A survey of object orientation

in Z

by Susan Stepney, Rosalind Barden and David Cooper

Two technologies offer much to the software
industry; formal specification aids precision
and object orientation aids structuring. One
popular formal specification language is Z. In
this paper, we survey techniques for adding
object-oriented structuring to Z and look at
three of them [1-3] in more detail.

1 Introduction

Z is one of the more popular formal specification lan-
guages [4-7]. It makes use of schemas to structure specifi-
cations [8]. However, the message coming from many
authors is that the Z schema is not sufficient for structuring
large specifications [9]. There are many proposals for
extensions to provide various degrees of modularity. Some
of these are based on simple textual devices, such as
formal chapters with facilities including import and export
statements, generic parameters and library chapters [10,
11]. Object orientation is a popular approach in other
areas of software engineering, promising many benefits in
structuring, understandability, incremental development
and reuse. Many authors are now proposing a more
object-oriented approach to formal specification in order
to gain these benefits.

Many object-oriented variants of Z have appeared in the
literature, attemping to provide Z with the benefits of object
orientation’s structuring mechanisms. These include Hall's
style [1, 12], Schuman and Pitt's variant [2, 13], Object-Z [3,
14], using Z with HOOD [15, 16], OOZE [17], Whysall's
approach [18, 19], Z** [20], MooZ [21] and Cusack’s
Object Oriented Z [22]. The first three of these are the best
documented, and we illustrate them in detail, by specifying
the same example in each. This example is specified in Z,
in Hall's style, with Schuman and Pitt's variant and in
Object-Z. Other approaches are summarised later. We also
discuss how well Z and the object-oriented approach
mesh.

Object-oriented means different things to different
people. We assume fairly standard definitions of objects,
classes, and inheritance as given in, for example, Refer-
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ences 23-25. Hence, we say that an object has state,
exhibits well defined behaviour and has a unique identity. Z
is a good starting point for specifying object-oriented
systems, since it is state-based and can define operations
(behaviour) in terms of changes to the state. However, it
fails when trying to specify classes. Classes are the
abstraction mechanism; the structure and behaviour of
similar objects are defined in their common class. Z has
no support for bundling together the state and operation
definitions into a class definition. Hence, it cannot specify
inheritance. Inheritance is a powerful structuring mecha-
nism that allows classes to be specified in an incremental
way. Conformant inheritance specifies behaviourally com-
patible descendants, which can always be used in place of
their ancestors. Non-conformant inheritance captures the
notion of similarity, rather than compatibility, and oper-
ations can be modified or removed.

As Wegner [24] points out, data abstraction
(encapsulation) is an orthogonal concept to inheritance
(structuring). In this paper, we are more interested in the
structuring aspects of the objected oriented approach, and
we emphasise these. We also do not address the inter-
esting research area of the subsequent development of
code from an object-oriented specification.

2 Conventional Z

In this Section, we specify in Z the example chosen to illus-
trate each of the identified object-oriented approaches; it
has been written in a style to aid such illustration. The spe-
cification chosen is that of different sorts of quadrilaterals,
as may be needed for a drawing package. For an intro-
duction to the Z notation, see, for example, Reference 5.

2.1 Vectors and scalars
Vectors are used to specify the edges and position of a
quadrilateral. The length of a vector is a scalar, which is
not further defined.

[VECTOR, SCALAR]

Software Engineering Journal March 1992




The vector operations addition and modulus (length) are
used, with their conventional definitions. The relation L
holds if two vectors are perpendicular. O is the null vector.

_+ _: VECTOR x VECTOR — VECTOR
| _|: VECTOR — SCALAR
1 _: VECTOR« VECTOR

0: VECTOR

(definitions omitted)

2.2 Edges

The edges of a general foursided closed figure can be
specified by a sequence of four vectors that sum to zero.

