
Retrenching the Purse: Finite Sequence Numbers,
and the Tower Pattern

Richard Banach
�
, Michael Poppleton

�
, Czeslaw Jeske

�
, and Susan Stepney

�

�
School of Computer Science, University of Manchester,

Manchester M13 9PL, UK,�
banach,cj � @cs.man.ac.uk�

Department of Electronics and Computer Science,
University of Southampton, Highfield,

Southampton SO17 1BJ, UK,
mrp@ecs.soton.ac.uk�

Department of Computer Science, University of York,
Heslington, York YO10 5DD, UK,

susan.stepney@cs.york.ac.uk

Abstract. The Mondex Electronic Purse system [18] is an outstanding example
of formal refinement techniques applied to a genuine industrial scale application,
and notably, was the first verification to achieve ITSEC level E6 certification. A
formal abstract model including security properties, and a formal concrete model
of the system design were developed, and a formal refinement was hand-proved
between them in Z. Despite this success, certain requirements issues were set
beyond the scope of the formal development, or handled in an unnatural manner.

Retrenchment is reviewed in a form suitable for integration with Z refine-
ment, and is used to address one such issue in detail: the finiteness of the trans-
action sequence number in the purse funds transfer protocol. A retrenchment is
constructed from the lowest level model of the purse system to a model in which
sequence numbers are finite, using a suitable elaboration of the Z promotion [21]
technique. We overview the lifting of that retrenchment to the abstraction level
of the higher models of the purse system. The concessions of the various re-
trenchments generated, formally capture the dissonance between the unbounded
sequence number idealisation and the bounded reality. Reasoning about when the
concession can become valid influences the actual choice of sequence number
bound. The retrenchment-enhanced formal development is proposed as an exam-
ple of a widely applicable methodological pattern for formal developments of this
kind: the Tower Pattern.

1 Introduction

The Mondex Electronic Purse [18], produced by the NatWest Development Team, is a
system of Smartcard-based electronic purses carrying currency for electronic commerce
applications. Clearly, this is a security-critical application. For this reason, the develop-
ers of Mondex (formerly a part of NatWest Bank, lately NDS Group), employed state
of the art methods to ensure the implementation was as robust as possible. At the time
of its creation (in the late 1990s), the Mondex Purse achieved an ITSEC [14] rating



of E6. This requires a formal abstract model, a formal concrete model and a nontrivial
refinement between them, formally proved to be correct. This is the the highest possible
ITSEC level (corresponding these days to a Common Criteria EAL7 rating), and the de-
velopment was a trailblazer for showing that fully formal techniques could be applied
within realistic time and cost limitations to industrial scale applications.

The abstract model of the Mondex Purse system describes a world of purses which
exchange value through atomic transactions, and specifies the security properties: purse
authentication, preservation of overall system value, and correct processing of both
transferred value and lost value. The concrete design model describes a distributed sys-
tem of purses, transferring value via an insecure and lossy medium using an n-step pro-
tocol. Security features are implemented locally on each purse. In the field the purse is
self-sufficient, recording any lost value from failed transactions locally, for intermittent
central logging.

The Mondex Purse verification of the security properties remains an impressive
achievement, both as a landmark industrial case study, and as a contribution to the the-
ory of refinement. The separation between the abstract and concrete levels is significant,
in a logical as well as a functional sense. The refinement is a composition of two simpler
refinements, a “backward” refinement to, and a “forward” refinement from, an interme-
diate “between” model. [17] gives a readable account of how the then existing forward
refinement rules in Z were insufficient to prove refinement, and how certain backward
rules from the more general theory of refinement, e.g. [9], had to be implemented in Z,
in order to deliver the two-stage proof. The clue to the need for this was the fact that the
concrete, n-step value transfer protocol resolved certain non-determinism later than the
abstract system; this is an instance of a classical counterexample by Milner [9] showing
the incompleteness of the forward rules as a proof method for refinement.

Nevertheless, the necessity of having a refinement, meant that a number of require-
ments issues, legitimately the concern of the formal development, had to be passed over
in silence, since they would strictly speaking have broken the validity of the refinement
had they been incorporated in the models that were used. One can argue that curtailing
the ideal scope of the refinement to some extent always happens: for example, it is never
practical to prove refinement all the way to the physical hardware. The refinement might
be pushed to source code level, then to machine code (if the compiler is not trusted); if
that were insufficient one could try to refine down to the hardware design and even to
the physics of the constituent devices.

Retrenchment [3, 4] has been proposed as a theory that generalizes refinement, es-
sentially in allowing the refinement relation (classically, an invariant) to be weakened
in the postcondition by a defined concession clause. This is inevitably a more intricate
theory, offering less than the simulation property of refinement, unless extra application-
specific assumptions are made. It was motivated originally by the impossibility of re-
fining infinite to finite types, or the continuous variables of real-world physical models
to discrete ones. Further work has revealed the utility of retrenchment both as antici-
pated [15], and as a vehicle for the flexible layering in of contrasting, even conflicting
requirements in a formal development [5].

We regard the requirements issues identified in the Mondex verification – those set
beyond the scope of the formal development, or handled in an unnatural manner – as



“retrenchment opportunities”. The aim of this paper is to show that by incorporating
retrenchment as a formal transformation of models, one can broaden the scope and
accuracy of the formal modelling in a manner sympathetic to the existing refinement-
based development. This yields a way of getting the best of both worlds: the clarity and
rigour of the original refinement-based development, without an artificial denial of the
existence of the attendant other issues.

