
Typechecking Z

Ian Toyn1, Samuel H. Valentine1, Susan Stepney2, and Steve King1

1 Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK.
fian,sam,kingg@cs.york.ac.uk

2 Logica UK Ltd,
Betjeman House, 104 Hills Road, Cambridge, CB2 1LQ, UK.

stepneys@logica.com

Abstract. This paper presents some of our requirements for a Z type-
checker: that the typechecker accept all well-typeable formulations, how-
ever contrived; that it gather information about uses of declarations as
needed to support interactive browsing and formal reasoning; that it t
the description given by draft standard Z; and that it be able to check
some particular extensions to Z that are intended to allow explicit de-
nitions of schema calculus operators. The paper presents a specication
of such a Z typechecker, which we have implemented.

1 Introduction

Algorithms for typechecking polymorphic functional languages, as explained by
Cardelli [1] and by Hancock [2], are readily adaptable to typecheck Z specica-
tions and their generic constructs. They are based around Milner's unication
algorithm [6]. Spivey and Sufrin gave an account of typechecking Z [12], focusing
on the inference of implicit generic instantiations. They deliberately omitted any
discussion of the typechecking of schemas. We have found some schemas that
are awkward to typecheck but could be well-typed. An investigation of the type-
checking of schemas is particularly important in view of the merging of schemas
with expressions in draft standard Z [15]. Our work has involved the construction
of a Z typechecker within the CADiZ toolset [17, 18], replacing a previous infe-
rior algorithm.1 Some other requirements on the design of the new typechecker
are also discussed in this paper, namely keeping track of uses of declarations for
the purposes of interactive browsing and formal reasoning, and the typechecking
of extensions to the Z notation to permit explicit denition of schema calculus
operators [21].

2 Types

Each Z type corresponds to a set of values known as its carrier set. The type
system excludes combinations of expressions whose values are related in ways

1 This new typechecker has approved the formal Z in this paper.

that are inappropriate based on their types. It is unlikely that such combinations
of expressions could be given the intended meanings. A typechecker implement-
ing the type system can decide automatically whether to accept or reject any
combination of expressions. Some of the goals that arise in formal reasoning are
properties that the typechecker has already decided, and so another advantage
of the type system is that it allows such goals to be discharged automatically.
There are also disadvantages in having a type system. For example, the rejection
of combinations of expressions that could have had sensible meanings makes the
language less expressive, and explicit injections may inconveniently be needed
to cast values between types. Also, the kinds of goals that are decided by the
typechecker are likely to be ones that a theorem prover could decide anyway.
Lamport and Paulson have discussed the advantages and disadvantages of de-
cidable and undecidable type systems for specication languages [5]. We take
the Z type system as a given|our aim is to provide a specication of how to
enforce it. An implementation of this specication should reject all ill-typed Z
specications while accepting all well-typed Z specications.

The various kinds of types in the Z type system are illustrated by the following
examples. Given types are introduced by given set paragraphs.

[PERSON ; NAME ; AGE]

Using the notation of draft standard Z [16], the types introduced by this para-
graph are denoted by GIVEN PERSON , GIVEN NAME and GIVEN AGE . The
members of their carrier sets are as yet unspecied; they may be constrained by
subsequent paragraphs.

Types can be assembled in three ways to form larger types. First, the set
of all subsets of a type is itself a type|a powerset type. For example, a team
comprises a set of persons.

team : P PERSON

The type of team is P(GIVEN PERSON). Second, the set of all tuples of a certain
size of values from other types is itself a type|a Cartesian product type. For
example, personal details can be represented as a tuple.

personal details1 : PERSON  NAME  AGE

The type of the triple personal details1 is GIVEN PERSON  GIVEN NAME 
GIVEN AGE . Third, a type can be a product type but with labels on the
components|a schema type. For example, personal details can be represented
by a binding from a schema.

personal details2 : [person : PERSON ; name : NAME ; age : AGE]

The type of the binding personal details2 is [person : GIVEN PERSON ; name :
GIVEN NAME ; age : GIVEN AGE]. The association of names and types within
the square brackets is called a signature.

Generic denitions require additional type notation. An example of a generic
denition is that of the empty set.

?[X] == fx : X j falseg

The type of ? is generic in X , and is written as the generic type [X] P(GENTYPE X),
the type of the reference expression X within the set comprehension being
P(GENTYPE X). Such generic types are used only in describing the types of generic
denitions, and so never appear within other types.

The notation used for types is similar to that used in the expressions that
denote their carrier sets, with the dierence that given and generic types are
distinguished.

Z's free type notation does not require any additional type notation: free
types are abbreviations for given sets with constraints on their members [11, 16,
20].

3 Requirements on the Typechecker

This section discusses some issues for the design of our typechecker.

3.1 Schemas

Schemas have signatures that inuence the environment in which formul are
typechecked. For example, in the set comprehension fn : N j n  1  2  ng
there is the schema n : N j n  1 which declares an n of numeric type that is
referenced from both the j part of the schema itself and from the  part of the
set comprehension. In the majority of schemas that occur in real specications,
their signatures can be determined by checking their declarations alone. In the
exceptional cases, it is preferable not to demand that the specier reformulate in
a way with which the typechecker can cope. Indeed, the formulations may have
arisen not from being written by hand but as the results of semantically-valid
inferences in a tool.2 We contrive some exceptional cases below.