— Edges
edge : seq VECTOR

# edge=4
edgel + edge2 + edge3 + edged =0

Five kinds of four-sided figure, defined by various con-
straints on their edges, are distinguished.
EDGEKIND: ; = quadrilateral| parallelogram
| rhombus| rectangle| square
A quadrilateral has non-zero edges. Notice this definition

allows edges to cross. If this is not desired, a stronger con-
straint should be used.

__IsaQuadrilateral
Edges

Od¢ranv

A parallelogram is a quadrilateral with opposite Edges
equal in length and opposite in direction.

IsaParallelogram
Edges

IsaQuadrilateral
edgel + edge3 =0

A rhombus is a parallelogram with adjacent sides of the
same length.

__IsaRhombus
Edges

IsaParallelogram
| edgel| = | edge2|

Software Engineering Journal March 1992

A rectangle is a parallelogram with perpendicular adjac-
ent sides.

__IsaRectangle
Edges

IsaParallelogram
edgel 1 edge2

A square is a rhombus and a rectangle.

__[saSquare
Edges

IsaRhombus
IsaRectangle

2.3 A quadrilateral

For something like a drawing package, the position of the
quadrilateral is also needed. Therefore, a general quadrilat-
eral is specified by its edges, its position and its kind (Fig.
1).

— Figure
Edges
position : VECTOR
kind : EDGEKIND

(IsaQuadrilateral A kind = quadrilateral)
V (IsaParallelogram A kind = parallelogram)
V  (IsaRhombus A kind = rhombus)
V  (IsaRectangle A kind = rectangle)
V  (IsaSquare A kind = square)

The predicate ensures that the edges of the four-sided
figure are consistent.

2.4 Operations on a figure

2.4.1 Moving the figure: a figure can be moved
(translated) by changing its position component.

__Move
A Figure
move? : VECTOR

edge' = edge
position’ = position + move?
kind' = kind

2.4.2 Querying the angle between two edges: a
general quadrilateral can have four different internal
angles. However, parallelograms and rhombi have only
two interior angles, and these are related; one is = minus
the other. Rectangles and squares are even simpler. There-
fore, it makes sense for all except general quadrilaterals to
query the angle between two adjacent sides.
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/--/ position

Fig. 1

[ANGLE]

L : VECTOR x VECTOR+ ANGLE
rightAngle : ANGLE

Vo, w:VECTOR|v L we [ (v, w) = rightAngle
(rest of definition omitted)

ngle
= Figure
al: ANGLE

(kind € {parallelogram, rhombus} A
al = / (edgel, edge?))
vV
(kind € {rectangle, square} A
a! = rightAngle)

The separate predicate for squares and rectangles is not
strictly necessary (it is a consequence of the other defini-
tion and the predicate on edges), but it is included explic-
itly to emphasise this fact.

2.4.3 Shearing the figure: the operation of shearing
makes sense for general quadrilaterals and parallelo-
grams, but not for squares, rhombi and rectangles, since
the operation does not maintain their invariants.

[SHEAR]

__Shear
A Figure
s?: SHEAR

kind € {quadrilateral, parallelogram} A
(rest of definition omitted)

Notice that it is not strictly necessary to include the condi-
tion on the edge kind, since for a non-null shear it would
be impossible to satisfy both the shear and edge condi-
tions for the other kinds.

2.5 Promoting to a drawing system

The state of the drawing system consists of a mapping
from identifiers to figures.
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(D]

DrawingSystem
drawing : ID+ Figure

Analogues to the operations defined on individual figures
are required for the complete drawing system. A standard
technique for doing this is promotion [26, 27]. First, define
a general updating schema that performs an as yet
unspecified change to a particular figure in the drawing
system.

® Update
A DrawingSystem
A Figure

id?: 1D

id € dom drawing
0 Figure = drawing id?
drawing = drawing @ {id?+ 0 Figure'}

The operations on an individual figure can be promoted to
operations on a figure in the drawing system, by conjoin-
ing them with the general updating schema and hiding the
Figure.