The rest of the paper is structured as follows. In section 2 we give an overview of the
Mondex development, and identify the requirements issues that motivate the applica-
tion of retrenchment. Section 3 reviews the proof rules for refinement and retrenchment
in a Z setting. Section 4 focuses on one of these aspects, the finiteness of the sequence
number. A retrenchment is defined between the concrete purse and a new purse model,
identical to the former in all but making the sequence number finite. This retrenchment
is then extended to the world of purses by a suitable adaptation of the Z promotion used
in [18]. Section 5 overviews how this retrenchment of the concrete model of the Purse
system can be lifted to the abstract model of the system. Section 6 gives a probabilistic
validation of the lifted retrenchment, assessing the risk of the purse sequence num-
ber breaching its bound, deriving an acceptable value for the bound thereby. Section
7 concludes and recapitulates. It is observed that the structure of refinements and re-
trenchments derived in the present paper is more widely applicable than just the present
work, and we elevate it to status of a generally applicable methodological pattern for
widening the remit of formal developments using retrenchments: the Tower Pattern.

2 The Mondex Purse: from Refinement to Retrenchment

The Mondex Electronic Purse described in [18] consists of three models: A(abstract),
B(between), and C(concrete). The A model is a highly abstract expression of atomic
value transfer between purses, allowing an atomic notion of loss in transit. It is a model
targetted purely at the security properties of the system; it does not capture all the many
other system requirements. Model B captures the elements of the value transfer pro-
tocol, and is thus nonatomic; it is also enhanced with extra structure and constraints
needed to achieve a backward refinement from model A. Model C is model B with-
out the extra structure and constraints. These can be established by an induction on the
length of the execution, leading to a forward refinement between models B and C. It is
thus shown that model C is a refinement of model A.

We have indicated that [18] is a development of the security properties of the Mon-
dex Purse, not a full specification of the system. Even within these limitations, some
requirements aspects, in principle deserving to be included within the formal devel-
opment, were omitted or handled unnaturally in modelling, in order to establish the
refinement between models. One of the aims of this paper is to show that by incorpo-
rating retrenchment into the formal development armoury, the tension that arises about
whether some feature should be included or not in the refinement-based development
is eased. This is because versions with and without the feature may be formally re-
lated via a retrenchment and the development paths with and without the feature may
be drawn together, in part automatically. Here then is a brief summary of the Mondex
“retrenchment opportunities”:



– Sequence Number: The integrity of the protocol depends partly on the sequence
number of the transaction in progress. Sequence numbers occur in the B, C models
where they are naturals; in reality they are bounded numbers.

– Log Full: Transfers completing abnormally are logged by purses. The concrete
model implements the abstract “lost value” component in terms of an off-card ex-
ception archive into which purses’ log contents are saved. A purse needs to be
assured that the data is safely in the archive before it can clear it from its own,
highly constrained, log memory. Logs occur in the B, C models where they are
unbounded; in reality they are finite.

– Hash Function: Clearing a purse’s log after its contents are centrally archived is
done via a message containing a “clear” code. The purse log contents are assumed
to be in total injective correspondence with the clear codes, as that property is
required in the proof. In reality of course a cryptographic hash function is used,
which is neither total, nor injective, but is informally argued to be “sufficiently
injective”.

– Balance Enquiry: Each purse has a balance enquiry operation. If this is invoked at a
particular point in the middle of a B model value transfer, a discrepancy can occur
between the model A and model B balances due to differences in where nonde-
terminism is resolved in the two models. This is handled formally by a modelling
trick, using finalisation instead of the enquiry operation to observe the state.

In this paper we focus on the sequence number in detail, leaving the others to be ex-
plored elsewhere. Our strategy is to build a tower of models D, E, F which retrench C,
B, A respectively, and so that the obvious refinement/retrenchment squares commute.
See Fig. 1 which shows the models, the epithets that accompany them, and their inter-
relationships. Since the variables involved in the sequence number retrenchment do not
appear in the A model, if we take a sufficiently “noninvasive” approach to the construc-
tion of model D, it turns out that models A and F can subsequently be identified, though
this is a fragile property.

Briefly, model D retrenches model C to take into account the boundedness of actual
sequence numbers. Model D is then lifted to the abstraction level of model B, yielding
model E; this is essentially model D but with the additional invariants. Noting that
model E is refinable from model A, yields model F (the top of the tower) as a copy of
model A.

3 Refinements and Retrenchments

In this section we briefly review the notions of refinement and retrenchment used in
this paper. For refinement, we adopt the formulation in [8] as used in the Mondex de-
velopment. We give only the forward rules for refinement, since these formed the basis
for the definition of retrenchment [3]; we do not need to consider the backward rules
further here. The nomenclature in our definitions will be in line with that needed for the
various models in our discussion of the Mondex development below.

