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Abstract. We have recently completed the specication and security
proof of a large, industrial scale application. The application is security
critical, and the modelling and proof were done to increase the client's
assurance that the implemented system had no design aws with security
implications. Here we describe the application, specication structure,
and proof approach.

One of the security properties of our system is of the kind not pre-
served in general by renement. We had to perform a proof that this
property, expressed over traces, holds in our state-and-operations style
model.

1 Introduction

Over the past few years we have been working with the National Westminster
Development Team (now platform seven), proving the correctness of Smartcard
applications for electronic commerce, which are currently being sold as commer-
cial products.

We have modelled the abstract security behaviour and properties of the prod-
ucts, modelled the more concrete top level design, and have rigorously proved
the preservation of both functional and non-functional security properties. All
work was done in Z.

We have previously described one of the Smartcard products, an electronic
purse [Stepney et al. 1998]. Here we describe another product: a smartcard
operating system that ensures a secure environment for running segregated ap-
plications.

2 Overview of the application

A Smartcard operating system should host, and segregate, separately loaded
executable applications. If no loaded application can interfere with any other
applications co-resident on the smartcard, independent application providers can
be assured that their own applications are operating in a secure environment.

NatWest called in Logica to discover if it is feasible in a commercial setting
both to develop formal models of such a system and its security policy, and to
prove that the system design meets all the security properties required.

 current address: Praxis Critical Systems Ltd, 20 Manvers Street, Bath, BA1 1PX
cooperd@praxis-cs.co.uk
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3 Special features

There were various things we had to deal with, to ensure that we were speci-
fying and proving the right things, and to ensure that we were presenting the
specication and proof to the right level of abstraction, detail and clarity. Some
of these issues are discussed in the following sections.

3.1 Security models and proofs

We specied two key formal models, an abstract Security Policy model (SP)
that clearly captures the desired security properties of the system, and a more
concrete Hardware Design model (HW), that clearly maps to the semiformal
design. We also performed a proof that HW exhibits the security properies of
SP.

We actually chose to structure the model in three levels: SP , VM (virtual
machine, an intermediate level), and HW , introducing implementation detail
only where needed, and as low down the specication hierarchy as possible.
Having the intermediate model resulted in more proofs, but simpler ones.

3.2 Segregation with communication

The fundamental security property of Smartcard operating systems is that ap-
plications are segregated; one application cannot read or change secret data
in another application, either by rogue intent or because of a bug. However,
segregation need not be absolute; there could be support for applications to
communicate with each other to some limited extent, over explicitly identied
overt communication channels.

Although much has been published in this area (see, for example, [Bell &
Padula 1976], [Rushby 1981], [Goguen & Meseguer 1984], [Bell 1988], [Jacob
1992], [Roscoe 1995], [Gollman 1998], among many others), nothing existing
tted our needs without modication, because of other technical constraints im-
posed on the particular commercial product we were dealing with. (Industrial
scale formal methods work often requires modication of, or extension to, exist-
ing idealised academic results, because of conicting real world constraints and
demands.) So, building on the existing concepts, we formulated a suitable prop-
erty of segregation with communication [Cooper & Stepney 2000] and proved
that our system model possesses an appropriate instantiation of this property.
Developing a suitable formulation, and proving it holds, was the major technical
challenge of our development work.

Summarising that denition: The segregation property is formulated as con-
straints on sets of system traces (sequences of communication events) that en-
sures that the system's applications are behaving independently, except for the
explicitly identied communication events. The segregation property states that
if certain event traces are allowed, then other event traces, corresponding to the
same applications executing in a dierent order, must also be allowed, because
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the only way the other traces could be disallowed would be by some covert
communication, coordination, or interference between the applications.

This segregation property is a kind of property not preserved in general by
renement. Renement can be viewed as taking a subset of allowed system
traces, provided the subset does not narrow the precondition, but just resolves
non-determinism. Yet a property that says `if t1 is a trace of the system, then so
is t2' is not necessarily preserved by a subset of the traces (this would correspond
to using some covert communication to resolve the non-determinism). So, as well
as proving that HW is a renement of SP (necessary to show that HW has the
functional properties of SP), we have to provide a dierent kind of proof to show
that HW also preserves the segregation property of SP.