MoveDS = (® Update A Mouve)\A Figure
AngleDS = (® Update A Angle)\A Figure
ShearDS = (® Update A\ Shear)\A Figure

Adding or deleting a figure could be promoted in an ana-
logous manner. However, that is unnecessary for our pur-
poses; the drawing system operations can be defined
directly. The operation AddFigure adds a new figure to the
DrawingSystem.

’_AddFigure
A DrawingSystem
f?: Figure

id?: ID

id? ¢ dom drawing
drawing = drawing v {id? s [?}
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The operation DeleteFigure deletes an existing figure from
the DrawingSystem.

__DeleteFigure
A DrawingSystem
id?:ID

id? € dom drawing
drawing = {id?}<drawing

2.6 Summary of the Z approach

In this simple example, all the state variables are used by
all the ‘classes’ but, in a more complex example, it could
well be that classes lower down the hierarchy wish to intro-
duce new state variables. The style used here is to include
all possible state variables for all objects in the class hier-
archy, whether relevant or not. If a new subclass with new
state variables is added later, the state associated with
every existing object in the hierarchy would change. This
style also requires the use of a kind tag and a sort of ‘case
statement’ selection, based on this tag, in each operation.
Adding a new subclass means updating each operation to
know about it. For larger ‘inheritance’ systems with more
state and more operations, such a style would become
very clumsy.

3 Hall's style [1]

Hall [1] introduces some conventions for an object-oriented
specification style. Brownbridge [12] describes a substan-
tial implementation project, where this style was used suc-
cessfully.

3.1 Owverview of Hall’s style

Hall's style adds no new features to Z; a specification
written in this style has the advantage of a sound theoreti-
cal base [6]. The style consists of conventions for writing
an object-oriented specification.

There are five main features of the style discussed in
Hall's paper:

e conventions for modelling object states.

e use of object identities to refer to objects and express
their individuality.

e a convention for expressing the state of a system in
terms of the objects it contains.

e use of object identities to model relationships between
objects.

e a method of defining operations in terms of single
objects, and calculating their effect on the whole system or
on defined sets of objects.

Another three aspects of the style are identified, but not
covered, in Hall's paper. These are a convention for model-
ling classes and their relationships; a convention for rep-
resenting meta-class information; guidance on the
meaning of inheritance and the description of subclass
states and operations. Hall discusses the way in which this
approach contrasts with the conventional style of specifi-
cation; he also promises future support for inheritance.
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3.2 Figures and the drawing system

Instead of describing the different kinds of four-sided
figure, which is similar to before, we concentrate on illus-
trating Hall's style for defining state and operations. In
describing the state, we see the way in which the object-
oriented approach of giving each object a self property is
used and how the use of functions ensures uniqueness of
the various objects.

A figure is defined using an identifier (the ‘self’ notion of
object-oriented design), as well as its other properties
already defined in Section 2.3.

—Figure
self: ID

Edges

position : VECTOR
kind : EDGEKIND

(invariant as in Section 2.3)

The whole drawing system may be described in terms of a
set of identifiers and a function that relates the identifier to
the instance of a figure. This function ensures the individ-
uality of the figures. Note that we are assuming here that
the drawing system deals only with four-sided figures.

—_DrawingSystem
figure: P Figure
idFigure : ID + Figure

idFigure = {f: figure e f.self— f}

The drawing system is thus described in terms of the
objects it contains. If, in turn, this was part of some larger
system, the whole system could be defined as a conjunc-
tion of each of the ‘smaller’ system schemas.

Schemas analogous to DrawingSystem (a collection of
objects and a function from object identifiers to these
objects) occur frequently in this style of specifications. Hall
proposes an extension to the Z notation of SFigure as a
shorthand for DrawingSystemn.

3.3 Operations on figures

In this Section, we see the method for defining operations
in terms of single objects and calculating their effect on
the whole systemn (or on defined sets of objects).