The A to B refinement is a backward refinement. The B to C refinement is a for-
ward refinement. We call the between model B “abstract” in this context; it is given



ret

ret

B−etween

C−oncrete D−iscrete

ref

ref

id

ref ; retref

ref

E−levated

F−ilteredA−bstract

Fig. 1. A development pattern for refinement with retrenchment

by the ADT � B � BInit ��� BOp � BOp � Ops ��� , and the concrete model C is given
by the ADT � C � CInit ��� COp � COp � Ops �	� . So schemas B � C give the abstract
and concrete state spaces, and the corresponding per-operation I/O spaces are given
by schemas BIOp � BOOp and CIOp � COOp. We assume a retrieve relation RBC 
�� B 
 C �
between the two state spaces, and for each operation Op, input and output mapping re-
lations RIBC � Op 
�� BIOp 
 CIOp � and ROBC � Op 
�� BOOp 
 COOp � . Forward refinement is
given by three proof obligations (POs), initialization, applicability and correctness:

�
C ��� CInit ��� B ��� BInit � R �BC (1)�
B 
 BIOp 
 C 
 CIOp � RBC � RIBC � Op � pre BOp � pre COp (2)�
B 
 BIOp 
 C 
 CIOp 
 C ��
 COOp � RBC � RIBC � Op � pre BOp � COp

��� B � 
 BOOp � BOp � R �BC � ROBC � Op (3)

Note that (1)-(3) do not mention finalisation. We deal with the issue of observation,
and specifically of relating the outputs of the abstract and concrete models (normally
handled via finalisation) “on the fly”, in line with the tack taken in retrenchment.

The C to D development step is a forward retrenchment. For this, the abstract model
is the C ADT, and the concrete model is given by ADT � D � DInit ����� DOp � DIOp � DOOp ���
Op � Ops �	� . Similar notational conventions apply. The retrenchment is given by firstly
a retrieve relation RCD 
�� C 
 D � between the state spaces; and secondly we have the
within, output and concedes relations on a per-operation basis. The within relation is
between the input-state spaces WCD � Op 
�� CIOp 
 C 
 DIOp 
 D � . The output and con-
cedes relations are normally defined over both full input-state-output frames with types
OCD � Op 
 CCD � Op 
�� CIOp 
 C 
 C � 
 COOp 
 DIOp 
 D 
 D � 
 DOOp � , though in practice, we
often omit such parts of these signatures as are not needed. We call these three relations
the retrenchment data.

Two POs define a retrenchment between two models: initialisation as for refine-
ment (1), and correctness which is analogous to refinement correctness (3); note that
applicability issues are understood to be subsumed in (5) via the within relation:

�
D � � DInit ��� C � � CInit � R �CD (4)



�
C 
 CIOp 
 D 
 DIOp 
 D � 
 DOOp � RCD � WCD � Op � DOp

��� C ��
 COOp � COp � � � R �CD � OCD � Op � � CCD � Op � (5)

4 The Sequence Number Retrenchment

The starting point for the sequence number retrenchment is the C model of the world
of purses. We concentrate on just the simplest operation of [18] that is nontrivially
affected, the single purse CConPurse operation CIncreasePurseOkay. This is an ab-
straction (for an individual purse and at C level) of a number of lower level operations
that do or do not need to increment the purse transaction sequence number. It is implicit
that sequence number CnextSeqNo is a natural, thus unbounded.

We retrench CIncreasePurseOkay to operation DIncreasePurseOkay of new D model
purse DConPurse1, where DConPurse ‘is as’ CConPurse apart from DnextSeqNo, which
is of finite type BN ��������� BIGNUM. We assume the usual arithmetic operations for BN
defined by restriction, where we liberally coerce when necessary, and where BIGNUM
is a matter of implementation choice. CConPurseIncrease hides the C purse sequence
number CnextSeqNo, thus 	 CConPurseIncrease denotes skip, i.e. no change on all
state apart from CnextSeqNo. DConPurseIncrease ‘is as’ CConPurseIncrease.

CConPurseIncrease ���
CConPurse 
 � CnextSeqNo �

CIncreasePurseOkay�
CConPurse

Cm � � Cm 
 
 CMESSAGE

	 CConPurseIncrease
CnextSeqNo ��� CnextSeqNo
Cm 
����

DIncreasePurseOkay�
DConPurse

Dm � � Dm 
 
 DMESSAGE

	 DConPurseIncrease
� DnextSeqNo � BIGNUM �

DnextSeqNo ��� DnextSeqNo �
Dm 
���� �

� DnextSeqNo � BIGNUM �
DnextSeqNo � � DnextSeqNo �
Dm 
�� DpurseBlocked Dname �

� is a general purpose message used in Mondex which is of-no-concern here, and
DpurseBlocked Dname is a special message emitted when BIGNUM is reached, identi-
fying the purse in question, Dname.

The above constitutes a minimally invasive retrenchment of CIncreasePurseOkay,
in that not only is it the case that inside a guard the C model behaviour is preserved,
but even outside the guard there are no new purse states to threaten the validity of
the reasoning about the refinements in [18]. Far more aggressive D model designs are
obviously possible.

1 Z employs a convention of pre-capitalizing only the names of types (schema and other): we
augment this convention by prefixing a single character A � B ������� to a name as required, to
denote the model in question. Thus CThing is a schema or other type in the C model, whereas
Dthing is a variable, usually a schema component, in the D model. A further lexical schema
convention we employ, to save space, is to say DSchema ‘is as’ CSchema to indicate that the
text of DSchema can be generated from that of CSchema by replacing all Cthings by Dthings.



