
An Object-Oriented Structuring for Z
based on Views

Nuno Amálio, Fiona Polack, and Susan Stepney

Department of Computer Science, University of York, York, YO10 5DD, UK
{namalio,fiona,susan}@cs.york.ac.uk

Abstract. There is significant interest in the use of Z in conjunction
with object-orientation. Here we present a new approach to structur-
ing Z specifications in an object-oriented (OO) style. Our structuring is
based on views, it uses the schema calculus, and it does not extend Z. The
resulting OO Z specifications are comprehensible, modular, and concep-
tually clear. The modularity of the new approach supports a template-
instantiation approach to expressing OO models in Z; practical formal
verification and validation of the model can be undertaken using meta-
proof, meta-lemmas, and formal snapshots.
Keywords: Z, object-orientation.

1 Introduction

For more than a decade, there has been interest in structuring Z specifications in
an object-oriented (OO) style [1]. Researchers quickly realised that Z does not
directly support object-orientation; fundamental OO concepts such as object
and class are not Z language primitives. This has resulted in extensions, such as
Object-Z [2], designed to facilitate the structuring of Z-based specifications in
an OO style. However, this more natural way of expressing OO properties comes
at a cost: a more complex language semantics, and reduced flexibility. This has
implications in the language’s proof and refinement theories, which also become
more complex.

Z is a simple language based on typed set theory and first order logic with a
simple structuring mechanism, the schema. It has a mathematical, rather than
computational, semantics. This makes it flexible and extensible, allowing struc-
turing based on different computational models.

Here we present a new approach to structuring Z specifications in an OO
style, without extending the Z language. The approach has emerged in the con-
text of developing a semantic model to represent abstract UML models [3–5],
and the example used to illustrate the approach here is based on a simple UML
class model. The full approach is not restricted to class models, to UML, or to
any particular variant of OO semantics.

Our approach builds on existing research, reviewed in [6]. It has some novel
features that enhance the comprehensibility, abstraction and modularity of the
Z model:

2 Nuno Amálio, Fiona Polack, and Susan Stepney

– It separates concerns effectively by being based on views, following a views
structuring approach for Z [7].

– It is very modular, which is achieved by being based on the schema calculus.
This allows us to represent concepts as modules (schemas), that can be
composed with other modules to form the whole.

2 The Structuring

This section introduces our structuring, explaining how the components of OO
are represented and the views structure adopted, we also introduce our domain
toolkit of templates, which allows the generation of models following this struc-
turing by instantiating templates. In the following section, an example model is
built up following this structuring.

2.1 Objects, Classes, Associations and Systems

OO models are structured around the concept of the object. Objects are char-
acterised by an identity (distinguishing one object from all others) and observ-
able properties. The building blocks of our models are object-based structures,
namely class, which represents a set of objects; association, which represents re-
lations between classes of objects; and system, which composes classes and their
associations and represents global scope properties.

An OO class has a dual meaning. Class intension defines a class in terms of
the properties shared by the objects of that class (for example, a class Person
with properties name and address). Class extension defines a class in terms
of the currently existing object instances of that class (for example, Person is
{MrSmith,MrAnderson,MsFitzgerald}). This duality, inspired by the definitions
of a set in set theory, is reflected in the way we represent classes: each class has
one intensional and one extensional representation.

Fig. 1. The set of all object
atoms OBJ , the set of all object
states St (the class intension),
and the mapping from existing
objects to their current states
(the class extension).

In our approach, Figure 1, objects are
atoms (individuals represented in Z as ele-
ments of a given set). The class intension de-
fines the set of all possible object states. A
function maps the existing object atoms to
their current states (the class extension). Rep-
resenting objects as atoms ensures the identity
property necessary for objects. Separation of
concerns is achieved, because objects, class in-
tensions, and class extensions are all related,
but separately represented.

Associations express relationships between
classes. An association denotes a set of object
tuples, where each tuple describes the objects
being related (or linked). In our approach, as-
sociations are represented as a Z relation be-
tween objects.

An Object-Oriented Structuring for Z based on Views 3

Systems are used to assemble the local structures, classes, and associations
into more global ones; systems also include invariants (or constraints) whose
scope goes beyond local structures.

The representation of class intensions and extensions, associations and sys-
tems follows a Z state and operations style defined through the schema calculus.
Each is represented as a Z abstract data type (ADT), comprising a state, ini-
tialisation, operations, and finalisation.

2.2 Views

A view [7] is a partial specification of a program consisting of a state space and
a set of operations. A full specification is obtained by composing several views,
linking them through their states and through their operations.