4 Modelling consequences

Because of these special features of the problem, we did not have complete
freedom in the way we could specify the model. We had to structure it to allow
the various proofs to be performed.

4.1 Segregation and multi-promotion

The requirement for segregation with communication permeates the entire struc-
ture of our specication and proof approach.

Although the segregation property is important, Smartcard operating sys-
tems have a lot of other, functional, properties and behaviour that must be
specied. These are most naturally captured in Z using a conventional state-
and-operations specication style, and SP{HW model correspondence shown
with a conventional data renement proof. In addition, any mapping from the
concrete HW model to a semi-formal design is more naturally achievable for a
state-and-operations style specication.

These considerations led us to adopt such a style. But then we needed a way
of expressing the trace-based segregation property as a property of our state-
and-operations model. We proved an unwinding theorem [Cooper & Stepney
2000], which allowed us to show that (a particular form of) unconstrained multi-

promotion has our segregation property.
Promotion is a commonly used Z specication structuring technique that

allows operations specied on individual `local' pieces of state to be `promoted'
to operations on a `global' state comprising labelled copies of the local state
(explained in [Barden et al. 1994, chapter 19]). A `framing schema' identies
the single piece of local state being changed, and requires the other pieces of
local state to be unchanged. The framing schema is then combined with the
relevant local operation schema (and the local state hidden) to say how that
identied local state changes.

Multi-promotion is an obvious extension to allow an operation to aect two
or more pieces of local state in concert. In a Smartcard operating system with
communicating applications, there is the need to promote a single application,
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or two applications, or three applications, or all loaded applications, on occasion.
For the case of two pieces of local state promoted together, with a global state
like global : ID  Local , the relevant framing schema might look like

Two

Global

Local

Local2
from?; to? : ID

disjoint hffrom?g; fto?gi

ffrom? 7! Local ; to? 7! Local2g  global

global 0 = global  ffrom? 7! Local 0; to? 7! Local 0

2
g

and then the corresponding promoted operation would look like

GlobalOp b= 9Local ; Local2  Two ^ LocalOpFrom ^ LocalOpTo2

In general, multi-promotion allows an arbitrary choice of the number of appli-
cation promoted.

Unconstrained multi-promotion is a promotion where there are no global
constraints on the promoted state or operations, that is, no constraints linking
pieces of local state.

Informally: because all the operations are dened in terms of local (single
application) state only, there are no opportunities for one local state's behaviour
to be inuenced by another's at the point of specication, so no communication
can occur. Formally: our unwinding theorem proves that this is the case.

Security properties can have notoriously counter-intuitive consequences, so
we were very careful to prove our property formally, rather than relying on
informal justications. It is relatively easy to justify that an operation on one
piece of state does not alter another piece of state: that other piece of state
can be seen to be unchanged. It is much harder to justify that every operation
changes its piece of state in a way that is independent of the value of all other
segregated pieces of state: the other states do not change, but their values are
accessible through the mathematical formulation. Our formalism not only made
precise what was meant by segregation with communication, but also formally
justied that unconstrained multi-promotion, with its explicit communication
between the promoted states, exhibits this form of segregation.

Unfortunately, the formulation of our unwinding theorem, although a kind
of multi-promotion, is not expressed in the form most natural for a Z speci-
cation. It is centered around the communication events, and those particular
applications involved in the event have to be deduced. On the other hand,
the conventional Z multi-promotion style illustrated above, identies explicitly
which applications are involved in a particular promoted operation, and the
corresponding communication event must be deduced.
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We had two choices in order to prove our system model to be segregated:
either write our specication directly in the communication-centred form suited
to the segregation theorem, or prove that our specication written in the more
natural application-centred form was equivalent to one formulated in terms of
communications.

After experimenting with both approaches, we decided on the second one.
Although that choice requires performing an extra proof, we felt that the added
clarity of the specication, and ease of proof in other areas, outweighed the
penalty.

4.2 Modelling the functionality

When talking about an operating system supporting applications, one most nat-
urally thinks of the OS as a `layer' beneath the applications. However, that nat-
ural modelling approach is not compatible with our view of segregation, which
is expressed in terms of applications only.