We come to the retrenchment data itself. CDConPurseIncreaseEquality is shorthand
for equalities between corresponding C and D variables in CConPurseIncrease and
DConPurseIncrease respectively. Under the vacuous within WCD � IncreasePurseOkay con-
straint on before states and inputs, the pair of operation instances CIncreasePurseOkay,
DIncreasePurseOkay establishes either R �CD � OCD � IncreasePurseOkay (retrieve and output
relations), or CCD � IncreasePurseOkay (concedes relation). This concession states the possible
inequality between C, D sequence numbers and uses the D level error message.

RCD

CConPurse 
 DConPurse
CDConPurseIncreaseEquality

CnextSeqNo � DnextSeqNo

OCD � IncreasePurseOkay

Cm 
 
 CMESSAGE
Dm 
 
 DMESSAGE

Cm 
�� Dm 


WCD � IncreasePurseOkay

CConPurse 
 DConPurse
Cm � 
 CMESSAGE
Dm � 
 DMESSAGE

CCD � IncreasePurseOkay

CConPurse � 
 DConPurse �
CDConPurseIncreaseEquality �
Cm 
 
 CMESSAGE
Dm 
 
 DMESSAGE

CnextSeqNo � � DnextSeqNo �
Cm 
 � �
Dm 
�� DpurseBlocked Dname

4.1 Promotion of the Purse Retrenchment

We review the Z technique of promotion [21, 10] of a local-state (purse) to a global-
state (world) operation. The global state schema, say World, is defined as an indexing
function from some index set Ind to the space of all possible local state elements, these
being given by schema LS. To enable concise world-level description of an operation
working only a single copy of the local state, the promotion framing schema

�
LSOp is

defined.
�

LSOp contains both a global state schema World and a local state schema LS,
and also an input parameter i � of type Ind, identifying the required local state element
for access or update. An equality identifies the target LS element f � i ��� through the index
function f with the local state binding � LS. The final predicate ensures that all elements
other than f � i ��� remain unchanged.�

LSOp is generic insofar as it allows the mechanical definition of a world-level
operation WorldOp corresponding to a local operation LSOp without constraining the
behaviour of that local operation in any way:

World
f 
 Ind �� LS

WorldOp ���
� � LS � � LSOp � LSOp

�
LSOp�
World�
LS

i � 
 Ind

i � � dom f
� LS � f � i ���
f � � f � � i ���� � LS � �



The above is the classical, index-function-based form of promotion. Recently certain
promotion patterns [19, 20] have been proposed for various forms of local-to-global
structuring, some having been based on promotion use in Mondex.

As in the C world, individual D model purses are promoted to the D world of purses,
as given in the schemas that follow. DConWorld ‘is as’ CConWorld. Beyond the (purse-
NAME-)indexed map of purses, the world contains the Dether of all messages ever
sent between purses, and the Darchive of all transaction exception logs uploaded from
purses. There are two DConWorld constraints: we equate each internal purse name to its
corresponding index, and we ensure each archive entry identifies its originating purse.

Promotion of the D model ‘is as’ that of the C model of [18]:
�

DOp ‘is as’
�

COp,
where Dm � � Dm 
 are the input and output messages to and from DIncreasePurseOkay.
DIncrease, the promoted and wrapped operation, ‘is as’ CIncrease. N.B. DIgnore ‘is
as’ CIgnore, and just skips at world level.

DConWorld
DconAuthPurse 
 NAME � �� DConPurse
Dether 
 � DMESSAGE
Darchive 
 � DLogbook
�

n 
 dom DconAuthPurse � � DconAuthPurse n � �Dname � n�
nld 
 Darchive � first nld � dom DconAuthPurse

�
DOp�
DConWorld 
 � DConPurse

Dm � � Dm 
 
 DMESSAGE
Dname � 
 NAME

Dm � � Dether
Dname � � dom DconAuthPurse
� DConPurse � DconAuthPurse Dname �
DconAuthPurse � � DconAuthPurse � � Dname � �� � DConPurse � �
Darchive � � Darchive
Dether ��� Dether � � Dm 
 �

DIncrease ��� DIgnore
� � � � DConPurse � � DOp � DIncreasePurseOkay �

Having defined the D model, the next job is to promote the retrenchment of individual
purse operations such as CIncreasePurseOkay to a retrenchment at the CConWorld-
to-DConWorld level, between CIncrease, (not quoted but with the same syntax as)
DIncrease. Any theory of promotion of retrenchments must be grounded in the pro-
motion of refinements. A good treatment is given by [10], including presentation of
a simple world-level retrieve relation resulting from the distribution of the local re-
trieve relation through promotion. We base our approach on this form. Given a retrieve
relation R between local states Abs and Conc, the promoted retrieve relation RP [10] be-
tween AbsWorld and ConcWorld (with index functions Absf � Conf respectively) simply
asserts the local one for all local state elements:



RP

AbsWorld 
 ConcWorld

dom Concf � dom Absf�
n 
 dom Concf � � R � � Abs � Absf � n � � � Conc � Concf � n �

The promotion of retrenchments offers a choice of approaches, depending on what one
wishes to emphasise. In [6] we explore this in some detail, but space limitations here do
not permit us to show the full variety of possibilities on the present example. Instead, we
apply just one of the approaches, perhaps the most interesting one: precise promotion.

