondex, the
proof was a manual refinement proof between abstract and
concrete Z models. The details of the Mondex project are
commercially sensitive; however a public version was pro-
duced [39]. The development in [39] remains an impressive
achievement, and a trailblazer for showing that fully for-
mal techniques could be applied within realistic time and
cost limitations on industrial scale applications. More re-
cently, the Mondex refinement proof has been re-examined
using various mechanised approaches; see [37, 36] and [40].
These not only attest to the viability of doing such develop-
ments in a fully mechanised manner, but also confirm the
solidity of the original manual proof.

Despite the above, the exigiencies of refinement caused
a number of issues to be treated in a less than ideal man-
ner in Mondex. In the actual project, the treatment of these
was via informal arguments, but a suitably formal treatment
would obviously have been better. As such, Mondex pro-
vides a superb platform for testing out the efficacy of the
retrenchment approach to handling situations which for re-
finement turn out to be awkward.

CStartFrom

CStartTo CValPurse

CReqPurse CAckPurse

ToPurse

FromPurse

req val ack

epv

epa

Figure 3. The Mondex Concrete Protocol

At the top level of Mondex is an abstract A model, which
is a model of atomic funds transfer between purses. A
transaction can: either complete successfully (lodging the
funds transfered instantaneously in the destination purse);
or atomically ‘lose’ the funds (placing them in a special
‘lost’ component of the state). Here are the essentials
in a cut down world of only two purses,ToPurseand
FromPurse, hardwired into the state, forbidding null trans-
actions for simplicity:

Abworld
Afrombal, Afromlost, Atobal, Atolost: N

AbTransferOkay
∆Abworld
Avalue? : N

0 < Avalue? ≤ Afrombal
Afrombal′ =

Afrombal− Avalue?
Atobal′ =

Atobal+ Avalue?
Afromlost′ = Afromlost
Atolost′ = Atolost

AbTransferLost
∆Abworld
Avalue? : N

0 < Avalue? ≤ Afrombal
Afrombal′ =

Afrombal− Avalue?
Atobal′ = Atobal
Afromlost′ =

Afromlost+ Avalue?
Atolost′ = Atolost

At the bottom level of Mondex is a concrete C model. This
describes a protocol for secure funds transfer via message
passing in which certain messages are assumed unforge-
able. We do not have space to describe this in detail, but
we can indicate how it works by reference to Fig. 3.

Two purse owners wishing to participate in a funds trans-
fer insert their purses, theFromPurseandToPurse, into an
interface device, and type in the instructions. The device
then initiates the funds transfer process by informing the
two purses of the details of the required transaction. The
two purses then autonomously initiate the transfer protocol.
Each performs the appropriateStart operation, which ini-
tialises it for the transaction. As part of its initialisation the
ToPursesends arequest message to theFromPurse. Hav-
ing initialised, theFromPursewaits for the request. When
it gets the request, theFromPursedecrements its balance
and sends the money in avalue message. Upon receipt of
the value, theToPurseincrements its balance and sends an
acknowledgement message back to theFromPurse. The re-
ceipt of the acknowledgement by theFromPursecompletes
the protocol.

The above describes an unproblematic run of the proto-
col. Of course much can go wrong in practice. The protocol
may get interrupted by accident or by design, and a purse
may be subjected to deliberate attack in order to attempt
to subvert its integrity (and in the ideal case, to increase the
balance it contains beyond what is legitimate). The protocol
must be robust against all this. Part of the protection built
into the protocol is the fact that any time a purse feels like it,
it has the option of doing nothing or of aborting the current
transaction: this means that a purse will always respond to
any request to perform any of its actions, but the response
will be null or aborting if the purse does not consider the
request to be appropriate in the context of its current state.
This creates a large number of additional playouts of the
protocol which are not illustrated in Fig. 3. Nevertheless it
can be shown that all the possible playouts do indeed do the
right thing, because the concrete protocol can be proved to
be a refinement of the abstract A model, both for successful
runs (which refineAbTransferOkay) and for aborting runs
(which refineAbTransferLost). See [39] for the original ac-
count, and also [7], which discusses the properties of the

protocol in a manner compatible with the present discus-
sion.