Smartcard operating systems allow user applications to be securely loaded,
securely deleted, and securely executed. In addition to loading and deleting
user applications, and mediating between inter-user-application communication,
Smartcard operating systems usually oer some additional trusted functionality,
such as random number generation and various query functions. We needed to
incorporate such functionality into our segregation framework, which recognises
only `applications'. In addition, ISO standard Smartcards have some required
functionality (Master File, ATR File and Directory File) that behave to some
ways like user applications { they are selectable { but not in others { they have
xed functionality and are permanently resident.

So we modelled loadable and deletable user applications, we modelled ISO
standard functionality as three special applications, and we modelled the oper-
ating system functionality itself as the single Scos trusted application.

In order to simplify the segregation proof, which talks of a single kind of
application, we used a free type to build applications from user applications,
ISO applications, and the Scos application. Also, because user applications are
loadable and deletable, but the segregation formulation assumes the segregated
applications are xed (it assumes a total mapping APPL"LocalState), we also
modelled absent user applications.

APPL ::= scosScos j isoID j userUserAppl j absentID

This formulation using a total mapping over a free type does make the specica-
tion a little clumsy in places (particularly the continual extraction of states from
their free type wrappers), but makes it possible for us to prove the segregation
property.

5 Determinism

We used determinism in two dierent places to solve two dierent modelling
problems.
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5.1 Imposed determinism

We had to make sure our SP model is suciently constrained not to allow
unwanted renements; in particular, that any resolution of non-determinism
does not subvert certain condentiality requirements (this is in addition to the
requirement that the renement also preserves the segregation property). The
Scos is intended to be a trusted application: trusted by the other applications not
to pass any of their communications with it to other applications. For example,
the Scos application can be trusted not to store the last random number it
gave to application A, then use that as a way of resolving a non-deterministic
interaction with application B , and it can be trusted not to store the messages
that it passes between an application and the external communication channels.

So, in our SP , the Scos application's behaviour must be tied down su-
ciently that it can be seen to be trustworthy. We achieved this by making the
abstract Scos state small, and imposing operational determinism. Thus it is not
possible to use secret or covert information to resolve the nondeterminism in
a more concrete model. Because the specic behaviour of user applications is
not specied in the abstract SP model, it is not possible to make that model
explicitly deterministic. Instead, we added a predicate to assert that every op-
eration's behaviour is deterministic, without specifying what that behaviour is;
we introduced a requirement for functionality into the system behaviour.

If the abstract state is captured by the schema A, and the operation by the
schema AOp, we can dene a function that converts operations dened using
delta schemas into operations dened as relations between (before and after)
schemas, as:

relA : AOp " (A  IN ) # (A  OUT )

8 op : AOp  relA op = fAOp j AOp 2 op  (A; m?) 7! (A0; m!) g

Assume the non-determinised form of the (total) operation is AOp. We can
dene possible deterministic forms as1

aDet == (relA AOp) \ ( " )

and an augmented state as

ADet b= [ A; f : aDet ]

The deterministic operation is then

1 In general, this is a sucient, but not necessary, constraint for determinism, as
discussed in section 5.3. In this case, however, our abstract model is \suciently
abstract" in that all its state is observered, either through outputs or nalisation.
(Technicalities aside, a merely sucient condition for determinism is sucient for
our pragmatic, industrial purposes.)
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AOpDet

ADet

m? : IN

m! : OUT

f 0 = f

f (A; m?) = (A0; m!)

This says that the particular choice of determinism, f , is unchanged by the
operation, and that the operation behaves like AOp and is deterministic in the
way captured by aDet .

Only the operations of the SP model are constrained to be deterministic in
this way. The initialisation is highly non-deterministic, because it does not con-
strain the value of f . Renement chooses the particular deterministic behaviour
that is implemented. We proved our renement using the conventional `forward'
Z renement rules ([Spivey 1992b, chapter 5], augmented with nalisation [Step-
ney et al. 1998]), and not the `backward' Z renement rules, thus showing that
the renement did not move the non-determinism at initialisation to occur later
2; the rened operations stay deterministic, and so the rened Scos application
remains trustworthy.

If it were impossible to make the operations deterministic (if aDet were
empty), adding such a constraint to ADet would make the state empty. We
proved this was not the case by showing the existence of such an f expressed in
terms of a more concrete model proved both to be deterministic (including ini-
tialisation) and to be a renement of the non-determinised abstract model. This
concrete model is then a suitable renement of the (non-empty) determinised
abstract model.