We use draft standard Z notation, including its toolkit.

section contrivedExamples parents standard toolkit

2 Special provisions are needed with some inference rules to avoid variable capture.
For example, the predicate m 2 fn : N j n  1  2  ng is equivalent to the predicate
9 n : N j n  1  m = 2  n unless the name m had been n, in which case it becomes
captured by the local declaration of n. Inference rules also must be careful with
implicit instantiations. For example, applying the one-point inference rule [7] to the
predicate 9 x ; y : PA j x = ? ^ y = ?  x = y produces ? = ?, which without
explicit instantiations is type erroneous. A common provision to guard against these
potential errors is to apply the typechecker and reject the inferences if any errors
are detected. An alternative, as used in CADiZ, is to make the inference rules inherit
types and instantiations from their operands onto their results, and to automatically
rename variables to avoid variable capture.

The rst example also conforms to the notation of the Z reference manual [11].

S 1
x : P ?

x = ?[Z]

In this example, the named schema paragraph has a single declaration and a
single predicate. By considering only the declaration, the signature can be seen
to contain the single name x , but the type of that name is not completely
determined. The type of x as determined by the declaration may be expressed as
P , where  is a variable type (or type variable). Consideration of the predicate
part of the schema constrains this type to P Z, assuming that this Z is written
according to [11], or to P A if it is viewed as draft standard Z [16].3 Almost all Z
typecheckers accept this example as being well-typed by this means, e.g. Hippo
[14] and ZTC [4].

In draft standard Z notation, as well as the requirement to cope with sig-
natures in which the types of some components are incompletely determined,
there is also a requirement to cope with signatures in which the names of the
components are incompletely determined.

g [X] == X

g is a generic denition that will be referred to without an explicit instantiation.

S 2
s == g

s = [x ; y ; z : Z]
fs j x = yg = ?

In example S 2, the reference to g is in the declaration of s ,4 where its type
(and hence its implicit instantiation) is not constrained at all. The rst conjunct
constrains s , and hence g , to be a schema with a particular signature.5 This
signature could not be determined from the declaration alone. Yet this paragraph
could be well-typed, and so a typechecker ought not to complain.

S 3
s == g

fs j x = yg = ?

s = [x ; y ; z : Z]

Example S 3 is similar to S 2, diering only in that the conjuncts have been
swapped. Again, the signature of the schema cannot be determined without

3 Draft standard Z uses A as the type of all numbers, including the integers Z.
4 Draft standard Z allows use of the == notation in local as well as global declarations.
5 This is an example of a schema being used as an expression.

consideration of the schema's predicate part. In this case, the rst conjunct uses
s as an inclusion declaration, which constrains its type to be that of a schema, but
without constraining its signature. The environment in which the equality x = y
is to be typechecked is consequently not yet known, but it can be determined
by consideration of the second conjunct. A typechecker that considers conjuncts
in one particular order could not cope with both S 2 and S 3. The S 3 paragraph
could be well-typed, and a typechecker ought not to complain.

S 4
s == g
t == g

fs j x = y _ t = [z : P x]g = ?

s = [x ; y : P Z; z : P t]

Example S 4 is like S 2 and S 3, except that instead of one conjunct providing
information to help typecheck the other, information has to ow both ways. The
types of x and y are determined by the second conjunct, then the type of t can be
determined by the rst conjunct, then the type of s and its z component can be
determined from the second conjunct, and only then can remaining constraints
within the rst conjunct be checked.

Examples can be contrived in which the mutual dependencies between con-
juncts are such that the constraints cannot be solved. We consider those to be
ill-typed.

The requirements arising from these examples are that a typechecker should
not insist on solving constraints in any particular order, except as necessitated
by dependencies between the constraints themselves, and that it must be able to
cope with constraints in which are signatures whose names are unknown. This
requires variable signatures, analogous to variable types. A recursive descent of
the phrase tree of a specication checking constraints along the way, e.g. as in
[9], does not satisfy the rst requirement.

3.2 Browsing

A Z browser is a tool that presents a view of a Z specication and allows the
user to select formul and ask questions about them [13, 17]. An example is
the selection of a reference expression and the question \where is the referenced
variable's declaration?". This question is not so easy to answer as might at rst
appear. One problem is that a Z schema text can have several declarations of the
same name: so long as they have the same types, these declarations are regarded
as being merged into a single declaration. Another problem arises from schema
inclusion declarations. A schema inclusion declaration declares variables of the
same names and types as those of the included schema. Constraints imposed on
the included declarations (such as the chained relation in the following example)
do not constrain the original schema's variables. Hence uses of the included
declarations should not be regarded as uses of the original schema's components.

The following contrived specication illustrates these problems, as explained
below.

schema == [a; b : A]

j=? 8 schema; b; c; d : A ; c : A  a = b = c = d

When asking to see the declaration of a reference to a variable, a browser
should (at least) direct attention to the schema text where that variable is de-
clared. In the case of the above example's reference to b, there are two merged
declarations, one from the inclusion of schema, and one explicit, so directing
attention to the whole schema text will have to suce (assuming attention is
directed to a single formula). In the case of the reference to d , there is only
a single explicit declaration, so attention can be directed to that specic dec-
laration. The variable c has two explicit declarations, so directing attention to
the whole schema text is appropriate. The variable a has only one declaration,
arising from the inclusion of schema, and so it is appropriate to direct attention
to that inclusion declaration.