We use views because not all properties of OO models fit into a single rep-
resentation. For example, we cannot capture the three representations of classes
— atoms, intension, extension — in a single view. Also, views have proved to be
an effective means of achieving clear separation of concerns in the specification.
This conceptual clarity helps not only in writing and reading the Z models, but
also in formal verification and validation. The clear separation of views allows,
among other things, a simple solution to the frame problem in system operations
(below).

The views that we use are closely related to our basic OO structures. The
structural view defines sets of object atoms, and captures properties of class
structures from an atom perspective of classes. The intensional and extensional
views represent, respectively, the intensional and extensional meanings of classes.
The relational view represents associations. The global view represents systems.
The structural view is the only one that does not follow a Z state and oper-
ations style; it is a conceptual view, enhancing the conceptual cohesion of the
whole structuring. The other views are collections of ADTs, representing class
intensions, class extensions, associations, and systems.

Fig. 2. The views of our struc-
turing and dependency relation-
ships (arrow means dependency).

Figure 2 shows the dependencies among
these views. The structural view introduces
global names that allow the relational and
extensional views to be built independently
whilst sharing the same vocabulary, and then
to be linked in the global view. The inten-
sional view defines the possible states of ob-
jects; these definitions are used in the exten-
sional view to define the mapping between ex-
isting objects (atoms) and their current state.

We use different mechanisms to link
views. The structural view defines global
names, which are then used (directly or as
a Z parent section) in the descriptions of the
extensional, relational and global views. The
extensional and intensional views are linked

4 Nuno Amálio, Fiona Polack, and Susan Stepney

using Z promotion [8, 9]: a class extension includes a collection of state inten-
sions (as a mapping from object atom to state), the intensional operations are
then promoted to be applicable to all the objects of the class. Finally, the link
between the description of the global view and the ones from the relational and
extensional views is established through Z schema conjunction.

2.3 A domain toolkit of templates

The use of views, and the resultant highly modular Z model, allows a systematic
approach to constructing the model. We use templates to capture the structure of
the Z model. Templates are pieces of instantiable Z, which we use to parameterise
all sorts of Z phrases, such as axiomatic definitions, schemas and instantiations
of Z generics. Template descriptions represent meta-level concepts, such as, class
intension, class extension, association and global constraint. Templates are in-
stantiated by reference to the labels of the equivalent concepts in conventional
OO diagrams [3, 5] (e.g. the state definition of a class intension is obtained by
instantiating the proper template with reference to the class name, and names of
composing attributes), and by other model information not expressible in terms
of diagrams (e.g. a state invariant of a class intension, which is not represented
diagrammatically).

One particular interpretation of a modelling concept is represented by a set
of templates. Alternative interpretations of a concept (e.g. association) can be
defined by providing another set of templates. This allows us to construct Z mod-
els based on variant OO interpretations by selecting an appropriate alternative
set of templates.

Standard conjectures, such as an initialisation conjecture, can also be ex-
pressed in template form. In our work, various template conjectures have been
subject to formal analysis, leading to a number of meta-theorems and meta-
lemmas. For correctly-instantiated specification templates, these reduce the proof
of standard conjectures to a trivial exercise [10].

Our templates and associated meta-theorems constitute our domain toolkit
for building OO Z specifications. Like the Z mathematical toolkit, they pro-
vide generic definitions and laws to construct and reason about Z specifications.
Unlike the Z mathematical toolkit, which is based on Z generics, our toolkit is
based, essentially, on templates; the use of templates allows us to increase the
level of scope of generic definitions: we can generalise whole specifications and
be closer the application domain. The Z model given below has been constructed
and consistency-checked by using templates and meta-theorems from the domain
toolkit. This strategy of building toolkits of generic definitions is based on the
pattern application-oriented theory [11].

3 Example

We illustrate our OO structuring with the specification of a trivial bank system.
The static structure is captured by a UML class diagram, figure 3.

An Object-Oriented Structuring for Z based on Views 5

– Customer represents the bank’s customers; the attributes record the name
of a customer, its address, and type (either company or personal).

– Account represents the accounts managed by the bank; the attributes record
the account number (accountNo), the balance, and the type of account (either
current or savings).

– The association Holds relates Customers and their Accounts; a Customer
may have zero or more accounts; an Account must have one customer.

Fig. 3. The example UML model. See text for various Z annotations.