A general operation on a figure does not change the
self component.

—Op
A Figure
self' = self

Moving a figure is given by
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___Move
Op
move?: VECTOR

position’ = position + move?
edge’ = edge

However, this describes only a single object. The following
approach is adopted in order to describe the effect on the
whole drawing system of translating one figure.

__MoveDS
A DrawingSystem
id?:ID

move? : VECTOR

idFigure’ = idFigure @ {id?— (u Move, |
0 Figure, = idFigure id?
A move,? = move?
e 0 Figure,)}

This replaces the selected figure with the suitably trans-
lated figure. The definition relies on Move being determin-
istic. Hall describes how to specify the effect on the entire
system of non-deterministic operations, by using a rela-
tional extension of functional override @

rel*

3.4 Adding a new figure

When a new figure is added to the drawing system, its
features must be set.

—InitFigure
Figure
edges? : Edges
position? : VECTOR
kind? : EDGEKIND

0 Edges = edges?
position = position?
kind = kind?

When the new figure object is added to the system, it must
have an identifier that is different from any existing ones.
This ensures uniqueness of new objects when they are
created.

—AddFigure
InitFigure
A DrawingSystem

self ¢ dom idFigure
idFigure’ = idFigure U {self— 0 Figure}

This technique of calculating the effect on the system can
be extended to operations on sets of objects.

154

3.5 Summary of Hall's style

This approach, being a style for using unchanged Z, has
no new language constructs. Hence, it has the sound theo-
retical basis of Z. It is capable of being understood by
those who already know Z.

The style consists of conventions for encouraging an
object-oriented style of specification. These include

[0 the operations defined represent all the possible oper-
ations; this is required since there is no notation in Z to
gather up the operations into a class definition.

[0 a self property is included in each state description.

[J unchanging object identity is explicitly incorporated
into the A schema, Op.

[0 uniqueness of object identities is guaranteed by the
approach to describing the system of objects; a function is
set up between identifiers and the objects themselves.

The style provides techniques for calculating the effect of
an operation on a set of objects; promotion does not work
if you wish to apply an operation to more than one object.
Reference 1 shows how to perform this calculation for
both deterministic and non-deterministic operations.

4 Schuman and Pitt’s variant

Schuman and Pitt's notational variant of Z is described in
References 2 and 13. Semantic issues are discussed in
References 28 and 29.

This notation is described as object-oriented. In fact, it is
more concerned with fundamental issues of composition
of schemas and reasoning about the resulting composi-
tion than with specifying object-oriented systems, or
specifying systems in an object-oriented way. However, its
principle of specifying no more than is required (for
example, it is not necessary to say that everything else
stays the same for most operation schemas) makes it par-
ticularly useful for specifying systems that consist of
several small states, operated on by local operations, and
then combined together to form the total system state.

4.1 Qverview of Schuman and Pitt’s notation

A state schema has three parts: state component declara-
tions, the state invariant predicate and the initialisation con-
dition predicate. If a predicate part is omitted, it defaults to
true.

—_State
state component declarations

state invariant predicate

initialisation condition predicate

Corresponding operation (or event) schemas also have
three components: input and output parameter declara-
tions, the precondition predicate and the postcondition
predicate.
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__State.Op(params)
parameter declarations

precondition predicate

postcondition predicate

By convention, the name of an operation schema is the
state schema name followed by the operation name. The
corresponding state component declarations and state
invariant predicate are implicitly included in operation
schema.

4.2 Quadrilaterals

A quadrilateral is defined by a sequence of four non-zero
edge vectors and a position vector.

__Quadrilateral
edge : seq VECTOR
position : VECTOR

# edge = 4
edgel + edge2 + edge3 + edge4 =0
0 ¢ ran edge

We can move and shear a quadrilateral, supplying the rele-
vant input parameters.

__Quadrilateral.Move(mouve)
move : VECTOR

position’ = position + move

Note that, in the postcondition, we do not have to say that
everything else stays the same. This is supplied by the
semantics in terms of historical inference.