Browsing is a concern for a typechecker because the typechecker is clearly in
the best position to determine the declarations referred to by reference expres-
sions. But to succeed, it must be concerned not merely with the names and types
that appear in signatures as introduced above, but with specic declarations and
schema texts.

As well as mapping reference expressions to variable declarations, a browser
may map variable declarations to uses of those variables. Given the assumption
that attention is directed to a single formula, this can be achieved using questions
such as \where is the rst use?", \where is the next use?", etc. The uses of a
variable are not just explicit reference expressions. There may also be uses of
variables in the implicit instantiations of references to generic denitions, and
uses implicit in binding construction (theta) expressions (these being equivalent
to binding extensions involving reference expressions) and schema predicates
(these being dened in terms of theta expressions). A browser might wish to draw
attention to expressions that contain such implicit uses of variable declarations.

The knowledge of where a variable is used is relevant not only to interactive
browsing, but also to formal reasoning. For example, the one-point rule must
nd all uses of a variable in replacing them by an expression of equal value [7].

A browser might also allow inspection of the types of expressions and the
signatures of schemas. This is relatively easy for a typechecker to support: it
just has to note that which it infers. This information is especially useful to
speciers attempting to understand type errors, as well as to implementors of
typecheckers.

3.3 Draft Standard Z

In draft standard Z, the type system is given, as input, an annotated syntax tree
in which some formul already have type annotations expressing constraints
between their types. As well as determining whether the given specication is
well-typed, the type system is required to assign type annotations to formul
for use later in dening the semantics of formul such as schema negations.

The type system as presented in draft standard Z has been subject to some
criticism concerning the overloading of  as a meta-variable and as a variable
type. A requirement on the type system presented below is to avoid that criti-
cism, while at the same time being presented in a way that satises the require-
ments of draft standard Z.

3.4 Type-Constrained Generics

A companion paper to this one proposes some extensions to Z that would enable
explicit denitions of schema calculus operators [21]. Such denitions would be
similar to Z's existing generic denitions, except that whereas the parameters
of existing generic denitions can be instantiated with any sets, the parameters
of schema calculus operators should be instantiated with schemas, usually with
constraints between their signatures. For example, schema projection takes two
schemas and returns the schema that is the set of bindings of just the names
present in the right operand but subject to the constraints of both schemas.

function 32 leftassoc (schProj)

schProj [yX ; Y] ==  S : P X ; T : P Y  fS ; T  Y g

The y symbol separates generic parameters to its left (none in this example)
from parameters to its right that should be instantiated with schemas (X ; Y).
The schema S ; T imposes constraints on X and Y that they be compatible
schemas. If the y had been omitted, this would have been regarded as an error,
as the types of generic parameters may not be constrained. With the y, we want
the denition to be well-typed, even though the signature of the schema S ; T is
unknown. Given the lack of precise knowledge of signatures, how is the expression
Y to be typechecked? What if the instantiation of X or Y was a schema with
Y as one of its components? We would not want such a component to capture
the reference to Y , as then the denition would not have the desired semantics
of schema projection. We shall need to achieve the eect of the names in the
signatures of the instantiating schemas being in a dierent name-space from the
names declared explicitly in the denition.

A further extension to Z proposed in the companion paper [21] is undecora-
tion expressions, which are needed for schema calculus operators whose deni-
tions depend on decorations.

4 Specication of the Typechecker

The specication of the typechecker takes the form of a formal system, for reasons
as given by Cardelli [1].

\A typechecking algorithm, in some sense, implements a formal system,
by providing a procedure for proving theorems in that system. The for-
mal system is essentially simpler and more fundamental than any algo-
rithm, so that the simplest presentation of a typechecking algorithm is
the formal system it implements. Also, when looking for a typechecking
algorithm, it is better to rst dene a formal system for it."

The specication is presented in bottom-up order, rst introducing the nota-
tions to be used, then presenting the individual type inference rules, and nally
explaining how these are composed in forming the whole typechecker. Type-
constrained generics are addressed separately, having rst presented a type-
checker for draft standard Z. We also explain how implicit instantiations are
determined, as that has to be revised to cope with type-constrained generics.

4.1 Notations

Phrases The denition of the syntax of Z phrases is assumed. Dened here
is the syntax of notation for types and signatures (as exemplied earlier), and
notation for environments to be used during typechecking. Phrases of this syntax
denote values in the type universe.6

Type = 'GIVEN' , NAME (* given type *)
j 'GENTYPE' , NAME (* generic parameter type *)
j 'P' , Type (* powerset type *)
j Type , '' , Type , f '' , Type g (* Cartesian product type *)
j '[' , Sig , ']' (* schema type *)
j '[' , NAME , f ';' , NAME g , ']' , Type , [';' , Type] (* generic type *)
j '' , f STROKE g (* variable type *)
j '(' , Type , ')' (* parenthesized type *)
;

Sig = [NAME , ':' , Type , f '; ' , NAME , ':' , Type g]
j '' , f STROKE g (* variable signature *)
j '"' (* empty signature *)
;

Env = Sig ;
j Sig , '' , Sig (* overridden environment *)
;

Generic types never occur within other types, despite this syntax allowing that
possibility. The need for the optional second type within a generic type is ex-
plained in the context of the type inference rule for reference expression on page

6 In this syntax, quotes enclose terminal symbols, comma concatenates phrases, square
brackets enclose optional phrases, braces enclose phrases to be repeated zero or more
times, and vertical bar separates alternatives [3].