The trivial bank system has the following constraints:

1. Savings accounts cannot have negative balances.
2. The total balance of all the bank’s accounts must not be negative.
3. Customers of type company cannot hold savings accounts.

The system provides the following operations:

– Open Account : open a new account for an existing bank customer.
– Deposit : deposit some money into one account
– Withdraw : withdraw money from one account
– Get Balance : get the balance of one account
– Get Customer Accounts : get all the accounts of a certain bank customer
– Get Accounts in Debt : get all the accounts that are in debt
– Delete Account : delete one account from the system

We start the formal model of the trivial bank system by specifying the state space
of the system, and define operations on the state. Only illustrative components
are given; like components are specified in similar ways, instantiated from the
same templates.

3.1 Specifying Z State

The Z state is constructed from the five views. We use systematic naming con-
ventions, based on [12, chap. 8]. A name starting with the letter S designates
a concept from the extensional view, and a name starting with the letter A
designates a concept from the relational view.

6 Nuno Amálio, Fiona Polack, and Susan Stepney

Structural View. Z does not support subtyping; we define a single Z type to
represent all object atoms, as this allows us to model OO specialisation hierar-
chies in a natural manner (not illustrated here).

[OBJECT]

Each class in the model has its own subset of object atoms. In addition, the
object sets for the classes Customer and Account are disjoint, as these classes are
not related by a specialisation relation:

CustomerOs,AccountOs : P OBJECT

disjoint〈CustomerOs,AccountOs〉

Intensional View. The state intension defines classes in terms of attributes,
attribute types, and, where required, a class invariant. Attribute types are de-
fined as appropriate. For example, for Account we define ACCID as a given set,
and ACCTYPE as a Z free type:

[ACCID] ACCTYPE ::= current | savings

The state and initialisation of Account intension is given below. The state Account
defines the state attributes, and expresses the first system constraint (savings
accounts cannot have negative balances). The initialisation makes an assignment
of values to class attributes.

Account
accountNo : ACCID
balance : N
type : ACCTYPE

type = savings ⇒ 0 ≤ balance

AccountInit
Account ′

accountNo? : ACCID
type? : ACCTYPE

accountNo′ = accountNo?
balance ′ = 0
type ′ = type?

Extensional View. A class state extension defines the set of all existing objects
(a subset of the class’ object set), and a function that maps object atoms to their
state intensions. The structure is expressed in a generic from our domain toolkit:

SGen [OSET ,OSTATE]
objs : P OSET
objSt : OSET 7→ OSTATE

dom objSt = objs

Actual class state extensions are instantiations of this generic. For example, the
Account state extension instantiates the generic and expresses the second system
constraints (the total of all the account balances must not be negative):

An Object-Oriented Structuring for Z based on Views 7

SAccount
SGen[AccountOs,Account][accounts/objs, accountSt/objSt]

0 ≤ Σ{ a : accounts • a 7→ (accountSt a).balance }

(See the appendix for the definition of Σ.) The instantiation, guided by a toolkit
template, includes the renaming of generic components, to avoid name clashing
when component schemas are composed to make the system schema.

The initialisation of the extension assigns both the set of existing objects and
the set of object atoms to state mappings to the empty set; in the initial state
there are no objects.

SAccountInit == [SAccount ′ | accounts ′ = ∅ ∧ accountSt ′ = ∅]

Relational View. In the relational view we define the association state as a Z
relation between the object sets of the classes being associated.

The AHolds state definition defines the relationship between the object sets
of the classes Customer and Account. The initialisation of the relationship states
that the set of existing links is empty; in the initial state there are no objects,
hence, no links between them.

AHolds == [holds : CustomerOs ↔ AccountOs]
AHoldsInit == [AHolds ′ | holds ′ = ∅]

At this stage, we do not constrain the holds relation to reflect the multiplicity of
the association; multiplicities are defined on existing objects, which are defined
in the extensional view and are not directly accessible from the relation view. An
alternative modelling of associations that included extensions of the associated
classes in the association state schema, to allow multiplicity constraints here,
would break the separation that exists between relational and extensional views.

Global View. In the global view we compose classes and associations, and
express properties of global scope, to form systems. The system state includes
classes and association of the system, link invariants between associations and
class extensions, and global scope constraints. The system initialisation is the
initialisation of the system’s components. In the illustration of the trivial bank
system, the system has two classes and a single association between them; in
general, however, the system is made up of subsystems comprising classes and
their linking associations; invariants are added at the appropriate scope, to a
subsystem or the full system, as appropriate.