The essential point is this. Let us imagine the system has been running for some
time and that some or many elements have already engaged in operations. In terms of
the retrenchment, some elements will be in the local state element retrieve relation R,
while others may have already conceded (and so may no longer be in R). Assuming all
elements are in R (as for refinement) thus gives an unduly restricted syntactic picture
of the correspondence between the dynamics of the abstract and concrete worlds. In
precise promotion, we introduce an extra world variable good to keep track of which
elements are doing what, regarding the retrenchment.

Since there are two worlds, there are two obvious places in which to put the ex-
tra variable, the abstract or the concrete world. For most retrenchments the concrete
world is the most natural place to put the extra information, and we do so here; so
the extra variable is Dgood. Moreover, for this to work effectively, we require a sep-
arability axiom (6) to hold for all common operations Op. Given a concrete D model
step, DEstRetPP

DOp/DNotEstRetPP
DOp assert the existence/non-existence respectively of an

abstract C world step that witnesses the refinement. Given a D step, DEstConPP
DOp asserts

the existence of a C step that witnesses the concession. The separability axiom is:

DEstRetPP
DOp � DEstConPP

DOp � false (6)

where

DEstRetPP
DOp ��� D 
 DIOp 
 D ��
 DOOp � DOp �

� � C 
 CIOp 
 C � 
 COOp � RCD � WCD � Op � COp � � R �CD � OCD � Op � �
DEstConPP

DOp ��� D 
 DIOp 
 D ��
 DOOp � DOp �
� � C 
 CIOp 
 C � 
 COOp � RCD � WCD � Op � COp � CCD � Op �

DNotEstRetPP
DOp ��� D 
 DIOp 
 D � 
 DOOp � DOp �

� � � C 
 CIOp 
 C � 
 COOp � RCD � WCD � Op � COp � � R �CD � OCD � Op � �
Given a C-to-D retrenchment (5), and axiom (6), it can be deduced from a given con-
crete step alone, whether RCD is reestablished or CCD � Op holds. This allows the concrete
promotion to accurately maintain the Dgood variable as follows.

We need suitable enhancements to: the promoted operations (which become DOpPP),
to the promoted world construction itself (which becomes DConWorldPP), and to the
framing schema (which becomes

�
DOpPP). The latter differs from

�
DOp only in the



replacment of DConWorld by DConWorldPP, so we do not reproduce it in full.2

DConWorldPP

DConWorld
Dgood 
 � NAME

Dgood � dom DconAuthPurse

DIncreasePP ��� DIgnore
��� � � DConPurse � � DOpPP � DIncreasePurseOkay

� � DEstRetPP
DIncrease � Dgood � � Dgood �

� � DNotEstRetPP
DIncrease � Dgood � � Dgood 
 � Dname � �����

It is clear that DIncreasePP is a refinement of DIncrease via a retrieve relation that
simply projects away Dgood, as DIncreasePP arises from DIncrease by the addition of
Dgood, whose value is never used in the update of any DIncrease variable.

With these details in place, we can write down the precisely promoted retrenchment
between the CConWorld and DConWorldPP Increase operations. For this, it is easy
to see that (6) holds, in particular, by examining whether the output of DIncrease is
� or DpurseBlocked Dname � . For � , R �CD � OCD � IncreasePurseOkay is established by
the identity of outputs, and the ‘is as’ identity of the seqence number predicates. For
DpurseBlocked Dname � , CCD � IncreasePurseOkay is established by definition of the outputs
and by the skip on DnextSeqNo.

The retrenchment below employs a focused pattern of precise promotion, in that the
within, output, concedes relations only refer to the named local state element Dname � .
Since the promoted operation acts on only one element, implicitly all other elements in
Dgood maintain the local retrieve relation R �CD. An inclusive pattern is also available
which covers all Dgood elements, explicitly claiming R �CD in the concession for the
elements in Dgood 
 � Dname � � ; for brevity we present the focused pattern here. Since
archive entries are tagged with the originating purse’s name, we can identify those C/D
archive subsets corresponding to purses in Dgood � , and we assume for simplicity that
all messages in the ether are tagged with originator’s and addressee’s names as the first
two fields of the message.3 “ CDnamedConPurseIncreaseEquality name ” is (not legal
Z, for brevity, but) shorthand for equalities of named other purses’ of-no-concern data
in the following:

2 Note that there is a somewhat philosophical question regarding the nature of the Dgood vari-
able: should it be viewed as a genuine system variable or not? In this paper we do not go
beyond saying that the viability of the precise promotion’s using Dgood, attests to the ability
of the concrete model’s being able to keep track of the retrieving elements should it so choose.

3 Note that this is a considerable simplification compared to [18]. In [18] it is the case that: (i)
the models do not concern themeselves with details of physical message transmission, (ii) the
relevant data can nevertheless be inferred indirectly from the contents of the message body.