13. Variable types and variable signatures denote unknown values that will be
determined by solving the constraints in which they appear. Similar variables
are needed for NAMEs, for which we use (subscripted) { and |. An empty signature
could be written as nothing, but writing " is clearer. There is also an annotation
operator o

o that allows types and signatures to be associated with Z phrases.

Metavariables Metavariables appear in patterns that, when matched against
existing known phrases, become associated with existing known values. Metavari-
ables are named according to the type of phrase that they can match, as listed
in Table 1. Where a pattern has to match several phrases of the same types, the
names of the metavariables are given distinct numeric subscripts. For example,
the pattern p1 ^ p2 matches any conjunction predicate, associating p1 with the
left operand and p2 with the right operand.

Table 1. Metavariables

Symbol Denition

d matches a Paragraph phrase (d for denition/description).
de matches a Declaration phrase.
e matches an Expression phrase.
i, j match NAME tokens or DeclName or RefName phrases (i for identier).
p matches a Predicate phrase.
s matches a Section phrase.
t matches a SchemaText phrase (t for text).
 matches a Type phrase.
 matches a Sig phrase.
 matches an arbitrary type environment.
+ matches a STROKE token.
 matches a f STROKE g phrase.
... matches elision of repetitions of surrounding phrases, the total number

of repetitions depending on syntax.

Having matched a metavariable with a phrase, we will use that metavariable
as denoting the value of that phrase, for example  denotes a function from NAME

to Type.

Type Sequents We write type sequents using the ` symbol, to assert the well-
typedness of the possibly-annotated phrase to the right of that symbol in the
environment to its left. This notation is similar to that used by Spivey [10].
We superscript each ` with a mnemonic letter to distinguish the syntax of the
phrase appearing to its right | see Table 2.

Type Inference Rules Each type inference rule is written in the following
form,

Table 2. Type sequents

Formula Denition

`
Z

z a type sequent asserting that specication z is well-typed.

 `
S

s o

o  a type sequent asserting that, in the context of section environment ,
section s has section-type environment .

 `
D

d o

o  a type sequent asserting that, in the context of type environment ,
paragraph d has signature .

 `
P

p a type sequent asserting that, in the context of type environment ,
predicate p is well-typed.

 `
E

e o

o  a type sequent asserting that, in the context of type environment ,
expression e has type .

 `
T

t o

o  a type sequent asserting that, in the context of type environment ,
schema text t has signature .

 `
DE

de o

o  a type sequent asserting that, in the context of type environment ,
declaration de has signature .

type subsequents

type sequent
(constraints)

or laid out as follows if the preceding form would extend into the right margin.

type subsequents

type sequent
(constraints)

They can be read as: if the type subsequents are valid, and the constraints are
true, then the type sequent is valid. Some type inference rules have no type
subsequents, and some have no constraints, but all have one type sequent. The
constraints are written using set theory notation; they typically express rela-
tionships that are required to hold between types or signatures. They refer to
metavariables bound by pattern matching and to variables for which each ap-
plication of a type inference rule uses fresh occurrences. We try to use Z-like
syntax for the set theory notation used in constraints, so that no description of
its intended meaning is needed here. The only unusual notation is  for com-
patible relations, and decor 0 i, which denotes the name that is like the name
associated with metavariable i but with the stroke 0 appended to it. (In contrast,
i0 is a metavariable name, and i 0 is the schema resulting from decoration of the
schema associated with metavariable i.)

We have chosen to use these conventional notations for syntactic denitions
and type inference rules because of their conciseness and readability. Others have
shown that it can all be done in Z [8, 9]. Our discussion of the type inference
system in section 4.3 is devoid of formalism due to lack of space.

4.2 Type Inference Rules

Using the notation introduced above, one type inference rule can be presented
for each production of the Z syntax. There is space in this paper to present only
some of them; a fuller set is available [19].

Specication

Sectioned specication Each section7 is typechecked in an environment formed
from preceding sections, and is annotated with an environment that it estab-
lishes. The constraints that establish these environments are omitted here (but
are included in the fuller set of rules). From the environment in which a section is
typechecked will be extracted just those section environments established by the
section's parents. The type subsequent for the prelude section should be omitted
if the prelude is one of the explicit sections of the specication.

fg `
S

sprelude
o

o 0 1 `
S

s1
o

o 1 ::: n `
S

sn
o

o n

`
Z

s1
o

o 1 ::: sn
o

o n

Section Rules omitted.

Paragraph

Given types paragraph The names should all be dierent.

 `
D

[i1; :::; in] END o

o 


fi1; :::; ing = n
 = i1 : P(GIVEN i1); :::; in : P(GIVEN in)



Axiomatic description paragraph The signature of the paragraph is that of its
schema text.

 `
T

t o

o 

 `
D

AX t o

o  END o

o 

Generic axiomatic description paragraph The parameter names should all be
dierent. The schema text can refer to the parameters. The signature of the
paragraph comprises generic forms of the types from the signature of the schema
text.

  fi1 7! P(GENTYPE i1); :::; in 7! P(GENTYPE in)g `
T

t o

o 1

 `
D

GENAX [i1; :::; in] t o

o 1 END o

o 2
fi1; :::; ing = n
2 =  j : dom 1  [i1; :::; in] (1 j)



7 Draft standard Z divides specications into sections, each of which is a named se-
quence of paragraphs related to other sections [15].