How does the preceding fit theAtomicity Pattern? Well,
we have A and C models, and C refines A. Since A is atomic
and C is not, any operation that reads and outputs the state
values will exhibit a discrepancy if abstract and concrete
versions are invoked at an inopportune moment; a balance
enquiry operation is a case in point.11 In [39] the abstract
transfer is synchronised with the concreteCReqPurseoper-
ation, so the discrepancy shows up in aToPurseenquiry if
invoked while the value is in transit, i.e. between the verti-
cal dashed lines in Fig. 3. In [7], a different refinement is
given which synchronises the abstract transfer with the con-
creteCValPurseoperation, which puts the discrepancy on
the FromPurseside. Either way, there is scope for an AA
model, introducing asynchrony at the most abstract level.
The pros and cons of dealing with balance enquiries in var-
ious different ways are studied in depth in [7].

In [39], in between the A and C models there is a B
model, but it is technically very close to the C model, so
it would not play the role of the AA model that we have in
mind. However it is very easy to construct a suitable AA
model from scratch. We encode a transaction in progress
via AAval> 0 for simplicity:

AAbworld
AAfrombal: N

AAfromlost: N

AAtobal: N

AAtolost: N

AAval : N

AAbTransferStart
∆AAbworld
AAvalue? : N

AAval= 0
0 < AAvalue? ≤ AAfrombal
AAval′ = AAvalue?
AAfrombal′ =

AAfrombal− AAvalue?
RestSame......

AAbTransferOkay
∆AAbworld

AAval> 0
AAval′ = 0
AAtobal′ =

AAtobal+ AAval
RestSame......

AAbTransferLost
∆AAbworld

AAval> 0
AAval′ = 0
AAfromlost′ =

AAfromlost+ AAval
RestSame......

Note that this just separates out the beginning and end of a
transaction, which were combined in the A model. The re-
lationship between the A and AA models is evidently an
RE-Ref, but, assuming we choose to synchronise the A
model transaction late (i.e. the A model operation is syn-
chronised withAAbTransferOkayor AAbTransferLost), the

11The fact that accounting for outputs which are incompatiblefor atom-
icity reasons cannot be done convincingly using refinement alone, led,
amongst other things, to the omission of balance enquiry operations from
[39].

RE-Ref needs to relate discrepancies in inputs to the states
via within relations, since late synchronisation implies that
the AA model input occurs earlier than the A model in-
put. In this scenario, we can use the simple retrieve relation
RA,AA (whereRestEqual...... has the obvious meaning),
and within relationsWA,AA,TransferOkayand WA,AA,TransferLost

(whose bodies are identical):

WA,AA,TransferOkay/Lost

Abworld
AAbworld
Avalue?

Avalue? = AAval

RA,AA

Abworld
AAbworld

AAval=
Afrombal− AAfrombal

RestEqual......

(N.B. If we synchronised early, though the inputs would
coincide, we would need a more complex, nondetermin-
istic, retrieve relation to intercede in what would need to
be a backward simulation refinement as in [39].) Fur-
ther down down the modelling hierarchy, one can relatively
straightforwardly synchroniseAAbTransferStartwith the
CReqPurseoperation,AAbTransferOkaywith CValPurse,
and with a little further manipulation of the concrete state
AAbTransferLostcan be synchronised with a suitableAbort.

One can go further. With a more complex retrieve rela-
tion, one could synchroniseAAbTransferStartwith the first
concreteCStart, AAbTransferOkaywith CAckPurse, and
AAbTransferLostwith a suitableAbort. In the end, there
are many choices. In a nutshell, the Mondex development
fits the left hand side of theAtomicity Patternlike a glove.

What of the horizontal aspects of Fig. 2, which describe
possible lack of ACIDity of the asynchronous protocol? In
this regard, we note that Mondex is squarely in the finan-
cial world, where the merest whiff of ‘alkalinity’ in finan-
cial transactions is utterly intolerable. In fact the protocol
maintains a sufficiently copious (electronic) papertrail,that
aborted transactions, even though they do not achieve their
original objective, can be traced, and the whereabouts of
the funds they involve can ultimately be reconciled with the
original intentions of the participants. In this manner, inthe
financial world, protocol failure is recategorised as a differ-
ent kind of success.