5.2 Determinism and renement

We used our unwinding theorem and multi-promotion to prove that our top-level
SP and intermediate-level VM models are segregated. However, our lowest level
HW model is not structured as an unconstrained multi-promotion: it is highly

2 An uninterpreted Z specication is not sucient by itself to dene the legal imple-
mentations. For example, it may not be clear what schemas are intended to corre-
spond to operations to be implemented, and which are merely scaolding. The most
common dierence in interpretation is behaviour outside the precondition: [Spivey
1992b, chapter 5]'s forward rules allow \weakening the precondition", whereas dif-
ferent Z renement rules need to be used to support a ring condition interpretation
[Josephs 1991].

It is customary in Z specications to leave much of this interpretation implicit; we
were more careful, stating (necessarily informally) precisely what schemas comprised
the operations, which renement rules we were using, and why. All this kind of
validation and meta-argumentation, that the right property is being proved, and
that the proof performed really does establish that property, is carefully documented
for the reviewers' scrutiny.
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constrained, because it shows how the applications are arranged in a at memory
space, and how they share use of the RAM. Such a constraint is the very kind of
thing that might indicate a covert communication through the shared memory.
We had to prove that the applications as laid out in a single at memory space
remain segregated. We needed another way to demonstrate segregation.

Segregation is expressed in terms of traces; renement in terms of subsets of
traces. If a model is deterministic, a renement cannot resolve non-determinism
(remove traces). If a model is also total, a renement cannot weaken the pre-
condition (add traces). So a renement of a total, deterministic model has the
same traces: if the original is segregated, so must be the renement. We used
this fact to prove segregation of our HW model: by proving segregation (by
unconstrained multi-promotion), totality, and determinism of our VM model.

5.3 Determinism and traces

Whilst trying to solve the problem of making the Scos provably trustworthy, and
proving the VM and HW have the same traces, we found ourselves bandying
about phrases like `operationally deterministic', yet when we came to write down
the proof obligations, we realised our rst naive attempt was too restrictive. We
had thought we had to prove that the state transition is functional, to prove
that

BOp ` relB BOp 2 B  IN  B  OUT

(where relB is dened with respect to state B and operation BOp in a similar
way to relA above3).

However, consider a specication of a state comprising a set, with some
obviously deterministic operations on it such as `add an element' and `remove
an element'. It would be quite legitimate to rene this set to a sequence, and
the operation of `add an element to the set' to `if it is not already there, add
the element anywhere in the sequence'. The abstract state transition relation is
functional, but the concrete state transition relation is no longer functional, yet
the observed behaviour is still deterministic.

And this corresponds closely to the case of a Smartcard operating system: in
the concrete HW model there are various possible ways of laying out applications
in memory, but the observed behaviour is independent of which way this layout
is actually implemented. Our naive proof obligation was too strong. We were
able to use our trace model of segregation to help us determine the appropriate
proof obligation for determinism.

3 It would be nice if such a relation could be dened generically. This is not possible
in Z as it stands today, because generic denitions cannot be constrained to be
applicable to particular sets, such as schemas. Type constrained generics [Valentine
et al. 2000] would allow such a denition.
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6 Functional and non-functional properties

6.1 Two security models

We needed to specify various functional security properties, based in the usual
way on an external view (inputs and outputs) of the system. We also needed
to express the segregation property, based on a necessarily internal view of the
inter-application communications, not engaged in with the outside world. These
two views need to be related somehow. We also had to make the specication
structure match the implementation; in particular, cope with the fact that the
overt inter-application communication channels are unobservable from outside
the smartcard.

So we wrote two security policy models, one capturing the functional proper-
ties, SPf , with only the external communications visible, and one capturing the
segregation property, SPs , with all the external and internal communications
present. In principle, these models could be entirely unrelated. In practice,
we made them very similar: they dier only in the external observability of
the inter-application communication channels, which are fully visible in the SPs

model, and nalised away [Stepney et al. 1998] to invisibility in the SPf model.
We also wrote two corresponding intermediate models, VMf and VMs , and

proved that each captured the required properties of the corresponding SP

model. We wrote a single concrete model, HW , corresponding to the imple-
mented device, and proved it possessed the properties of both the SP models,
via the VM models.