In the global view, each association has a schema expressing the appropri-
ate association link invariant. To maintain the modular structuring, global con-
straints are expressed in separate schemas, and then added to the predicate of
the system schema (based on the Name Predicates pattern [11]).

LinkAHolds expresses the link invariant of the association Holds:

8 Nuno Amálio, Fiona Polack, and Susan Stepney

LinkAHolds
SCustomer ; SAccount ; AHolds

holds ∈ Rel1,∗[customers, accounts]

The global view can use both the relational and extensional views, so the schema
can include the extensions both of the participating classes and of the associa-
tion. The predicate constrains the relation representing the association to be the
correct multiplicity, using the appropriate association multiplicity generic from
the toolkit (see Appendix); it says that the inverse of the relation must be a total
function from the set of existing accounts to the set of existing customers. This
ensures both the correct association multiplicity (∗ . . 1), and that the relation
refers to existing objects only.

The third constraint of the system (customers of type company cannot hold
savings accounts) involves concepts from multiple views. It is expressed in the
global view as ConstraintCompanyNoSavings:

ConstraintCompanyNoSavings
SCustomer ; SAccount ; AHolds

{ oC : customers | (customerSt oC).type = company }
C holds B { oA : accounts | (accountSt oA).type = savings }

= ∅

The system schema is defined by conjoining all the class extensions and associ-
ations, association link invariants, and global constraints:

System
SCustomer ; SAccount ; AHolds

LinkAHolds
ConstraintCompanyNoSavings

The initialisation of the system consists of initialising the system’s components.
This is done by conjoining the component initialisations:

SysInit == System ′ ∧ SCustomerInit ∧ SAccountInit ∧ AHoldsInit

Note that the after state of the System is included in this conjunction, so that
the constraints declared globally in System are included. This ensures that all
the constraints are taken into account in the system initialisation theorem.

3.2 Specifying Z Operations

A system operation in an OO system comprises operations on a number of
classes. In modelling system operations in our Z style, we first decompose them

An Object-Oriented Structuring for Z based on Views 9

into constituent class operations. For example, the operation to open a new
account involves the creation of a new Account object and the addition of a link,
between the new account and its customer, to the association Holds. The system
operation is the composition of these two operations.

We specify operation components in the intensional, extensional and rela-
tional views, and then compose them in the global view to form system opera-
tions.

We introduce naming conventions to distinguish update (change state) from
observe (do not change state) operations. Following Z conventions, names of up-
date operations include the symbol ∆ subscripted, whereas observe ones include
the symbol Ξ.

Intensional View. The operations of the intensional view specify state tran-
sitions or observations on the state of a single class object.

We distinguish two kinds of operations. Update operations change the state
of objects; they effect a state transition. Observe operations leave the state of
objects unchanged, performing queries on the current state of objects. We may
also need to specify the finalisation, which expresses a condition for objects of a
class to cease their existence.

The system operations Deposit and Withdraw change the state of one account
object: the balance is incremented or decremented by a certain amount. The
intensional view is:

Account∆Withdraw
∆Account
amount? : N

accountNo′ = accountNo
type ′ = type
balance ′ = balance − amount?

Account∆Deposit
∆Account
amount? : N

accountNo′ = accountNo
type ′ = type
balance ′ = balance + amount?

The system operation GetBalance observes the state of one Account object,
specifically the Account .balance state attribute:

AccountΞGetBalance == [ΞAccount ; balance! : Z | balance! = balance]

We want to be able to delete accounts, but only only when their balance is zero.
This finalisation condition is specified on Account objects:

AccountFin == [Account | balance = 0]

Extensional View. This view defines operations that are applicable to all
existing objects of a class. Most operations of this view are defined by promoting
operations from the intensional view.

10 Nuno Amálio, Fiona Polack, and Susan Stepney

Z Promotion uses framing schemas to promote local operations to a global
state. Our approach provides framing schemas customised to our class state ex-
tensions, drawing on our work on promotion patterns [9, 11]. There is one fram-
ing schema for each kind of operation, the usual new, update, and delete framing
schemas; in addition we introduce an observe framing schema. For example, the
update and observe framing schemas for the class Account are:

ΦSAccountUpdate
∆SAccount
∆Account
oAccount? : AccountOs

oAccount? ∈ accounts
θAccount = accountSt oAccount?
accounts ′ = accounts
accountSt ′ = accountSt ⊕
{oAccount? 7→ θAccount ′}

ΦSAccountObserve
ΞSAccount
ΞAccount
oAccount? : AccountOs

oAccount? ∈ accounts
θAccount = accountSt oAccount?