Of course, there is nothing to stop us using the non-
ACID potential of theAtomicity Patternto quantify some
aspects of interest of the protocol, such as the proportion
of transactions that might abort under some given set of as-
sumptions or other, but this is a case of using the possibil-
ities of retrenchment (perfectly reasonably) as a technical
convenience, rather than a pronouncement about a lack of
integrity of the protocol. Another possibility would be to
examine the performance of the protocol under the assump-
tion that one or more of the security hypotheses it rests on
is weakened.

6 Conclusions

In the preceding sections, we took a particularly simple ex-
ample, based on an ATC application [23], and via a series
of simple models and small model evolution steps (reminis-
cent of the Event-B approach [1, 2], and of many practical
ASM refinements [15, 14]), teased out how issues arising
from non-atomicity of the real system interacted with the
remainder of the development. The step from an atomic to
a non-atomic model meant that inevitably, if one examined
the states of the abstract and concrete models at an inoppor-
tune moment, some discrepancy would be observed, which
went beyond what traditional substitutivity based notions
of refinement could cope with. Quite where the discrep-
ancy might be observed, depended on how one chose to
synchronise the atomic abstract action with one of the con-
stituent non-atomic concrete actions which implemented it.
(The very non-atomicity of the concrete model guarantees
that there will be more than one such choice.) We showed
that the greater flexibility of retrenchment could account
for what was going on in a rather straightforward manner,
one moreover, that readily lends itself to generalisation as
a retrenchmentAtomicity Pattern. We tested the pattern
against a different, and if anything more challenging exam-
ple, based on the Mondex Purse [39, 7], and found that it
coped with flying colours.

One particularly useful aspect of theAtomicity Pattern
was its potential for coping with situations that fell shortof
perfect ACIDity in the concrete protocol. We showed this
in the relatively simple context of the timing aspects of the
ATC application. Admittedly this is an extremely simple
scenario, and, of course, lack of space precluded us from
examining more demanding examples, such as the ACID-
ity impaired situations that arise in web services, long-lived
workflows and their compensated transactions, and highly
concurrent and highly distributed environments.

However we can be confident that the retrenchment
basedAtomicity Patternapproach will be able to handle
these much larger situations too. Why? Well, all models of
the kind we are considering are defined using a collection of
events or operations — a large complex model merely has
more of them, they may be more complex, and may be or-
ganised into more layers. Provided the model is sufficiently
comprehensive, and captures enough of the environment if
the environment is implicated in ACIDity losing behaviour,
loss of ACIDity will arise through specific events. Provided
we model these events appropriately, the changing proper-
ties of interest can be captured in suitable retrenchment data
(i.e. the within, output, and concedes relations) attachedto
relevant event or operation descriptions, as we pass from an
idealised model to a more realistic and imperfect one.

We will examine more extensive case studies of this else-
where, but let us close by briefly sketching how such an

example might go. Consider a long-lived workflow con-
taining online purchasing transactions. In an ideal world,
items are only sold if they are in stock. However, in the real
world, it may occasionally happen that the system could sell
an item that did not exist due to poor stocktaking. Thus
the real world could be described using two stock variables:
the ‘nominal stock level’ used by the system, and the ‘true
stock level’, accurate, but unknown to the system. While the
latter remained positive all would be well. But as soon as
the system (unknowingly) made a sale that pushed it below
zero, the ACID properties would be compromised, since the
sale would commit before it became known that it was in-
valid. In due course, further events would ensue, that (say)
resulted in the purchaser being refunded. Although thesys-
tem would not know it had transacted a rogue sale at the
moment it happened, there is nothing to stop amodel of the
systemhaving such knowledge, and thus being able to iden-
tify loss of ACIDity through appropriate retrenchment data.

References

[1] J.-R. Abrial. Event based sequential program development:
Application to constructing a pointer program. In Araki et al.
[3], pages 51–74.

[2] J.-R. Abrial, D. Cansell, and D. Méry. Refinement and
reachability in Event-B. InProc. ZB 2005, volume 3455
of LNCS, pages 222–241.