__Quadrilateral .Shear(s)
s: SHEAR

definition omitted

4.3 Parallelograms

We can inherit from the general Quadrilateral to obtain a
Parallelogram by adding the relevant extra constraint (we
could also add extra state variables at this point).

__Parallelogram
Quadrilateral

edgel + edge3 =0
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Operations must be inherited explicitly. All conditions, pre-
and post-, may be strengthened by conjoining new con-
straints. If the precondition is strengthened, it implies that
we could not necessarily use a child wherever we could
use its parent. However, note that, if we can use it, it
behaves in a way that is consistent with the behaviour of its
parent.

arallelogram.Move
Quadrilateral.Mouve

arallelogram.Shear
Quadrilateral.Shear

Parallelogram has a new operation, enquiring about the
angle between adjacent sides (the arrow shows that a is an
output parameter).

__Parallelogram.Angle( — a)
a: ANGLE

a= [ (edgel, edge?)

4.4 Rhombus
We can further inherit from Parallelogram, and add
another constraint, to obtain a Rhombus.

__Rhombus
Parallelogram

|edgel| = | edge?2|

The move and angle operations are inherited without
change.

__Rhombus.Move
Parallelogram.Move

__Rhombus.Angle( — a)
Parallelogram.Angle( — a)

It is not appropriate to shear a rhombus (the state invariant
cannot be met), and so no such operation is defined.

4.5 Rectangle
Alternatively, we can inherit from Parallelogram, and add
a different constraint, to obtain a Rectangle.

__Rectangle
Parallelogram

edgel | edge2

Instead of inheriting the form of the parallelogram angle
operation, we can redefine it.
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—Rectangle Angle( — a)
a: ANGLE

a = rightAngle

In the same way as for Rhombus, Rectangle inherits
Move from Parallelogram without change, and since it is
not appropriate to shear a rectangle, no such operation is
defined.

4.6 Square

We can multiply inherit from two parents to get a square.

Square
Rhombus
Rectangle

We could inherit the move operation from either parent.
Arbitrarily choosing the rhombus gives

Square.Move
Rhombus.Mouve

The angle operation is more appropriately inherited from
the rectangle.

Square. Angle( — a)
Rectangle.Angle(— a)

4.7 Promotion

We define a drawing system of quadrilaterals to include a
special one representing the selected quadrilateral. It is on
this selected quadrilateral that all the promoted operations
will act.

—DrawingSystem
figures : P Quadrilateral
q : Quaderilateral

q € figures

figures = ¥

We can select a chosen quadrilateral from a set and apply
an operation to this one element, promoting the operation
up to work on the larger state.

DrawingSystem.Select(s)
s: Quadrilateral

s € figures

g=s
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DrawingSystem.Move(mouve)
move : VECTOR
g.Move(move)

4.8 Summary of Schuman and Pitt's variant

Schuman and Pitt's variant has better support for object
orientation than plain Z. Its main features are

e support for concurrency (not covered in this paper).

e a schemanaming convention for operations,
state.operation, which binds operations to the relevant
state. (However, note that there is no direct syntactic
support for classes, for grouping together the operation
and state definitions.) The convention also helps in pro-
motion, where operations can be applied more naturally to
only part of the state.

e an ‘everything else stays the same’ semantics for oper-
ations, different from the plain Z requirements to state
what happens to every variable (otherwise anything may
happen). When a number of operation schemas are com:-
bined to create a multiply inherited operation, we often
want to say everything else stays the same except those
parts that must change in order to uphold the state
invariant. We cannot say this in Z, but we can say it quite
naturally in this approach.

With this approach, each ‘inherited’ operation has to be
respecified explicitly, even if it is unchanged.