The framing schemas are used to form promoted operations. For example, given
the appropriate intensional view operations and framing schemas for the Account
class, the extensional operations for initialisation, withdrawal, deposit, an ac-
count enquiry, and an account deletion are:

S∆AccountNew == ∃ Account ′ • ΦSAccountNew ∧ AccountInit
S∆AccountWithdraw ==

∃∆Account • ΦSAccountUpdate ∧ Account∆Withdraw
S∆AccountDeposit == ∃∆Account • ΦSAccountUpdate ∧ Account∆Deposit
SΞAccountGetBalance ==

∃ ΞAccount • ΦSAccountObserve ∧ AccountΞGetBalance
S∆AccountDelete == ∃Account • ΦSAccountDelete ∧ AccountFin

We may also have operations in the extensional view that are not promotions. For
example, the trivial bank may wish to identify all the accounts that are in debt.
This is expressed in the extensional view without promotion of an intensional
operation:

SΞAccountGetDebtAccounts
ΞSAccount
osAccount ! : P AccountOs

osAccount ! = { a : accounts | (accountSt a).balance < 0 }

Relational View. Operations in the relational view change or observe the state
of associations. Association operations add and remove pairs from the tuples of
the association relation, and perform queries on the state of associations.

An Object-Oriented Structuring for Z based on Views 11

In the trivial bank system, we need to associate bank customers with new
accounts. This is done by adding tuples, consisting of one existing Customer
object and one existing Account object, to the Holds association:

A∆HoldsAdd
∆AHolds
oCustomer? : CustomerOs
oAccount? : AccountOs

holds ′ = holds ∪ {oCustomer? 7→ oAccount?}

When a bank account is removed, the link that exists between the account and its
customer (association Holds) must also be deleted. The deletion of tuples of the
association Holds, given a set of Account objects, is described by the operation
A∆HoldsDelAccount (below).

We also want to list all the accounts held by a customer, an observation on
the state of Holds. The operation AΞCustomerAccounts performs the required
observation:

A∆HoldsDelAccount
∆AHolds
osAccount? : P AccountOs

holds ′ = holds −B osAccount?

AΞCustomerAccounts
ΞAHolds
oCustomer? : CustomerOs
osAccount ! : P AccountOs

osAccount ! = holds(| {oCustomer?} |)

Global View. The global view of operations defines system operations that
act on the state of the system as a whole. These operations are defined by
composition of the operations from the extensional and relational views. This
is essentially schema conjunction (except where there is a necessary order of
execution of component operations from the separate views). However, as the
following example shows, we also need to maintain global constraints, and ad-
dress the framing problem [13], by making explicit the effect of each operation
on the whole system state.

When composing system operations using conjunction, some adjustments
may be needed so that the elements of component operations relate correctly
across the conjunction. This adjustment involves relating inputs and outputs of
component operations.

These issues and their resolutions are explored using the example of a sys-
tem operation to open a new account. This involves one operation from the
extensional view (to create a new account), and one from the relational view (to
associate the new account with an existing customer):

SysOpenAccount == S∆AccountNew ∧ A∆HoldsAdd

First, we need to make an adjustment, because S∆AccountNew outputs an
oAccount ! but the A∆HoldsAdd requires an input oAccount?. This is resolved
by renaming one (here the input of A∆HoldsAdd):

12 Nuno Amálio, Fiona Polack, and Susan Stepney

SysOpenAccount == S∆AccountNew ∧ A∆HoldsAdd [oAccount !/oAccount?]

This simple conjunction does not take into account the global scope constraint
of the trivial bank system, that customers of type company cannot hold savings
accounts, and the violation cannot be determined by formal analysis. To solve
this, we need to lift component operations to system operations by conjoining
∆System. (This follows the principle of promotion, but since promotion in Z
refers to a concrete technical mechanism, we term this flavour of promotion
lifting.)

However, this introduces a frame problem [13]. Component operations specify
the change of state of their local components, but a system may include other
components whose states should be unchanged by the operation. In this example,
the operation should change the states of the Account extension and of Holds,
but the extension of Customer, introduced by adding ∆System, should remain
unchanged. However, in Z, the state of any component that is not explicitly
addressed is undetermined after the operation; any state of SCustomer would
satisfy the specification.