RPP
CD

CConWorld 
 DConWorldPP

dom CconAuthPurse � dom DconAuthPurse�
Dnm 
 Dgood �
� CconAuthPurse Dnm � �CnextSeqNo � � DconAuthPurse Dnm � �DnextSeqNo
� “ CDnamedConPurseIncreaseEquality Dnm ”

Dgood � Carchive � Dgood � Darchive
� Dgood � Dgood ��� Cether � � Dgood � Dgood ��� Dether

WPP
CD � Increase

CConWorld 
 DConWorldPP

Cm � 
 CMESSAGE
Dm � 
 DMESSAGE
Cname � � Dname � 
 NAME

Cname � � Dname �
Cname � � Dgood

OPP
CD � Increase�
DConWorldPP

Cm 
 
 CMESSAGE
Dm 
 
 DMESSAGE
Dname � 
 NAME

Dgood � � Dgood
Cm 
 � Dm 


CPP
CD � Increase

CConWorld � 
 � DConWorldPP

CDConPurseIncreaseEquality �
Cm 
 
 CMESSAGE
Dm 
 
 DMESSAGE
Dname � 
 NAME

Dgood � � Dgood � � Dname � �
“ CDnamedConPurseIncreaseEquality Dname � ”
� CconAuthPurse � Cname ��� �CnextSeqNo � � DconAuthPurse � Dname � � �DnextSeqNo
Cm 
����
Dm 
�� � DpurseBlocked Dname ���
Dgood � � Carchive � � Dgood � � Darchive �
� Dgood � � Dgood � ��� Cether � � � Dgood � � Dgood � ��� Dether �

5 Lifting the Retrenchment

The previous section described in fair detail how, despite its awkwardness, the real
world finiteness of the sequence number can be taken account of, in a model that could
be appended to the preexisting development. In this section we sketch rather briefly
how this new D model can be related to the other models in the Mondex development,
clarifying the relationship between sequence number finiteness and the concerns of
these higher level models.

Essentially, the level of abstraction of the D model is first lifted to the level of the
B model (this giving the E model) and then it is observed that there is a refinement



from the A model to the E model, due to the nonintrusiveness of the D model. So the
construction of the F model becomes just a rebadging of the A model. See Fig. 1.

The lifting of the D model to the E model makes use of a generic construction
[1] for lifting the concrete model of a retrenchment to the level of abstraction of the
retrenchment’s abstract system; the model generated, typically called U, then refines
to the retrenchment’s concrete system. This generic construction builds U out of the
two original systems in the retrenchment. The required level of abstraction is defined
indirectly via a collection of properties specific to the construction, and U captures
this level by being refinable to any system that also enjoys these properties. Thus U
is the most abstract such system. As far as the construction goes, any suitable system
interrefinable with U is just as good as U, so we have the option of replacing U with
something more convenient if we wish.

In the Mondex case we build the E model, which matches the level of abstraction
of the B model. The retrenchment that we are lifting is the composition of the B to C
forward refinement and the C to D retrenchment, such compositions themselves being
a matter for careful definition; see [2] for details.

For clarity and simplicity let us examine how this works for the individual purse
operation IncreasePurseOkay. Essentially, for the IncreasePurseOkay operation of the
generated U system we have:

protoEIncreasePurseOkay
BIncreasePurseOkay 
 � DConPurse
Dm � � Dm 
 
 DMESSAGE

� RBD � R �BD � OBD � IncreasePurseOkay � � � RBD � CBD � IncreasePurseOkay �
In the above, BIncreasePurseOkay ‘is as’ CIncreasePurseOkay, and RBD ‘is as’ RCD.
Similarly OBD � IncreasePurseOkay ‘is as’ OCD � IncreasePurseOkay, and CBD � IncreasePurseOkay ‘is as’
CCD � IncreasePurseOkay. In protoEIncreasePurseOkay, BIncreasePurseOkay contributes the
steps of the B model and

�
DConPurse contributes all legal D changes of state. The B-

to-D retrenchment tells us that any DIncreasePurseOkay step satisfies the retrenchment
correctness PO in terms of some witnessing B-step. In protoEIncreasePurseOkay it is
clear that precisely the same witness establishes the E-to-D refinement correctness PO.

We note that there is considerable duplication of state and other information in
protoEIncreasePurseOkay; the B and D parts of the state say practically the same thing
via the BDConPurseIncreaseEquality in RBD and R �BD, and the I/O is similarly either
irrelevant or discernable from the D element alone.

Since, as noted above, it is sufficient to fix on a system that is interrefinable with
what the construction routinely generates, it is worth reflecting on the details of the U
system, to see if the duplication can be avoided. Examining the details reveals that we
can replace protoEIncreasePurseOkay with the simpler:

EIncreasePurseOkay ‘is as’ DIncreasePurseOkay

a welcome simplification, attributable to the nonintrusive nature of our D construction.
Of course our real focus of interest is on DIncrease and its lifting to EIncrease. The

single purse operation just treated provides an indication of what to expect, in that the
IncreasePurseOkay lifting should be discernable within the Increase one.



The B world Increase operation has the same shape as the D world one:

BIncrease ��� BIgnore
� � � � BConPurse � � BOp � BIncreasePurseOkay �

The subtlety here is that in BIgnore and
�

BOp, instead of
�

BConWorld (as would be
expected) we have

�
BetweenWorld, where BetweenWorld features additional structure

and constraints imposed on BConWorld in order to enable the A-to-B backward re-
finement to cary through. Aside from this, the constituents of BIncrease ‘are as’ their
corresponding CIncrease ones.