Conjecture paragraph The predicate should be well-typed. The signature of the
paragraph is empty.8

 `
P

p

 `
D

j=? p END o

o 
( = ")

Generic conjecture paragraph The parameter names should all be dierent. The
predicate can refer to the generic parameters. The signature of the paragraph is
empty.

  fi1 7! P(GENTYPE i1); :::; in 7! P(GENTYPE in)g `
P

p

 `
D

[i1; :::; in] j=? p END o

o 
fi1; :::; ing = n
 = "



Predicate

Membership predicate The type of the right operand should be a powerset of the
type of the left operand.

 `
E

e1
o

o 1  `
E

e2
o

o 2

 `
P

(e1
o

o 1) 2 (e2
o

o 2)


2 = P 1



Truth predicate This is always well-typed, hence there are no type subsequents.

 `
P

true

Negation predicate

 `
P

p

 `
P

: p

Conjunction predicate

 `
P

p1  `
P

p2

 `
P

p1 ^ p2

Universal quantication predicate The predicate should be well-typed in the
environment overridden with the signature of the schema text.

 `
T

t o

o     `
P

p

 `
P

8 t o

o   p

8 Conjectures in draft standard Z are introduced by the j=? keyword.

Expression

Reference expression A reference expression can be a reference to a generic
denition in which the instantiation has been left implicit. In that case, for the
instantiations to be determined later (once all constraints have been solved), the
uninstantiated type has to be remembered as well as the instantiated type. The
instantiated type is denoted by juxtaposing the generic type  i with a square
bracketed list of variable types [1; :::; n] that replace instances of corresponding
generic parameter types.

 `
E

i o

o 


i 2 dom 

 = if  i = [{1; :::; {n]  then  i; ( i) [1; :::; n] else  i



Generic instantiation expression The name should be in the environment with
a generic type. The instantiating expressions should be sets.

 `
E

e1
o

o 1 :::  `
E

en
o

o n

 `
E

i[(e1
o

o 1); :::; (en
o

o n)] o

o 

0
BBBBBBB@

i 2 dom 

 i = [{1; :::; {n] 

1 = P 1

...
n = P n

 = ( i) [1; :::; n]

1
CCCCCCCA

Set extension expression The component type of a set can be constrained only
if it has any members. Those members should be all of the same type.

 `
E

e1
o

o 1 :::  `
E

en
o

o n

 `
E

f(e1
o

o 1); :::; (en
o

o n)g o

o 

0
BBBBBBB@

if n > 0 then
(1 = n

...
n1 = n

 = P 1)
else  = P 

1
CCCCCCCA

Set comprehension expression The expression should be well-typed in the envi-
ronment overridden with the signature of the schema text.

 `
T

t o

o     `
E

e o

o 1

 `
E

ft o

o   (e o

o 1)g o

o 2

(2 = P 1)

Binding construction expression The expression should be a schema. Every name
and type pair in its signature, with the optional decoration added, should be
present in the environment, and the types should not be generic.

 `
E

e o

o 1

 `
E

 (e o

o 1)  o

o 20
@1 = P[]

2 = []

8 i : NAME j (i; 1) 2   (decor  i; 1) 2  ^ : 1 = [{1; :::; {n] 2

1
A

Schema conjunction expression The two expressions should be schemas with
compatible signatures. Those signatures are merged in forming the type of the
whole schema conjunction.

 `
E

e1
o

o 1  `
E

e2
o

o 2

 `
E

(e1
o

o 1) ^ (e2
o

o 2) o

o 3

0
BB@

1 = P[1]
2 = P[2]
1  2

3 = P[1 [2]

1
CCA

Schema universal quantication expression The expression should be a schema
whose signature is compatible with that of the schema text. Those signatures
are subtracted in forming the type of the whole schema universal quantication.

 `
T

t o

o     `
E

e o

o 1

 `
E

8 t o

o   (e o

o 1) o

o 2

0
@ 1 = P[]

  

2 = P[dom  C ]

1
A

Schema text and declaration

Schema text The declarations should have pairwise compatible signatures. The
predicate should be well-typed in the environment overridden by the merging of
those signatures. Duplicate declarations of the same names are thus permitted.

 `
DE

de1
o

o 1 :::  `
DE

den
o

o n    `
P

p

 `
T

de1; :::; den j p o

o 0
BBB@

1  2 ::: 1  n

...
n1  n

 = 1 [::: [n

1
CCCA

Variable declaration The expression should be a set. The signature of the dec-
laration is formed from the names, amongst which there can be duplicates.

 `
E

e o

o 

 `
DE

i1; :::; in : e o

o 


 = P 

 = f(i1; )g [::: [f(in; )g



Variable denition

 `
E

e o

o 

 `
DE

i == e o

o 
( = i : )

Inclusion declaration The expression should be a schema.

 `
E

e o

o 

 `
DE

e o

o 
( = P[])

4.3 Type Inference System

The type inference system applies type inference rules backwards (relative to the
way the notation was described in section 4.1): the type sequent is viewed as a
pattern, and the associations of metavariables with values produced by matching
that pattern are used to instantiate the type subsequents and constraints.

For the patterns to match, there must already be annotations on all formul,
excepting predicates as they have none. These annotations can be all distinct
variables, except as required by draft standard Z (namely that all instances of
expressions duplicated by its transformations of chained relations and comma-
separated declarations should have the same types).