6.2 Dierently segregated

Segregation is a property of a single system. Two dierent systems may each
be segregated, yet have no relationship to each other. For example, once we
have carefully specied our segregated SP , with lots of separate SP-applications
not interfering, we do not want to be presented with a purported implemen-
tation that bundles the whole behaviour into a single HW -application, despite
such a single-application system necessarily being `segregated' according to our
denition.

So we dened the property of segregation with respect to a model (segWrt) to
capture the fact that the two models are segregated in the same way. This boils
down to having corresponding applications communicating in the same way. We
proved that a sucient condition for B segWrt A, where A is segregated, is for
B itself to be segregated with the same interpretation of application structure as
A (that is, using the same asEvent bijection introduced in [Cooper & Stepney
2000]), and for B also to be a renement of A.

Even that is not sucient for our purposes, because we have two security
models, SPs dening the segregation structure, and SPf , dening the visible
functional behaviour. Our nal concrete model HW is a necessarily a renement
of SPf , not of SPs , and so cannot be segregated with respect to it.
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Fig. 1. Overview of relationships between the formal models (boxes) and the proofs
(ellipses)

So we dened the property of segregated and hidden with respect to a model
(segHidWrt), to capture the fact that one model behaves as if it is segregated in
the same way as another, except that the communication channels are hidden.
This corresponds quite nicely to the implementation, which is not physically
segregated { applications share a at memory space, and perform their allowed
communications using shared memory buers { yet nevertheless they behave as

if they are segregated. Which is the whole point of the exercise, of course.
We also proved some properties about these relationships, in order to be

able to prove that our concrete model has the desired segregation property. In
particular:

` C segHidWrt Bs ^ Bs segWrt As ) C segHidWrt As

7 Resulting specication structure

The specication and proof structure we developed is summarised in gure 1.
This structure is intended to simplify the proofs. It also has the advantage that
some of the details of the virtual machine can be changed without changing the
model of security.

We prove that HW possesses the security properties, by proving both that it
is a renement of SPf and that it is segregated and hidden with respect to SPs

7.1 Abstract Security Policy model, SP

The abstract SP model describes the world of applications and their communi-
cation through explicitly identied overt communication channels. It expresses
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some functional security properties to do with securely loading and deleting user
applications, and the key non-functional property, that applications are segre-

gated: that they do not communicate or otherwise interfere with each other,
except over the overt channels.

Our SP model is relatively small, simple, and easy to understand, running
to approximately 40 pages of Z and natural language commentary4. The dier-
ence between the SPf and SPs models is captured in two dierent nalisation
schemas.

The simplicity of the SP model allows these communication channels to be
clearly identied, so that the client can easily verify that these channels are
acceptable. 40 pages of Z may sound a lot for an abstract model, but most
of the complexity was in the identication of the several overt communication
channels present in the design.

The required functional security properties are proved to be consequences
of the various SPf operations. The SPs model is constrained to be segregated,
which gives us the segregation property by denition.

The behaviour of the virtual machine, and hence the behaviour of user ap-
plications, is not specied at this level. No matter what a user application does,
the system is secure (segregated).

SP is secure, by denition.

7.2 Virtual Machine model, VM

Our more concrete VM model captures the behaviour of the Virtual Machine
that ensures that abstract applications remain segregated. In practice, segrega-
tion is achieved by performing run-time memory access checks; this is the critical
aspect of the VM specication.

Our VM model is more complicated than the SP , reecting the design of the
Virtual Machine. VM adds more design detail to SP by specifying the detailed
behaviour of the virtual machine; it captures the actual behaviour of a user
application, given its code.

This model is approximately 140 pages long, of which about 80 pages is a
detailed description of the virtual machine. Again, the dierence between the
VMf and VMs models is captured in two dierent nalisation schemas.

7.3 Concrete hardware model, HW

Our concrete HW model captures the memory map of the design, showing how
the segregated applications are securely implemented in a common at memory
space of physical RAM, ROM, and EEPROM, with shared use of the RAM.

Our HW model is approximately 20 pages long. It captures the memory
structure explicitly; the operations are dened indirectly, in terms of the VM

operations and the retrieve relation.