In our approach, we define frames for system operations. This makes explicit
what is to change and what is to remain unchanged. The names of system op-
eration frames are prefixed by Ψ (by analogy to Φ promotion frames), and are
formed by conjoining ∆System with the Ξ (nothing changes) of every system
component whose state is to remain unchanged. Thus, the frame for the above
example is:

ΨSysAccountHolds == ∆System ∧ ΞSCustomer

This simple solution is possible because views give the required separation of con-
cerns. Components (classes and associations) are specified independently from
each other; when we preceed a component with Ξ we know that we are saying
that only this component’s state is to remain unchanged and nothing else1.

The system operation to open an account can now be fully specified by
schema conjunction:

SysOpenAccount == ΨSysAccountHolds ∧ S∆AccountNew
∧ A∆HoldsAdd [oAccount !/oAccount?]

In common with the constraints added to the global view of the system state,
some operation preconditions can only be expressed in the global view. If, in our
example, we want to add a precondition that the new account is associated with
an existing bank customer, this is specified in a condition schema:

1 A version of state extension modelling that included class extensions in the associa-
tion state schema (for example, to allow the specification of association multiplicity
constraints in the relational view) would preclude this simple solution, because ΞA
would mean that neither the association nor the included class extensions could
change.

An Object-Oriented Structuring for Z based on Views 13

CondIsCustomer
SCustomer
oCustomer? : CustomerOs

oCustomer? ∈ customers

and conjoined in the system operation:

SysOpenAccount == ΨSysAccountHolds ∧ S∆AccountNew
∧ A∆HoldsAdd [oAccount !/oAccount?] ∧ CondIsCustomer

Other system update operations are similarly defined:

ΨAccountOps == ∆System ∧ ΞSCustomer ∧ ΞAHolds
SysWithdraw == ΨAccountOps ∧ S∆AccountWithdraw
SysDeposit == ΨAccountOps ∧ S∆AccountDeposit

System observation operations do not require a specific frame; nothing changes
in the system, so they can be simply conjoined with ΞSystem. The system
operations get balance, get customer accounts, and get accounts in debt are:

SysGetBalance == ΞSystem ∧ SΞAccountGetBalance
SysGetCustAccounts == ΞSystem ∧ AΞCustomerAccounts
SysGetDebtAccounts == ΞSystem ∧ SΞAccountGetDebtAccounts

The system operation to delete an account is defined in a similar way, but
requires a rather more elaborate adjustment to the initial conjunction of the
operations to delete the account from the set of existing accounts (operation
S∆AccountDelete from the extensional view) and the link to its customer (op-
eration A∆HoldsDelAccount from the relational view). S∆AccountDelete takes
as input one account object, however A∆HoldsDelAccount expects a set of ob-
jects. The adjustment is made in a connector schema, ConnAccountOs, which
transforms the single output of S∆AccountDelete to a singleton set:

ConnAccountOs
osAccount? : P AccountOs
oAccount? : AccountOs

osAccount? = {oAccount?}

The connector is added to the system operation specification to form the correct
composition:

SysDeleteAccount == ΨSysAccountHolds ∧ S∆AccountDelete
∧ ConnAccountOs ∧ A∆HoldsDelAccount

We could, of course, have avoided need for a connector schema by defining
A∆HoldsDelAccount to receive one input object rather then a set. However,
the given specification is generated by instantiating our templates; we prefer
to keep our operation templates generic and then adjust the connection in the
global view; the forms of connection schema can also be provided as templates.

14 Nuno Amálio, Fiona Polack, and Susan Stepney

4 Discussion

We have described and illustrated an OO structuring for Z based on views and
schema calculus. We are not aware of any other Z-only OO structuring approach
that relies entirely on the schema calculus: other approaches all resort to Z
axiomatic definitions to express state and operations in one way or another.

A consequence of exploiting the existing structuring mechanisms of Z, the
schema and the schema calculus, is that we can systematically compose OO-
structured Z specifications. In our approach, we select appropriate templates
for each OO component, instantiate these to give named schemas, and then
include or conjoin the instantiated components as appropriate to form the Z state
and operations. Z schema conjunction is key in our structuring as it allows the
propagation of system properties through the composition (a property satisfied
by one schema is also satisfied by the conjunction of schemas).

Combined with the schema approach, views provide an effective means to
separate concerns, and constituted a powerful conceptual tool. They allowed us
to apply the principle of divide and conquer to design an aspect-focused struc-
turing, where each individual aspect is conceptually clear and the collection of
aspects is cohesive. This effective separation of concerns also allows a simple and
elegant solution to the frame problem in the specification of system operations.
Because of the basis in Z schemas, we can use Z promotion in the extensional
view, to relate the class intension and extension, giving an elegant compositional
approach.