Starting with a type sequent for a whole Z specication, the type inference
rule for specication is applied to it, producing one type subsequent for each
section, and some constraints to determine the environments to be used in type-
checking those sections. There is no need to solve the constraints yet. Instead,
type inference rules can be applied to the generated type subsequents, each
application producing zero or more new type subsequents, until no more type
subsequents remain. Termination is guaranteed by the niteness of the original
specication, and the fact that in every type inference rule the type subsequents
involve only sub-formul of the type sequent's Z phrase.

This leaves a set of constraints to be solved. There are dependencies between
constraints: for example, a constraint that checks that a name is declared in an
environment cannot be solved until that environment has been determined by
other constraints. As another example, references to generics generate a con-
straint involving the operation of generic type instantiation, which should not
be performed until the type of the referenced generic has been determined. This
can be ensured by solving the constraints in per-paragraph batches, as generics
are dened at top-level and instantiated only in subsequent paragraphs.

Unication is a suitable mechanism for solving constraints. For a well-typed
specication, it is possible to solve all the constraints. The resulting unier pro-
vides values for the variables in the constraints. For draft standard Z, every
annotation's original variable should be replaced by the value to which it has
been constrained. For a specication to be well-typed, no variables should remain
within any of those values.

4.4 Implicit Instantiations

Once a paragraph has been typechecked, the instantiations of its uninstantiated
references to generics can be made explicit. This can be expressed formally by the
following rule, which transforms a reference expression with a pair of annotations
to a generic instantiation expression.

i o

o [i1; :::; in] ;  0 =) i [carrier 1; :::; carrier n] o

o  0

where  0 = ([i1; :::; in] ) [1; :::; n]

The instantiating expressions are the carrier sets of the types inferred for the
generic parameters. Those types 1; :::; n are determined by comparison of the
generic type [i1; :::; in]  with the instantiation of it  0.

4.5 Schemas

The well-typed though awkward schemas discussed in the requirements section
can all be accepted by a typechecker as specied above. They could not have been
accepted if the typechecker had instead attempted to solve constraints during a
recursive traversal of Z phrases.

4.6 Browsing

Typechecking is based on signatures, which comprise just names and types, yet
a browser needs to know about specic declarations. The names and types in a
signature originate from the variable declarations of a schema text. So a set of
variable declarations can serve as a representation of a signature. When a name
is looked-up in an environment, a declaration can be returned rather than just
a type.

The requirement that inclusion declarations introduce new variable decla-
rations distinct from those of the included schema is a complication for this
scheme. Our typechecker defers this copying of declarations until after type-
checking has nished. When a reference expression is typechecked, as well as
noting the declaration to which it is bound, we also note the schema text which
put that declaration into scope. A traversal of the specication after typecheck-
ing can then nd all schema texts, make distinct copies of included declarations,
and nd all reference expressions and rebind them to the new declarations. To
support this, every overriding of an environment by a signature is annotated
with the corresponding schema text.

If a typechecker notes the declarations of all uses, including all implicit ones,
then a browser has all the information needed to determine the uses of all dec-
larations.

Knowing the declaration referred to by a reference expression helps in the
process of lling in implicit instantiations: the original uninstantiated type need
not be remembered on the reference expression, as it can be retrieved from the
referenced generic denition.

4.7 Draft Standard Z

The requirements of draft standard Z on the specication of the type system have
largely been addressed by the above specication. One dierence is that we have
chosen to give type inference rules for schema texts and declarations, whereas
those are transformed away earlier in draft standard Z. The choice made here
involves more type inference rules, but generates fewer constraints elsewhere.

4.8 Undecoration Expressions

To support undecoration expressions [21], the following changes to the above
specication are needed.

Change to Z syntax Undecoration expressions are written using the undecor
keyword and specify the stroke of the components to be extracted.

Expr = ... all existing productions ...
j 'undecor ' , STROKE , Expr
;

Change to Z typechecker The new undecoration expressions need a type
inference rule.

Undecoration expression The expression should be a schema. Every name and
type pair in the schema's signature where the name's last stroke matches the
given one, is present in the result with that stroke removed.

 `
E

e o

o 1

 `
E

undecor + (e o

o 1) o

o 2

0
@ 1 = P[1]

2 = P[2]

2 = fi : NAME j (decor + i; ) 2 1  (i; )g

1
A

Semantics of undecoration expressions The semantic value of an undeco-
ration expression is the set of bindings that is like that of the operand schema
but without those components whose names do not have the given stroke and
with that stroke removed from the retained names.

4.9 Type-Constrained Generics

To support type-constrained generics [21], the following changes to the above
specication are needed.

Change to Z syntax Generic parameter lists can have a dagger, which precedes
those parameters that are constrained to be schemas.

Fmls = [NAME , f ';' , NAME g] , ['y' , NAME , f ';' , NAME g] ;
Although the y notation has been introduced in formal parameter lists, and

is introduced below in generic types, we do not introduce it in explicit generic
instantiation lists, which just use ; (comma) between instantiating expressions.

Changes to Z typechecker The notation for generic types needs to list the
names of the new parameters, for use in determining implicit instantiations.

Type = '[' , [NAME , f ';' , NAME g] , ['y' , NAME , f ';' , NAME g] , ']' , Type ,
[';' , Type] (* generic type *)

j ... other productions as before ...
;

There should be at least one NAME in a generic type, despite this syntax not
requiring that.

Some additional notation is needed for signatures.