5 Object-Z

Object-Z extends Z by introducing a class construct, which
encapsulates state and operation schemas. Classes, and
hence state and operations, can be inherited by other
classes. The language is introduced in Reference 3 and
given a semantics in terms of possible histories
(sequences of operations) in Reference 14. Various
example specifications using Object-Z have appeared: Ref-
erence 30 specifies a simple card game; Reference 31
specifies a cache coherence protocol for a shared
memory multiprocessor; and Reference 32 specifies a
simplied mobile telephone system.

The notation used in this Section is that defined in Refer-
ence 33, which describes Version 1 of the language.

5.1 Qverview of Object-Z notation
In Object-Z, a class is defined by

— ClassName
[inherited classes]
[local constants]
[state schema]
[initial state schema]
[operation schemas]

[history invariant]

The [inherited classes] are the names of superclasses to
be inherited; a subclass incorporates all the features of its
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superclasses, including their constants, state and oper-
ations. Operations and variables may be renamed in this
list.

The [local constants] cannot be changed by any oper-
ations, but different instances (objects) can have different
values of the constants. The unnamed [state schema]
declares state variables and a state invariant that con-
strains the constants and variables. Together these give
the class attributes.

The [initial state schema] is defined in a way similar to
plain Z; unprimed variable names are used.

The [operation schemas] define the operations in a way
very similar to plain Z, defining a relation between the
before and after state. The declaration includes a A list,
which lists those variables that may be changed by the
operation; the other variables remain unchanged. The dec-
laration and predicate of any inherited operation with the
same name are implicitly conjoined with this definition.

Class attributes can be objects, and as such, it is often
necessary to apply their operations to them. obj.Op is an
object of the same class as obj resulting from performing
the operation Op on obj.

The [history invariant] enables constraints to be
included in the allowable order of operations, using nota-
tion from temporal logic. It is not discussed further here;
neither are the operators used to compose objects in
parallel.

5.2 Figures
A general quadrilateral is specified by its edges and its

position. It can be moved and sheared. The class Quadri-
lateral is defined by

__Quaderilateral

Edges
position : VECTOR

0 ¢ ran edge

_Move
A(position)
move? : VECTOR

position’ = position + move?

___Shear
Aledge, position)
s?: SHEAR

[(definition omitted)]

The class Parallelogram inherits Quadrilateral, and
hence the operations Move and Shear. It has an extra
constraint on its edges. The operation Angle, which
outputs the interior angle between two sides, is new.
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__Parallelogram
Quadrilateral

edgel + edge3 =0

__Angle
a!: ANGLE

a! = / (edgel, edge?)

The class Rhombus inherits from Parallelogram, with a
stronger constraint on its edges. The Shear operation is
no longer applicable.

__Rhombus
Parallelogram

| edgel| = | edge? |

__Shear
s?: SHEAR

false

Similarly, the class Rectangle inherits from Parallelogram,
with a stronger constraint on its edges (that they are
perpendicular), and with the Shear operation no longer
applicable.

The class Square inherits from Rhombus and
Rectangle. There is no extra constraint on its edges.

Square

Rhombus
Rectangle

5.3 A drawing system

The state of the drawing system consists of a mapping
from quadrilateral identifiers to quadrilaterals.

__DrawingSystem

drawing : ID+> Quadrilateral

__AddFigure
A(drawing)
q? : Quadrilateral
id!:ID

id! ¢ dom drawing
drawing = drawing v {id!— gq?}

__DeleteFigure
Aldrawing)
id?:ID

id? € dom drawing
drawing = {id?}<drawing
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— ® Update
A(drawing)
id?:ID

q, q : Quadrilateral

id? € dom drawing
q = drawing(id?)
drawing = drawing @ {id?— q'}

— ® Lookup
id?:ID
g, q : Quadrilateral

id? € dom drawing
q = drawing(id?)