[3] K. Araki, S. Gnesi, and D. Mandrioli, editors.Interna-
tional Symposium of Formal Methods Europe, volume 2805
of LNCS, Pisa, Italy, September 2003. Springer.

[4] R. Back and R. Kurki-Suonio. Decentralisation of process
nets with centralised control. In2nd ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pages
131–142, 1983.

[5] Baeten and Klop, editors.Proc. CONCUR 1990, volume
458 ofLNCS. Springer, 1990.

[6] R. Banach, C. Jeske, and M. Poppleton. Composi-
tion mechanisms for retrenchment. 2004. submitted,
http://www.cs.man.ac.uk/˜ banach/some.pubs/
Retrench.Composition.pdf.

[7] R. Banach, C. Jeske, M. Poppleton, and S. Stepney. Re-
trenching the purse: The balance enquiry quandary, and gen-
eralised and (1,1) forward refinements.Fund. Inf., 77:29–69,
2007.

[8] R. Banach and M. Poppleton. Retrenchment: An engineer-
ing variation on refinement. In D. Bert, editor,2nd Interna-
tional B Conference, volume 1393 ofLNCS, pages 129–147,
Montpellier, France, April 1998. Springer.

[9] R. Banach and M. Poppleton. Fragmented retrenchment,
concurrency and fairness. InProc. IEEE ICFEM2000,
pages 143–151, York, August 2000. IEEE Computer Society
Press.

[10] R. Banach and M. Poppleton. Retrenching partial require-
ments into system definitions: A simple feature interaction
case study.Requirements Engineering Journal, 8:266–288,
2003.

[11] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Re-
trenching the purse: Finite sequence numbers and the tower
pattern. In J. Fitzgerald et al, editor,FM 2005, volume 3582
of LNCS, pages 382–398. Springer.

[12] M. Ben-Ari. Principles of Concurrent Programming. Pren-
tice Hall, 1982.

[13] P. Bernstein, V. Hadzilacos, and N. Goodman.Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[14] E. Börger. The ASM refinement method.Formal Aspects of
Computing, 15:237–275, 2003.

[15] E. Börger and R. Stärk.Abstract State Machines. A Method
for High Level System Design and Analysis. Springer, 2003.

[16] T. Connolly and C. Begg.Database Systems: A Practical
Approach to Design, Implementation and Management. Ad-
dison Wesley, 2004.

[17] D. Cooper, S. Stepney, and J. Woodcock. Derivation of Z
refinement proof rules. Technical Report YCS-2002-347,
University of York, 2002.

[18] G. Coulouris, J. Dollimore, and T. Kindberg.Distributed
Systems: Concepts and Design. Addison Wesley, 2005.

[19] Department of Trade and Industry. Information
Technology Security Evaluation Criteria, 1991.
http://www.cesg.gov.uk/site/iacs/itsec/media/formal-
docs/Itsec.pdf.

[20] R. Elmasri and S. Navathe.Fundamentals of Database Sys-
tems. Addison Wesley, 2003.

[21] N. Francez and I. Forman. Superimposition for interactive
processes. In Baeten and Klop [5], pages 230–245.

[22] H. Garcia-Molina, J. Ullman, and J. Widom.Database Sys-
tems: The Complete Book. Prentice Hall, 2003.

[23] A. Hall. Using formal methods to develop an ATC informa-
tion system.IEEE Software, 13:66–76, 1996.

[24] T. Harris and J. Bacon.Operating Systems: Concurrent and
Distributed Software Design. Addison Wesley, 2003.

[25] S. Jajodia and L. Kerschberg.Advanced Transaction Models
and Architectures. Kluwer, 1997.

[26] C. Jeske.Algebraic Integration of Retrenchment and Refine-
ment. PhD thesis, University of Manchester, 2005.

[27] S. Katz. A superimposition control construct for distributed
systems.ACM TPLAN, 15(2):337–356, April 1993.

[28] K. Loney. Oracle Database 10g: The Complete Reference.
McGraw-Hill, 2004.

[29] N. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[30] N. Lynch, M. Merritt, W. Weihl, and A. Fekete.Atomic
Transactions. Morgan Kaufmann, 1994.