For lack of space, the reader will have to take our word for it that the constraints
in BetweenWorld do not materially affect our discussion; they express the consistency
between the cryptographically protected messages in the ether and the purses’ states;
doubters can refer to [18]. We now retrace the earlier lifting construction and obtain:

protoEIncrease
BIncrease 
 � DConWorldPP

Dm � � Dm 
 
 DMESSAGE

� RPP
BD � R � PP

BD � OPP
BD � Increase � � � RPP

BD � CPP
BD � Increase �

It turns out that we can argue as before and replace protoEIncrease by EIncrease where:

EIncrease ‘is as’ DIncreasePP

except that DetweenWorld (which now ‘is as’ BetweenWorld) replaces occurences of
DConWorld in DIgnore and

�
DOp in DIncreasePP. Thus DIncreasePP is at the right

level of abstraction after all, again due to the minimalist nature of the D construction.
Having dealt with the E model, the final step consists of observing that there is a

(backward) refinement from the A model to the E model. The D level purse blocking
behaviour when the sequence number overflows is simulated at A-level by the purse
skipping; the A world has no sequence numbers. Aside from the fact that the details of
this are beyond the scope of this paper, some points are worth making. Firstly, this is not
a further instance of the lifting construction just used to build the E model. Secondly, the
truth of it depends rather delicately on a suitable choice of retrieve and output relations,
not to mention the precise notion of refinement employed and of course the minimalist
nature of the D construction. Thus it is not a robust property, though it is a very pleasing
one.

6 Validating the Retrenchment

In the preceding sections, we have designed the D model to do nothing useful once
the limit on the sequence number has been reached. Since doing nothing is unlikely to
satisfy users, it is incumbent on us to validate this design in the light of wider system
requirements, which we do in this section. The argument now swings to showing that the



limit in fact never arises. This can be crystallised as saying the concession of the relevant
retrenchment does not become true within the lifetime of the use of the product.4

The validation of the concession of the C to D retrenchment depends on the value
of BIGNUM, a quantity we have hitherto left unspecified. Our analysis will generate a
value for BIGNUM leading to acceptable overall system properties. Note that the lifted
E model’s dependence on BIGNUM is like that of the D model’s so we can focus on
just the C to D retrenchment. Roughly speaking, we want to know how long it will take
before BIGNUM is reached, which we analyse as follows.

First of all, the increments of the sequence number are not deterministic, to prevent
the values of the sequence number being exploited as a covert channel in any potential
cryptographic attack. Thus the increments are random variables drawn from a probabil-
ity distribution � . Let us say that � has a mean � and variance � both about 10. From
here there are two approaches, the naive and the sophisticated.

In a naive approach, we expect the accumulated total sequence number after n trials
to be approximately n � . Now consider the determined shopper, making the order of 100
transations per day using the purse, resulting in a daily sequence number increment of
about � � �

. Taking a year to be about � � �
days, leads to an approximate annual sequence

number increment of about � ��� . On this basis, we can estimate how different choices of
BIGNUM fare against the requirement that the BIGNUM limit is never in fact reached.

Suppose BIGNUM is about �
�
� which is about �	� �
� � �

. The limit is encountered
within a couple of months, so this value of BIGNUM is clearly unsatisfactory. Similarly,
choosing �	��� for BIGNUM gives a limit of about �
� ��� � � �

years, which is a little more
conservative than necessary.

Suppose then that BIGNUM is about �
� �

which is about � ��� ��� . Dividing by � ���
shows that the limit is reached in about 4000 years. Putting aside considerations of
whether the purse will physically withstand that much use, it is certainly the case that
the financial system underpinning the purse will have collapsed by that time. So a 32 bit
BIGNUM provides plenty of room for even determined use, while safeguarding against
overflow, and while still not being ridiculously overconservative.

Of course one can take a more cautious approach than the above, supposing that
a determined attacker will go all out to breach the sequence number limit by subject-
ing the purse to as many transactions as it is possible to invoke, potentially leading to
different estimates. Then again, it is hard to see what such an attacker stands to gain
by disabling the purse in this way, locking in the value he has managed to put into it,
since the system’s security properties ensure that every purse operation leaves the whole
system in a state that is at best equitable, at worst in the bank’s favour.

Let us now turn to a more sophisticated treatment of the same situation. We note that
the individual increments of the sequence number are the “arrivals” of a renewal process
[11, 16, 13]. Thus if � SNn is the n’th increment, then as n varies, we are interested in
the behaviour of the random variables:

nextSeqNon ��� SN ����� SN � � � � ����� SNn

4 Note how the retrenchment framework has produced specific objects within the formal models,
namely the concessions, that carry the information pertaining to the undesired state of affairs.
A purely refinement based approach to the development could say nothing about such matters,
disconnecting the formal world from the requirements level validation needed beyond.



In particular, we are interested in the random variable N � t � given by:

N � t � ������� � n � nextSeqNon
�

t �
whose distribution describes how many increments of the sequence number are needed
to reach the value t. Fortunately this is all standard material that can be found in loc. cit.
The first order theory of N � t � says that as t tends to infinity, N � t � tends to the constant
distribution t � � almost surely. Furthermore the mean of N � t � tends to the number t � � .
This agrees with the values obtained naively, and in particular, for a 32 bit BIGNUM,
we again derive an overflow time of four thousand years.

To ensure the random characteristics of the situation do not lead to gambler’s ruin
type outcomes, we check out also the second order theory of renewals. This says that as
t tends to infinity,

N � t ��� t � ��
t �

� � �
�

converges in distibution to N � � � � � , the standard normal distribution. This in turn means
that the variance of N � t � itself scales to � t � � ���

� �
	� . When the numbers are substituted,
this is of the order of a week or two. So in the end, the sophisticated story fully supports
the naive one.