4 The various page lengths quoted here give an indication of the relative eort involved
in each of the specication and proof sections. The actual eort involved was not
inconsistent with the metric discovered in [Barden et al. 1992].
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8 Resulting proof structure

8.1 Proof tree

Some of the arguments we have presented concerning segregation, determinism,
and renement are subtle. In the morass of detail inherent in a large scale
specication and proof, it would be easy to miss out some steps. As well as
convincing ourselves we had not missed anything, we also had to make the proof
structure comprehensible to third party reviewers.

We devoted two chapters of the nal document just to documenting the proof
structure. The rst of these chapters is an overview of the structure, describing
what needs to be proved, how the proofs are broken down into large components,
and which proofs rely on other proofs (illustrated in sections 8.3 and 8.4 below).

The second chapter is a detailed proof tree, summarising the entire proof
structure, showing what proofs are done where in the document, and demon-
strating that everything that needs to be proved has been proved.

8.2 Proof sizes

All but one of the security properties of our abstract model are functional, and
so are preserved by renement. The segregation property is non-functional, and
is not preserved in general by renement.

So we rigorously proved that our concrete HW model is a renement of our
abstract SP model (thus proving it exhibits the functional security properties),
and that the HW concrete model also segregates applications (thus proving it
exhibits the non-functional security property).

The purpose of performing a proof is to greatly increase the assurance that
the chosen design (the behaviour of the virtual machine, and the memory atten-
ing) does, indeed, behave just like the abstract model. We chose to do rigorous
proofs by hand, because our experience of existing proof tools is that current
tools are not yet appropriate for a task of this size5. We did, however, type-
check the statements of the proof obligations and many of the proof steps using
a combination of fuzz [Spivey 1992a] (see appendix A) and Formaliser [Flynn
et al. 1990] [Stepney]. All proofs were also independently checked by third party
reviewers.

The proofs of the renement obligations, the preservation of the segregation
property, and the proofs of some model consistency obligations take approxi-
mately 280 pages. In addition, there are approximately 100 further pages of

5 Each `proof step' in our rigorous proof is fairly small for a hand proof, because of
the requirement for checking by independent reviewers: we could not instruct them
to do \several pages of (unspecied) algebra" for each step. So each step typically
involves one (or a few) applications of a simple inference rule such as cut, one-point,
Leibnitz, or of a Z toolkit law, or of a schema calculus law.

Our Z proof tool evaluation exercises show that each of these rigorous steps typ-
ically expands out to 20{100 elementary steps when performed with a tool such
as CADi [Toyn 1996] (ignoring the steps needed to prove the toolkit law, where
relevant).
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formal derivation in support of the underlying theory of segregation with com-
munication over overt channels.

We performed various consistency proofs and proofs that our SP model pos-
sesses the desired security properties. But the bulk of the proof work was showing
that the HW model is consistent with the SP model: that it has the segregation
property of the SPs model, and the functional properties of the SPf model.

8.3 HW has SP segregation property

We prove that HW behaves as if it is segregated in the same way as SPs , except
that the communication channels are hidden:

` HW segHidWrt SPs

We do this by introducing the intermediate VMs and VMf models, and using
the property of segHidWrt that

C segHidWrt Bs ^ Bs segWrt As ) C segHidWrt As

which allows us to break the proof into two parts:

1. ` HW segHidWrt VMs

We show that the HW model is segregated in the same way as the VMs

model, except for the internal communications being hidden, by showing
that the VMf model is segregated in the same way as the VMs model, and
that the HW model has the same traces as the VMf model.

(a) ` VMf segHidWrt VMs

This is easy to prove, because VMf is equal to VMs except for the inter-
nal communications being hidden by nalisation, which is the denition
of seqHidWrt .