MoveDS = ® Update ® gq.Move
AngleDS = ® Lookup e q.Angle
ShearDS = ® Update e q.Shear

The operation AddFigure adds a figure to the
DrawingSystem. The operation DeleteFigure deletes a
figure from the DrawingSystem. The two promotion
schemas ® Update and ® Lookup are used to select a
particular figure for updating or for interrogating, and
MouveDS, AngleDS and ShearDS define the promoted
operations. Although these operations are defined in terms
of Quadrilaterals, they can also be applied to instances of
subclasses. This is why there is no equivalent of the pre-
viously necessary EDGETYPE ; the inheritance mechanism
handles all this for us automatically.

5.4 Summary of Object-Z
The main feature of Object-Z are

[0 a class definition mechanism that directly binds oper-
ations together with the relevant state.

[0 an inheritance mechanism, allowing incremental
development and reuse of specifications. Inheritance can
be non-conformant; it is posible to strengthen the precon-
dition of an operation, or completely redefine it, and so
make an operation fail on a child when it would work on a
parent.

[J some conventions and new symbols to support defin-
ing new operations in terms of instance variables’ oper-
ations.

[0 the delta list, giving an ‘everything else stays the
same’ style, making operation definitions concise.

[0 a mechanism for constraining the order of operations,
based on temporal logic.

[0 a formal semantics for classes based on event his-
tories.

Object-Z extends the graphical component of Z, the boxes,
to define its classes. This gives an immediate visual indica-
tion of the scope of the definitions, as contrasted with the
need to search for keywords such as ‘begin’ and ‘endclass’
in textual-based variants. This makes it easier to navigate
specifications.

Although not widely used outside its birthplace, Object-Z
has been used to specify real systems, mainly in the tele-

158

communications area. It appears to be more than just an
extension to Z; the feel is rather an object-oriented specifi-
cation language that uses the Z notation. Although it does
not yet have such a solid mathematical base as Z [6], the
work on providing it with a formal semantics is progress-
ing [14].

6 Other approaches

Here we briefly describe various other object-oriented Z
approaches. Some of these are described in more detail in
Reference 34.

6.1 Zand HOOD

HOOD (Hierarchical Object Oriented Design) is the
approved European Space Agency design method for
Ada. It is not actually object-oriented, since it has no idea
of classes or inheritance; it is object-based (as is Ada). The
hierarchical design approach consists of decomposing a
parent object into several child objects, which act together
to srovide the functionality of the parent.

In conventional HOOD, the more ‘formal' parts of the
specification are achieved by using Ada as a program
description language. Reference 15 describes a way to use
Z to specify the HOOD objects. A parent object is specified
abstractly (a WHAT specification), using Z to specify an
abstract state and abstract operations. The child objects,
identified by the HOOD design process, are specified
abstractly (as a WHAT specification, or as a WHAT-WITH spe-
cification for objects that use other objects). The parent
object is then respecified, more concretely in terms of
these child objects (a HOW specification), by defining how
its abstract state and operations are built from its children
and their operations.

The approach modifies the use of Z in two ways; it uses
HOOD constructs to limit the scope of the Z definitions, for
example, child operation definitions are not visible outside
the parent, and it extends the Z dot notation to refer to
operations of particular objects. These two modifications
give Z a full object-based capability: local scope and the
ability to apply operations to objects. Reference 16 pro-
poses a notation for iterating operation schemas (giving
something analogous to a ‘while loop’), since such con-
structs can occur in the internals of object specifications.

HOOD also supports concurrency (in the Ada style); the
authors want to extend their Z work to also cover this
aspect.

6.2 OOZE

OOZE (Object Oriented Z Environment) is described in
Reference 17. The ‘Environment' in the name refers to
support for animation and a database to hold indexes,
dependency relations, module expansions, and so on.