Sig = ... all existing productions ...
j 'GENSIG' , NAME (* generic parameter signature *)
j Sig , '[' , Sig (* merged signature *)
;

The GENSIG notation is somewhat analogous to GENTYPE, but with the dierence
that a generic denition can impose constraints on a GENSIG. That dierence
makes GENSIG seem like the variable signature notation, but when these notations
appear in environments, they are interpreted dierently (see below). We also
restrict the constraints on generic parameter signatures: we allow compatibility
constraints, but reject unication constraints.

The [notation denotes the signature formed by merging two signatures.
The [symbol that has already been used in some of the above type inference
rules was an operator of set theory: the constraints in which [was used were
regarded as solvable only when its operands were known signatures. Those uses
of [can be regarded as uses of the new signature notation, allowing some of
those constraints to be solved sooner.

All type inference rules concerned with generics need to be revised, as follows.

Generic axiomatic description paragraph Generic parameter signatures are treat-
ed much like generic parameter types by this rule, the dierence being that they
have dierent types in the environment.

  fi1 7! P(GENTYPE i1); :::; in 7! P(GENTYPE in);

j1 7! P[GENSIG j1]; :::; jm 7! P[GENSIG jm]g `
T

t o

o 1

 `
D

GENAX [i1; :::; in y j1; :::; jm] t o

o 1 END o

o 2
fi1; :::; in; j1; :::; jmg = n + m
2 =  j : dom 1  [i1; :::; in y j1; :::; jm] (1 j)



Generic conjecture paragraph

  fi1 7! P(GENTYPE i1); :::; in 7! P(GENTYPE in);

j1 7! P[GENSIG j1]; :::; jm 7! P[GENSIG jm]g `
P

p

 `
D

[i1; :::; in y j1; :::; jm] j=? p END o

o 
fi1; :::; in; j1 ; :::; jmg = n + m
 =



Generic instantiation expression The instantiations of schema parameters should
be schemas.

 `
E

e1
o

o 1 :::  `
E

en
o

o n  `
E

e0

1
o

o  0

1 :::  `
E

e0

m
o

o  0

m

 `
E

i[(e1
o

o 1); :::; (en
o

o n); (e0

1
o

o  0

1); :::; (e0

m
o

o  0

m)] o

o 0
BBBBBBBBBBBBBB@

 = lookup i 

 = [{1; :::; {n y |1; :::; |m] 0

1 = P 1

...
n = P n

 0

1 = P[1]
...

 0

m = P[m]
 =  [1; :::; n ; 1; :::; m]

1
CCCCCCCCCCCCCCA

The lookup operation is described below.

Reference expression

 `
E

i o

o 
 = lookup i 

 = if  = [{1; :::; {n y |1; :::; |m] 0 then ;  [1; :::; n ; 1; :::; m] else 



The rule for binding construction expression needs to be revised analogously.
For draft standard Z, it is possible to solve all the constraints relating to

a paragraph of a (well-typed) specication before proceeding to the next para-
graph. With type-constrained generics, some constraints might not be solvable
then. A counterexample is the explicit denition of schema conjunction, which
imposes a constraint of compatibility between the signatures of its instantiating
schemas. Having typechecked a paragraph, any remaining constraints should be
noted as an attribute of that paragraph.

These unsolved constraints aect the check that all implicit instantiations
are uniquely determined. The check cannot be delayed until the constraints are
solved, as the declarations of the paragraph might never be used, and even if
they are they might be used in type erroneous ways, so we continue to perform
the check after typechecking each paragraph. Where an implicit instantiation is
in a paragraph that has some parameters that must be schemas, and there are
some unsolved constraints on which the implicit instantiation depends, we have
assumed that the implicit instantiation will become uniquely determined when
the paragraph's parameters are instantiated.

Constraints that involve looking up a name in an environment viewed the
environment as a function, requiring any uses of the  notation in forming the
environment to have been evaluated before the constraint doing the look up
could be solved. With the extensions, environments can now contain generic
parameter signatures, and so cannot all be evaluated. Hence the introduction of
the lookup operation, which behaves as follows.

If the environment is a known signature, then look up proceeds as before.
If the environment is a variable signature, look up cannot succeed, and the

constraint doing the look up will have to be solved later. If the environment is
a generic parameter signature, look up behaves as if the requested name is not
dened in this environment. This solves the problem exemplied by the denition
of schema projection in the requirements above. Overridden environments and
merged signatures cause look up to recurse appropriately.

This special treatment of generic parameter signatures in the environment
is what restricts our type-constrained generics to being schemas. Relaxing that
restriction would be nice, but we have been unable to nd a way of doing so that
also provides a solution to the name-space problem.

The lookup operation needs to return not just the inferred type but also
any unresolved constraints from typechecking of a generic denition; these con-
straints are instantiated appropriately and added to the collection of constraints
yet to be solved. Those unresolved constraints are also relevant to a browser:
when displaying the type of a formula in a constrained generic denition, any
unresolved constraints should be revealed.

Changes to implicit instantiations Instantiating expressions are needed not
just for the generic parameters but also for the parameters that are constrained
to be schemas.

i o

o [i1; :::; in y j1 ; :::; jm] ;  0

=)
i [carrier 1; :::; carrier n ; carriersig 1; :::; carriersig m] o

o  0

where  0 = ([i1; :::; in y j1; :::; jm] ) [1; :::; n ; 1; :::; m]

The carrier set of a schema type continues to be a schema construction expres-
sion, but we can no longer assume that the declarations within it are all variable
declarations. Instead we need carriersig to generate an appropriate list of decla-
rations. The carrier of a generic parameter signature is an inclusion declaration
referring to the generic parameter. The carrier of a merged signature is the con-
catenation of the declarations that are the carriers of its operands. Beware that
a schema construction expression with only one declaration that is an inclusion
does not conform to draft standard Z syntax; the square brackets should be
dropped in that case.