(b) traces HW = traces VMf

The traces are the same if HW is a renement of VMf , and VMf is total
(so no traces can be added by widening a precondition) and deterministic
(so no traces can be removed by resolving non-determinism).

i. ` VMf v HW

We dene the HW model operations in terms of the VM model
operations and a retrieve relation, and so the renement holds by
construction provided certain properties hold of the retrieve relation
[Woodcock & Davies 1996, section 18.3]. That is, we prove that the
local retrieve is functional from HW to VMf , is total (covers the
HW state), and is surjective (covers the VMf state).

ii. ` isTotal VMf

We prove the preconditions of all the VMf operations are true.
iii. ` isDeterministic VMf

We prove all the VMf operations are functional.
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2. ` VMs segWrt SPs

We show that the VMs model is segregated in the same way as the SPs

model, by showing that it is segregated, and that it is a renement of the
SPs model.
(a) ` VMs isSegregated

We prove that the VMs model is equivalent to one written as an event-
centric unconstrained multipromotion. The unwinding theorem from
[Cooper & Stepney 2000] gives us that such a model is segregated.

(b) ` SPs v VMs

We prove renement.

8.4 HW has SP functional properties

We prove that HW is a renement of SPf :

` SPf v HW

We introduce the intermediate VMf model, and use transitivity of renement to
split the proof into two parts.

1. ` SPf v VMf

(a) We state and prove lemma `squeeze', that shows that renement is pre-
served under hiding the internal communications

(b) We apply lemma `squeeze' to ` SPs v VMs , proved above, 8.3 2(b)
2. ` VMf v HW

proved above, 8.3 1(b)i

9 Results

As well as providing a specication and proof that helped our customer gain
assurance about the security of their product, the use of formality and proof
improved the design and exposed some problems.

9.1 Design of the virtual machine

A major part of a Smartcard operating system's security functionality is provided
by its virtual machine: this performs appropriate run-time memory access checks
to ensure applications access only their own memory.

The formal specication work proved that the designed checks are indeed suf-
cient to ensure segregation. But in addition, the formalisation of the checks fed
back into the documentation of the virtual machine, documenting more clearly,
uniformly and precisely what checks are needed.

The formal modelling was a valuable part of the iterative design process. To
start with, formality was used as a thinking aid, as we and the design team used
a Rapid Application Development approach [DSDM Consortium] to sketch the
design of the virtual memory model and opcode structure. The formal work then
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became more detailed, and the particular memory access checks were specied
in detail.

In addition, the specication work exposed a aw in the original design of
one of the opcodes: in certain rare circumstances it could overow and overwrite
memory outside its allowed region. The opcode was redesigned to remove the
aw.

9.2 Identication of communication channels

The requirement for segregation required that the communication channels be-
tween applications be made overt. This then allowed a decision as to whether
such channels were appropriate, both in existence, and in bandwidth.

The Scos application provides some functionality to the user applications,
including a random number generator. In order to faithfully model the way the
generator works, it was necessary to introduce an overt communication channel.
This exposed the fact that there is a potential communication of the random
number between applications; further analysis demonstrated that this channel
could not in fact be used to pass any useful information.

9.3 Proof detected an error

An early version of the design had a rather subtle error to do with clearing
RAM when swapping between applications. In one very special case, which
required unloading the only application on a card, then loading another in a
special mode, the RAM was not properly cleared, resulting in a potential covert
communication.

This error was detected both by the design team and by the formal modelling.
Interestingly, it was not the proof eort itself that detected the error, it was in
the mapping between the formal model and the semi-formal design. The VM

model is deterministic, so it fully species the contents of RAM, and segregated,
so it species the contents of RAM for each unpromoted application. The most
sensible deterministic specication of the contents of RAM for a newly loaded
application is to set it to some predened `cleared' value: this clearing did not
occur in the semi-formal model, and so the mapping detected a aw. (Had the
formal model been written from the semi-formal model, the proof of determinism
would not have been possible, which would have uncovered the aw at that
point.)

So, in this case, just thinking about what the proof obligations were going
to be inuenced how we wrote the model, and exposed the design aw.

10 Lessons learned

10.1 Model structure versus proof structure

There is a ne balance between model structure clarity and ease of proof. In
order to prove the dicult property of segregation, we sacriced some clarity for
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ease of proof (by using a free type to bundle the dierent kinds of applications
into one, and by requiring the global promotion function to be total), and we
sacriced some ease of proof for clarity (by using the more conventional form of
multi-promotion, and proving it equivalent to the unwound form).

We experimented with the alternative approaches before converging to this
particular compromise.

10.2 Presentation

The specication is large, and the proof structure subtle. The third party re-
viewers had to navigate a complex document, had to be able to nd denitions,
and had to be assured nothing had been left out.