The approach combines an algebraic formal semantics,
based on OBJ3, with a Z-like notation and style. The alge-
braic underpinnings become clearer as more of the OOZE
language is described; for example, classes can be param-
eterised by ‘theories’, which can require properties of the
generic parameters,

Schema boxes are nested to group together the class
operation definitions. The schema syntax has been
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Table 1

z Hall

object-based ~ V'
class-based
object-oriented

x

x

x

Schuman/Pitt  Object-Z
v v
~ v
X v

x = an approach does not enjoy a property.
v/ = an approach does enjoy a property.
~ = an approach enjoys a property to a partial degree.

changed from Z to ‘enhance readability’; the pre- and post-
conditions are separated, there is an if statement, the
keyword self has been added, and there are separate
exception schemas.

This approach has the advantage that it stands on a
firm mathematical base, algebras, while using a more
friendly syntax, Z.

6.3 Whysall's approach

Whysall's approach is described in References 18 and 19.
The aim of this work is to provide additional structuring of
Z specifications in order to aid the refinement process.
This is done by splitting a specification into an algebraic-
based export part and a modelbased body part. The
former is intended for use by a client of the class and the
latter for refinement by the developer. Standard Z is used,
although some extensions are suggested in order to make
the process easier.

o4 T

Reference 20 describes some early ideas for overcoming
some of the problems, in particular inheritance, which are
encountered when endeavouring to specify object-oriented
systems in Z. Z* * shares some ideas with Object-Z. From
a high-level viewpoint, they use similar techniques of class
definitions, but whereas Object-Z has a fairly abstract
approach, Z* " appears to have been more influenced by
object-oriented programming language constructs. This
influence is probably due to the roots of Z* * in the REDO
project, concerned with reverse engineering.

Z** directs some of its attention to three levels of soft-
ware that are identified in the paper. The claim is made
that, by separating out the specification of these levels,
each can be changed more or less independently of the
others. The paper takes a conventional database problem
and shows how some of the techniques of object orienta-
tion can be applied.

6.5 MooZ

Meira and Cavalcanti's work is described in Reference 21.
On the surface, this approach looks similar to Object-Z,
but the semantics of MooZ is different. A MooZ class also
specifies an abstract data type; the semantics of a MooZ
object is that of a record (in ObjectZ, the semantics is
defined in terms of a sequence of operations). The authors
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claim that this difference results in more natural and
concise specifications, and a simpler treatment of
message-passing.

7 Summary and conclusions

We use Wegner's classification scheme [24, 25] to classify
the various approaches.

e A language is object-based if it supports objects as a
language feature. Objects are first-class values.

e An objectbased language is class-based if every
object has a class.

e A class-based language is object-oriented if class hier-
archies may be incrementally defined by an inheritance
mechanism.

Z used in the conventional style can be used to specify
objects, but it does not ‘support objects as a language
feature’, and objects are not first-class values’, and so it
cannot truly be called even object-based by Wegner's defi-
nition. However, by straining the definition, we say it is
approximately object-based.

Hall's style, although using unmodified Z language, can
be considered object-based, because of the way object
identities are used. It does as well as can be done without
extending Z, which gives it the advantage of the Z theoreti-
cal base.

Schuman and Pitt’s variant can be considered approx-
imately class-based, since it binds the operations to the
state to some degree; objects of the same type have the
same behaviour. However, there is no mechanism for
grouping together the state and operations into a true
class definition. It cannot be considered object-oriented,
since ‘inherited’ operations have to be explicitly respecified,
even when unchanged. Work is progressing on providing
the variant with a formal semantics.

Object-Z is fully object-oriented; it has classes and inheri-
tance. It is also the best developed approach; there are
many case studies using the language in the literature.
Work is well advanced on providing the language with a
formal semantics.

In summary, based on the case studies detailed in this
paper, the approaches can be classified as in Table 1. Can
large Z specifications be better structured and made more
understandable by using object-oriented ideas? Hall's
object-based style of writing Z has been used successfully
on a substantial real project [12]. Fully objectoriented
Object-Z specifications are eminently readable. Therefore,
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the answer is an unequivocal 'yes'. The clarity and preci-
sion of model-based Z specifications and the structuring
power of object orientation can be combined beneficially.
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