7 Conclusions, and the Tower Pattern

Above, we briefly reviewed the Mondex development and its “retrenchment opportuni-
ties.” We then took the purse sequence number and showed how a more faithful treat-
ment could be integrated with the existing refinement based development. The result
was the collection of models related by refinements and retrenchments shown in Fig. 1.

One of the advantages of the retrenchment approach in dealing with model evolution
situations, which the sequence number case study can be viewed as, is that it fits natu-
rally with the idea that such evolutions often tend to be focused on judicious changes
to one or more operations. In the limit, we can consider the change in each operation as
a separate evolution step, expressed using a separate retrenchment, and compose them,
e.g. as per [2]. For lack of space, we have not pursued this aspect here.

Note that Fig. 1 is a commutative diagram. Therefore it can be navigated in different
ways with equivalent effect. For example, one can (as we did) start at the bottom of the
tower, build the bottommost retrenchment, and build towards the top (it turned out that
with a judicious choice of bottommost model, the top level blended seamlessly with
the existing development). Alternatively one can start with the topmost retrenchment
(an identity in our case), and proceed downwards, utilising different but compatible
algebraic results on the combination of refinements and retrenchments [12]. This raises
the general structure embodied in Fig. 1 to the level of a broadly applicable pattern for
the deployment of retrenchment as a means of, (on the one hand) reconciling real world
detail with an idealised but more transparent refinement development, or (on the other)
propagating a top level requirements change down through a refinement stack, towards
implementation. Of course, middle out deployments are also compatible with Fig. 1.



Note that the structure in Fig. 1 remains equally useful regardless of the specific re-
quirements issue(s) handled by the retrenchments that comprise it, which lie buried in
the details of the various retrenchment data. Its elevation to a methodological generality,
the Tower Pattern, is therefore eminently justified.

References

[1] R. Banach. Maximally abstract retrenchments. In Proc. IEEE ICFEM2000, pages 133–142,
York, August 2000. IEEE Computer Society Press.

[2] R. Banach, C. Jeske, and M. Poppleton. Composition mechanisms for retrenchment. 2004.
submitted, http://www.cs.man.ac.uk/˜banach/some.pubs/Retrench.Composition.pdf.

[3] R. Banach and M. Poppleton. Retrenchment: An engineering variation on refinement. In
D. Bert, editor, 2nd International B Conference, volume 1393 of LNCS, pages 129–147,
Montpellier, France, April 1998. Springer.

[4] R. Banach and M. Poppleton. Sharp retrenchment, modulated refinement and simulation.
Formal Aspects of Computing, 11:498–540, 1999.

[5] R. Banach and M. Poppleton. Retrenching partial requirements into system definitions: A
simple feature interaction case study. Requirements Engineering Journal, 8(2), 2003. 22pp.

[6] R. Banach, M. Poppleton, and C. Jeske. Retrenchment and promotion in Z. submitted for
publication, 2004.

[7] D. Bert, J.P. Bowen, S. King, and M. Waldén, editors. Proc. ZB2003: Formal Specification
and Development in Z and B, volume 2651 of LNCS, Turku, Finland, June 2000. Springer.

[8] D. Cooper, S. Stepney, and J. Woodcock. Derivation of Z refinement proof rules. Technical
Report YCS-2002-347, University of York, 2002.

[9] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods and
their Comparison. Cambridge University Press, 1998.

[10] J. Derrick and E. Boiten. Refinement in Z and Object-Z. FACIT. Springer, 2001.
[11] G. Grimmett and Stirzaker D. Probability and Random Processes. O.U.P., 3 edition, 2001.
[12] C. Jeske. Algebraic Integration of Retrenchment and Refinement. PhD thesis, University of

Manchester, 2005.
[13] S. Karlin and H.M. Taylor. A First Course in Stochastic Processes. Academic, 1975.
[14] Department of Trade and Industry. Information Technology Security Evaluation Criteria,

1991. http://www.cesg.gov.uk/site/iacs/itsec/media/formal-docs/Itsec.pdf.
[15] M. Poppleton and R. Banach. Controlling control systems: An application of evolving

retrenchment. In D. Bert, J.P. Bowen, M.C. Henson, and K. Robinson, editors, Second
International Conference of B and Z Users, volume 2272 of LNCS, pages 42–61, Grenoble,
France, January 2002. Springer.

[16] S.L. Resnick. Adventures in Stochastic Processes. Birkhauser, 1992.
[17] S. Stepney, D. Cooper, and J. Woodcock. More powerful Z data refinement: Pushing the

state of the art in industrial refinement. In J.P. Bowen, A. Fett, and M.G. Hinchey, editors,
11th International Conference of Z Users, volume 1493 of LNCS, pages 284–307, Berlin,
Germany, September 1998. Springer.

[18] S. Stepney, D. Cooper, and J. Woodcock. An electronic purse: Specification, refinement
and proof. Technical Report PRG-126, Oxford University Computing Laboratory, 2000.

[19] S. Stepney, F. Polack, and I. Toyn. An outline pattern language for Z. In Bert et al. [7],
pages 2–19.

[20] S. Stepney, F. Polack, and I. Toyn. Patterns to guide practical refactoring. In Bert et al. [7],
pages 20–39.

[21] J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice-Hall,
1996.