[31] M. Poppleton and R. Banach. Retrenchment: Extending
refinement for continuous and control systems. InProc.
IWFM’00, Springer Electronic Workshop in Computer Sci-
ence Series, NUI Maynooth, July 2000. Springer.

[32] M. Poppleton and R. Banach. Structuring retrenchmentsin
B by decomposition. In Araki et al. [3], pages 814–833.

[33] M. Raynal. Distributed Algorithms and Protocols. Wiley,
1988.

[34] G. Schellhorn. Verification of ASM refinements using gen-
eralized forward simulation.JUCS, 7:952–979, 2001.

[35] G. Schellhorn. ASM refinement and generalisations of for-
ward simulation in data refinement: A comparison.Theoret-
ical Computer Science, 336:403–435, 2005.

[36] G. Schellhorn, H. Grandy, D. Haneberg, N. Moebius, and
W. Reif. A systematic verification approach for mondex
electronic purses using ASMs. InProc. Dagstuhl 2007,
LNCS. Springer, 2007. to appear.

[37] G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif.
The Mondex challenge: Machine checked proofs for an
electronic purse. In Misra, Nipkow, and Sekerinski, edi-
tors, Proc. FM 2006, volume 4085 ofLNCS, pages 16–31.
Springer, 2006.

[38] A. Silberschatz, P. Baer, and G. Gagne.Operating System
Concepts. Wiley, 2005.

[39] S. Stepney, D. Cooper, and J. Woodcock. An electronic
purse: Specification, refinement and proof. Technical Report
PRG-126, Oxford University Computing Laboratory, 2000.

[40] J. Woodcock. First steps in the verified software grand chal-
lenge.IEEE Computer, 39(10):57–64, 2006.

[41] P. Zikopoulos, G. Baklarz, and R. Melnyk.Official Guide to
DB2 Version 8. Prentice Hall, 2003.

Appendix: Refinements and Retrenchments

In this Appendix we briefly review the notions of refinement and
retrenchment used above. For refinement, we adapt slightly the
formulation in [17] as used in the Mondex development. The re-
trenchment rules are adapted to fit with the refinement ones. It will
suffice to quote the forward rules for refinement and retrenchment.

The context of the rules is a pair of (abstract and con-
crete) ADTs: (A, AInit, {AOp, AIOp, AOOp | Op ∈ OpsA}), and
(C, CInit, {COp, CIOp, COOp | Op ∈ OpsC}). HereA is the ab-
stract state schema,AInit its initialisation, and forOp ∈ OpsA,
Op, AIOp, AOOp are the abstract operation schemas, and their input
and output space schemas. Similarly for the concrete side.

For refinement, the two ADTs are related by the retrieve rela-
tion RA,C on states, and (per operation) the input and output rela-
tions RIA,C,Op andROA,C,Op. For refinementOpsA ⊆ OpsC, but
such that anyOp∈ OpsC−OpsA is a refinement of a correspond-
ing unstated abstract operation whose definition isskip.

Forward refinement is given by three main proof obligations
(POs),initialization, applicabilityandcorrectness:

∀C′ • CInit ⇒∃A′ • AInit ∧ R′

A,C

∀A; AIOp; C; CIOp •

RA,C ∧ RIA,C,Op∧ preAOp⇒ preCOp

∀A; AIOp; C; CIOp; C′; COOp •

RA,C ∧ RIA,C,Op∧ preAOp∧ COp

⇒∃A′; AOOp • AOp∧ R′

A,C ∧ ROA,C,Op

For retrenchment, the two ADTs are related by the retrieve relation
RA,C on states, and (per operation) the within, output, and concedes
relationsWA,C,Op, OA,C,Op, andCA,C,Op. For retrenchmentOpsA ⊆
OpsC, and there is no restriction on operations inOpsC − OpsA.

Two POs define a retrenchment between two models:initiali-
sationas for refinement, andcorrectnesswhich is analogous to re-
finement correctness. Note that applicability issues are subsumed
via the within relation:

∀C′ • CInit ⇒∃A′ • AInit ∧ R′

A,C

∀A; AIOp; C; CIOp; C′; COOp • RA,C ∧WA,C,Op ∧ COp

⇒∃A′; AOOp • AOp∧ ((R′

A,C ∧OA,C,Op)∨CA,C,Op)