Semantics of type-constrained generics Draft standard Z's semantic equa-
tion for generic axiomatic paragraph creates models for all set-valued instanti-
ations of the generic parameters. It should be extended to consider all schema-
valued instantiations of the parameters that should be schemas and that conform
to the constraints on those instantiations.

4.10 Diagnosing Type Errors

An aim was to reject all ill-typed Z specications, but also legible error reports
should be provided when mistakes are detected. Mistakes are detected as invalid

constraints. Since every constraint arises from the application of a type inference
rule to a particular phrase, this allows mistakes to be attributed to corresponding
phrases. For each invalid constraint, we provide the specier with that constraint
(paraphrased to some extent), identication of the corresponding phrase, and
also the ability to browse the specication to see what the typechecker inferred.

Where constraints are independent of one another, they can be solved in
any order. The order in which they are solved aects the phrases to which any
mistakes are attributed. It is worth solving constraints that would be dicult to
diagnose if invalid before solving independent constraints that would be easier
to diagnose if invalid. For example, operator applications are transformed to
involve tuples of operands before being typechecked; it is better to diagnose an
operator as being of inappropriate arity than to say that the tuple of operands
is of inappropriate size, as that tuple is not a separate phrase visible to the
specier.

5 Conclusions

It is possible to typecheck even contrived Z specications, so long as the imple-
mentation of the typechecker does not impose extra constraints, such as on the
order in which constraints are expected to be solved. A typechecker can assist
browsing and reasoning tools by determining where variables are used. We have
given a specication of a typechecker in a form that might be suitable for draft
standard Z. A typechecker for draft standard Z can be extended to handle type-
constrained generics, and hence explicit denitions of schema calculus operators,
without any backwards incompatibilities.

Acknowledgements

Rob Arthan set us thinking about awkward schemas. Funding for this work was
provided by EPSRC grant GR/M20723.

References

1. L. Cardelli. Basic polymorphic typechecking. Science of Computer Programming,
8(2):147{172, April 1987.

2. P. Hancock. Polymorphic type-checking. In S.L. Peyton Jones, editor, The Imple-

mentation of Functional Programming Languages, 1987.

3. ISO/IEC 14977:1996(E). Information Technology|Syntactic Metalanguage|

Extended BNF.

4. Xiaoping Jia. ZTC: A type checker for Z notation, user's guide. Technical Re-
port Version 2.03, Division of Software Engineering, School of Computer Science,
Telecommunication, and Information Systems, DePaul University, August 1998.

5. L. Lamport and L.C. Paulson. Should your specication language be typed? Trans-

actions on Programming Languages and Systems, 21(3):502{526, May 1999.

6. R. Milner. A theory of type polymorphism in programming languages. Journal of

Computer and System Science, 17:348{357, 1978.
7. D. Neilson. Machine support for Z: the zedB tool. In Proceedings of the 5th Z User

Meeting, 1990.
8. J.N. Reed and J.E. Sinclair. An algorithm for type-checking Z. Technical Mono-

graph PRG-81, Oxford University Computing Laboratory, Programming Research
Group, March 1990.

9. C.T. Sennett. Review of the type checking and scope rules of the specication
language Z. Technical Report 87017, Royal Signals and Radar Establishment,
Malvern, November 1987.

10. J.M. Spivey. Understanding Z: A Specication Language and its Formal Semantics.
Cambridge University Press, 1988.

11. J.M. Spivey. The Z Notation: A Reference Manual, 2nd editon. Prentice Hall,
1992.

12. J.M. Spivey and B.A. Sufrin. Type inference in Z. In D. Bjrner, C.A.R. Hoare,
and H. Langmaack, editors, VDM'90: VDM and Z|Formal Methods in Software

Development, LNCS 428, pages 426{451. Springer, 1990.
13. S. Stepney. Formaliser Home Page. http://public.logica.com/~formaliser/.
14. B. Sufrin. Using the Hippo system. Technical report, Oxford University Computing

Laboratory, Programming Research Group, June 1989.
15. I. Toyn. Innovations in the notation of standard Z. In ZUM'98: The Z Formal

Specication Notation, LNCS 1493. Springer, September 1998.
16. I. Toyn, editor. Z Notation: Final Committee Draft. http://www.cs.york.ac.uk-

/~ian/zstan/fcd.ps, August 1999.
17. I. Toyn. CADiZ web pages. http://www.cs.york.ac.uk/~ian/cadiz/, 2000.
18. I. Toyn and J.A. McDermid. CADiZ: An architecture for Z tools and its imple-

mentation. Software | Practice and Experience, 25(3):305{330, March 1995.
19. I. Toyn and S.H. Valentine. Type inference rules for Z.

ftp://ftp.cs.york.ac.uk/hise reports/cadiz/ZSTAN/rules.ps, March 2000.
20. I. Toyn, S.H. Valentine, and D.A. Duy. On mutually recursive free types in Z. In

ZB2000: International Conference of B and Z Users, 2000.
21. S.H. Valentine, I. Toyn, S. Stepney, and S. King. Type-constrained generics. In

ZB2000: International Conference of B and Z Users, 2000.