The views and the schema approach also allow us to follow a modular ap-
proach towards proof. Elsewhere, we show our modular-based approach towards
formal model analysis and validation. For example, our approach to consistency-
checking [4] takes advantage of the modular structure of our specifications, and
is based on the representation of our structures (class intensions and extensions,
associations, and systems) as ADTs. To prove the consistency of our specifica-
tions, we prove initialisation theorems for the system’s components, class inten-
sions and extensions and associations (these are often trivial), and for the whole
system; in proving the consistency of the whole system, we use the theorems
establishing the consistency of the system’s components, reducing the proof to
show that the system’s global constraints hold in the initial state [10].

To support writing Z models in our OO style, we have devised a domain
toolkit of templates [5]. The collection of templates of the toolokit constitutes
a meta-level representation of the structuring; the Z specification is created by
instantiation of the relevant templates. For example, we can use templates to
obtain formal representations, in Z, of UML diagrams; we can provide variant
templates for different semantic interpretations of the UML notations. We use
our template approach as the mechanism to support the development of mod-
elling frameworks [5]: environments to build and analyse models of sequential
software systems based on the combined use of UML and Z. In addition to the
aspects covered in this paper, our structuring also supports the expression of
specialisation (inheritance) hierarchies [5].

An Object-Oriented Structuring for Z based on Views 15

It is, of course, possible to write a Z specification following our structuring
without instantiating our templates. However, the templates are the basis for
meta-proof [10]: a set of meta-theorems and meta-lemmas that can be used to
reduce the overhead of formal proof when consistency-checking and analysing Z
specifications. Having pre-proved key theorems at the meta- or template level,
correct instantiation of templates guarantees that the proofs will hold; further
proof effort is restricted to local constraints; conversely, if a meta-proof cannot
be discharged on an instantiated specification, then the instantiation or the
underlying OO (for example, UML) model is wrong.

5 Related Work

Our OO structuring extends that of Hall [14, 15], who introduced the dual rep-
resentation of classes, intension and extension, in the context of Z. We have
introduced views, to achieve greater separation of concerns, and to make the
structuring clearer. We have introduced the system structure, and the idea of
representing our structures (class intensions and extensions, associations and
systems) as ADTs. We have also presented an approach to compose structures:
extensions are built from intensions by using promotion, and systems are built
by composing class extensions and associations. We have eliminated the need for
axiomatic definitions in the definition of operations; extensional class operations
are defined by promoting intensional ones.

Our structuring uses the relational interpretation of associations. Alterna-
tively, a representation where associations are interpreted as properties of a
class could also be devised [6]. In this setting, a relational view would not be
required, and associations would be represented as class attributes in the inten-
sional view. We choose the relation interpretation because we consider it to be
more abstract; our aim is to represent abstract UML models.

Utting and Wang propose an OO structuring for Z [16] where state and oper-
ations are defined by axiomatic definitions. Objects are atoms, and the relation-
ship between atoms and state fields is given by axiomatically-defined functions,
with one function per state field. Operations are also defined axiomatically, as
a relation between an object and operation inputs and outputs. One problem
with axiomatic-based descriptions in Z is that it is easy to introduce acciden-
tal contradictions (especially at the level of complexity of some operations); a
contradictory description renders the whole specification unsatisfiable. We find
this approach to be cumbersome and difficult to use in practice. We argue that
the template support for specification and analysis would not be possible in this
approach. Moreover, the resulting specifications are not succinct, and lack mod-
ularity; it is not as easy to compose axiomatic definitions as it is to compose
schema-based ones.

Our model of objects can be compared to that of the formal specification
language Alloy [17], which has a similar semantic basis as Z. Alloy’s structuring
mechanism, the signature, is inspired by the Z schema. Like schemas, a signature
state definition includes the definition of state components (fields). The funda-

16 Nuno Amálio, Fiona Polack, and Susan Stepney

mental difference, however, is that a signature denotes a set of atoms, its fields
are also atoms, and signature atoms and field atoms are linked through relations.
Unlike Z schemas, this effectively gives identity to signature instances; instances
of a Z schema with the same value for its fields denote the same schema object.
To overcome this in Z we represent an object atom separately from the object
state (a schema), and use a function to map object atoms to their state. In the
end, our Z object-model and the Alloy one are not so different. Alloy has one
relation between the object atom and each state field; our Z model has a function
that relates the object atoms to the entire state schema.