The index and the proof tree chapter were arguably two of the most im-
portant sections in the nal document. Even the authors found these chapters
essential when coming back to the document after a break!

10.3 Providing further justication

On their rst pass through the model, the third party reviewers raised an ob-
servation about the size of the input space: we had formally modelled more
input messages than could actually be implemented. The reviewers wanted us
to justify that this was not a problem: that the implemented restriction could
not be used to covertly signal information. We provided such a justication (as
an appendix) in the next version of the model.

So the formal development process can be iterative: external comments can
require rethink, further justications, and more detail to be provided.

10.4 Elegant mathematical results may not help

Just because the statement of a proof obligation is simple and elegant, does not
mean that its application to a particular problem will be simple and elegant.
Much hard, potentially messy, proof work may be required.

We had an elegant formulation of segregation, but it was not in a form that
mapped naturally to the conventional state-and-operations style of Z specica-
tion we used for the modelling work. Even after moving the result into the Z
world, and unwinding it to a multi-promotion form, it still did not allow a natu-
ral specication style. So we did not use it in the modelling, which necessitated
us discharging an extra proof obligation.

We also used a specication trick to dene the HW model operations in
terms of the VM model operations. This simplied the modelling enormously,
and all we had to do to prove renement was to prove that the retrieve was
functional, total, and surjective [Woodcock & Davies 1996, section 18.3]. The
proof obligation can be expressed in one line:

` R 2 HWState  VMState
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However, that one line hides a wealth of messy and not very interesting detail:
the state spaces of both states have many components. After expanding out the
states and the retrieve, the mere statement of the proof obligation extends over
several pages. The proof itself was quite cumbersome.

11 Summary

We have proved the correctness of the renement, and the preservation of a
security property, of a real industrial product, working to real development
timescales. In the process, we uncovered a security aw in one part of the
system design (to do with clearing memory under some unusual conditions),
and identied the corrections needed.

We achieved a very high level of rigour in our proofs. The proofs are far
more detailed than typical proofs done in general mathematics. Despite this the
formal methods activity was never on the critical path of the development. The
formal methods component was usually ahead of schedule, and never caused a
delay in development.

As a byproduct of doing these proofs, we have also generalised the notion of
segregation to allow controlled communication, and applied it in a Z state-and-
operations style.
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A Conjectures with fuzz

We did all our proofs by hand, but we did use fuzz to typecheck them, which
provided a valuable level of tool support. However, fuzz does not support
the syntax for conjectures, so we had to make judicious use of its various %%

directives, to allow the same markup to be both checked by fuzz and typeset
by LATEX.

The semantics of conjectures are dierent from those of predicates, but the
type rules are the same. So the technique we use it to present a conjecture to
fuzz as if it were a predicate, using %%ignore to hide the turnstile, and present
it to LATEX to typeset correctly, by using %% to hide the parts fuzz needs but
LATEX does not.

Instruct fuzz to ignore turnstiles.

%%ignore \shows

A.1 Non-generic conjectures

Markup a simple non-generic conjecture as a Predicate paragraph, hiding from
LATEX the predicate's 8 and .

The markup

\begin{zed}

%%\forall

y:\nat

%%@

\\ \shows

\\ y=y

\end{zed}

appears to fuzz as

\begin{zed}

\forall

y:\nat

@

\\

\\ y=y

\end{zed}

and so typechecks

appears to LATEX as

\begin{zed}

y:\nat

\\ \shows

\\ y=y

\end{zed}

and so typesets as

y : 
`
y = y
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A.2 Generic conjectures

Markup a generic conjecture as a Generic-Box paragraph, hiding from LATEX
the box markup (which means LATEX needs an extra math-mode markup), the
(dummy) declaration, and the predicate's 8 and .

The markup

\[

%%\begin{gendef}

[X]

%% dummy42 : X

\\

%%\where

%%\forall

y:X

%%@

\\ \shows

\\ y=y

%%\end{gendef}

\]

appears to fuzz as

\begin{gendef}

[X]

dummy42 : X

\\

\where

\forall

y:X

@

\\

\\ y=y

\end{gendef}

and so typechecks

appears to LATEX as

\[

[X]

\\

y:X

\\ \shows

\\ y=y

\]

and so typesets as

[X ]
y : X

`
y = y