6 Conclusions

We present an OO structuring for Z based on views that relies entirely on the
schema calculus to describe both state and operations. The specifications result-
ing from our structuring are modular, abstract, and comprehensible, following a
style that is familiar to and adopted by most Z users.

The OO structuring facilitates traceability (between diagrammatic models
and Z models, for example), and supports template-based development and anal-
ysis. The approach is the basis for a practical framework for formal development,
facilitating verification and validation checks of both formal and informal OO
models. The approach is also flexible, as variant OO semantics can be represented
simply by selecting the appropriate templates.

Future extensions based on the OO structuring include full support for key
UML models (eg. class, state, and interaction diagrams); mutual model refine-
ment, eventually via templates; and tool support for the templates themselves.

Acknowledgements. This research was supported for Amálio by the Por-
tuguese Foundation for Science and Technology under grant 6904/2001.

References

1. Stepney, S., Barden, R., Cooper, D., eds. Object orientation in Z. Workshops in
Computing. Springer (1992)

2. Smith, G. P. The Object-Z Specification Language. Kluwer Academic Publishers
(2000)

3. Amálio, N., Stepney, S., Polack, F. Modular UML semantics: Interpretations in Z
based on templates and generics. In Van, H. D., Liu, Z., eds., FACS’03, 284, pp.
81–100. UNU/IIST Technical Report (2003)

4. Amálio, N., Stepney, S., Polack, F. Formal proof from UML models. In et al, J. D.,
ed., ICFEM 2004, volume 3308 of LNCS, pp. 418–433. Springer (2004)

5. Amálio, N., Polack, F., Stepney, S. A modelling and analysis framework for sequen-
tial systems I: Modelling. Technical Report YCS-2005, Department of Computer
Science, University of York (2005)

6. Amálio, N., Polack, F. Comparison of formalisation approaches of UML class
constructs in Z and Object-Z. In Bert et al. [18], pp. 339–358

An Object-Oriented Structuring for Z based on Views 17

7. Jackson, D. Structuring Z specifications with views. ACM Transactions on Soft-
ware Engineering and Methodology, 4(4):365–389 (1995)

8. Woodcock, J., Davies, J. Using Z: Specification, Refinement, and Proof. Prentice-
Hall (1996)

9. Stepney, S., Polack, F., Toyn, I. Patterns to guide practical refactoring: examples
targetting promotion in Z. In Bert et al. [18], pp. 20–39

10. Amálio, N., Stepney, S., Polack, F. Modular meta-proof for structured specifica-
tions (2004). Available at http://www.cs.york.ac.uk/˜namalio/publications.html

11. Stepney, S., Polack, F., Toyn, I. A Z patterns catalogue I, specification and refactor-
ing. Technical Report YCS-2003-349, Department of Computer Science, University
of York (2003)

12. Barden, R., Stepney, S., Cooper, D. Z In Practice. Practitioner Series. Prentice–
Hall (1994)

13. Borgida, A., Mylopoulos, J., Reiter, R. On the frame problem in procedure speci-
fications. IEEE Transactions on Software Engineering, 21(10):785–798 (1995)

14. Hall, A. Using Z as a specification calculus for object-oriented systems. In Hoare,
C. A. R., Bjørner, D., Langmaack, H., eds., VDM ’90, volume 428 of LNCS, pp.
290–318. Springer (1990)

15. Hall, A. Specifying and interpreting class hierarchies in Z. In Bowen, J., Hall,
A., eds., Z User Workshop, Cambridge, Workshops in Computing, pp. 120–138.
Springer (1994)

16. Utting, M., Wang, S. Object orientation without extending Z. In Bert et al. [18],
pp. 319–338

17. Jackson, D., Shlyakhter, I., Sridharan, M. A micromodularity mechanism. In ACM
SIGSOFT Foundation of Software Engineering/ Europoean Software Engineering
Conference (2001)

18. Bert, D., et al., eds. ZB 2003, Turku, Finland, volume 2651 of LNCS. Springer
(2003)

A OO Template Toolkit (excerpt)

Selected Association Multiplicity Generics

Rel∗,1[X ,Y] == X → Y
Rel1,∗[X ,Y] == { r : X ↔ Y | r∼ ∈ Rel∗,1[Y ,X] }

Sum over a finite labelled set

[L]
Σ : (L 7 7→ Z) → Z

Σ ∅ = 0
∀ l : L; n : Z; f : L 7 7→ Z | l 6∈ dom f • Σ({l 7→ n} ∪ f) = n + Σ f

