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Preface

The various volumes in the “Z Patterns Catalogue” series of reports, outlined
below, are evolving documents – as we discover and are informed of more patterns,
we will add them to new versions of the reports.

The three reports, history and plans for the future

• I : specification and refactoring (Stepney, Polack, Toyn)
– v0.1 – Jan 2003 – The initial structure, with a focus on promotion as a

generative pattern, and refactoring, with many skeleton patterns (partic-
ulalry in the developmental section)

– v0.2 – fleshed out skeletons, more patterns, and material from Z in Prac-
tice

• II : definition and laws (Valentine, Stepney, Toyn)
– v0.1 – mid 2003 – The initial structure, of a rich mathematical toolkit

– v0.2 – More generic patterns, including a type-constrained generic schema
toolkit, and patterns for generating toolkits by abstraction

• III : proof and refinement (Cooper, Stepney, Woodcock)
– v0.1 – end 2003 – The initial structure, with proofs of intereseting prop-

erties, and refinement as a generative proof pattern

– v0.2 – Refactoring proofs, retrenchment as “approximate proof refactor-
ing”

vii
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Chapter 1

Introduction

1.1 Background

Formal methods have been used in computer systems development for decades.
The binary logic of hardware circuits can be designed and analysed using well-
understood mathematical approaches. Software can be characterised in various
ways that are amenable to formalisation. For example

• mappings between states can be represented as mathematical relations

• sets of data, to be selected from, merged, updated and compared, can be
represented in set theory

Some formalisms, particularly the most mature forms used for hardware design,
are compact, well-defined, and well integrated in the development process: they are
specialised methods (or tools) for specialist developers. However, most software-
oriented formalisms are under-exploited in commercial-scale development, because
they are

• not properly integrated in existing development processes

• poorly supported by development tools

Whereas in mature development approaches, the stages and steps of development
conform to clear and generally-accepted patterns, in these immature areas, there
is more art than science; development success depends more on the character and
skills of personnel than on the power of the methods. Notations, methods and tools
for formal software specification and development require specialist knowledge, in
an area that is not generally recognised as meriting any development specialism.

1



2 Chapter 1. Introduction

This report represents a contribution to the commercial acceptance of formality,
specifically of the Z notation. Z1 is a mathematical notation for typed set theory,
with some syntactic sugar and built-in operator support for a certain kind of tuple
constructor, the schema. It is a powerful notation, with few inbuilt assumptions
about any design philosophy or development method of its own. This power and
freedom can make it hard for the newcomer to decide how to structure and develop
a Z specification, and hard for a reviewer or implementor to comprehend a specifi-
cation written in an unfamiliar style. Our motivation is to make Z more usable by
commercial non-specialist developers. No new Z is presented (either Z theory or
usage, or indeed Z illustrations). However, the concepts of pattern and refactoring
are applied to enhance the “semantic structure” of Z, thereby helping the writing,
reading and presentation of Z.

This report assumes at least a familiarity with set and predicate notations, and of
the specialised symbols used in Z. However, deep knowledge or expertise in writing
or reading Z is not required.

The central premise of the work is that formalisms such as Z have a role to play
in general software development. The patterns and refactorings should enable

• writing of formal texts by generalists, because the patterns present formal
solutions to common problems

• development of tools to support the use of formal methods by generalists,
by recognising and assisting in the application of patterns, and by breaking
down the formal concepts into mechanisable or tool-supportable components

1.2 Motivation

Our motivation for investigating patterns and refactoring in the context of the Z
formal notation comes from experience in the industrial use of Z, and a desire to
make Z more usable by commercial non-specialist developers. One of the authors
(SS) was a member of Logica UK’s Formal Methods Team (LFM), where she
worked extensively on large-scale commercial specification and proof, including a
compiler [Stepney & Nabney 2003]; an electronic Purse [Stepney et al. 2000]; and
a Smart Card Operating System [Stepney & Cooper 2003]. [Stepney 1998] reports

1 We refer to the two main variants of Z thus: as ZRM, for that given in [Spivey 1992b]; as
ISO-Z, for that given in [ISO-Z 2002]. By ‘Mathematical Toolkit’, we mean those well-known Z
definitions given in [Spivey 1992b, chapter 4] and [ISO-Z 2002, annex B].
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on issues to do with performing proofs on these industrial-scale Z specifications,
and sketches requirements for proof tool support to help in this task.

Even when starting a specification and proof task from scratch, a commercial
development rarely starts from a clean sheet of paper. Implementation details often
constrain what can be done, and how the specification can be structured. When
enhancing an existing specification, these constraints are even more important.

1.2.1 Impact analysis

Often a customer decides on an upgrade and requires this to be added to the
specification. In simple cases this merely requires adding an operation (assuming
a state and operations style specification) to capture the new functionality. In
more complex cases it may also require the adding of state. More complex cases
may require radical alterations to the specification, because the change subverts a
modelling assumption of the original.

Part of the maintenance process is impact analysis: determining the cost and
consequences of a proposed change before making that change. The effect on the
formal specification and proof should be included in this impact analysis, so that
the customer can realise the actual effect of what looks to them to be a simple
implementation change.

For example, in one of LFM’s projects, a customer added an operation with a dif-
ferent execution style. This new operation used a push model (the system waiting
for a command, then responding to whatever command arrived), whilst all the
other operations used a pull model (the system actively looping until it finished
processing a sequence of commands). The change of model had little impact on
the implementation, requiring only a simple flag local to the new operation. The
impact on the specification was somewhat larger. The specification had to be
revised to include a flag as a global state component. Every existing operation
specification had to be changed, so that the flag was explicitly switched off. We
also had to provide some subtle argumentation as to how this global specification
variable corresponded to the implementation’s local variable.

The impact of this change was significant in a hand-crafted specification; in many
developments, this sort of problem is a deterrent to the use of formal methods.
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1.2.2 Maintaining conventions

It is essential during maintenance to keep the formal and non-formal parts of the
specification up to date. Indexing, commenting, and layout conventions all need to
be maintained. This can be difficult if the conventions have not been documented
and are not tool-supported. In LFM’s projects, there was a degree of continuity of
the staff, but the conventions had to be explained to new staff. Consequently, we
started to describe some simple Patterns for these conventions, to aid the original
specification process, and to help with maintenance.

In this report, patterns are considered first (chapters 2 to 11). Then, refactoring is
explored (chapters 13 to 17). The report concludes with some discussion of ways
forward and possible tool support (chapter 18 onwards).
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Patterns





Chapter 2

Patterns

2.1 Background

Patterns [Alexander et al. 1977] capture the knowledge about the use of a language,
acquired by experts or experienced users of the language, and express it in ways
that (should) assist less experienced users to construct complex expressions in the
language.

Patterns have been introduced into software engineering, to document and pro-
mote best practice, and to share expertise. A pattern provides a solution to a
problem in a context. Existing patterns cover a wide range of issues, from coding
standards [Beck 1997], through program design [Gamma et al. 1995], to domain
analysis [Fowler 1997], and meta-concerns such as team structures and project
management [Coplien 1995]. The pattern concept has been extended with antipat-
terns, illustrating developmental pitfalls and their avoidance or recovery [Brown et
al. 1998].

Patterns do not stand in isolation. As Alexander, the inventor of the concept,
explains [Alexander et al. 1977], a Pattern Language is a collection of patterns,
expressed at different levels, that can be used together to give a structure at all
levels to the system under development. The names of the patterns provide a
vocabulary for describing problems and design solutions. (In this sense, a pattern
language is simply a re-expression of an introductory text on a language.)

Typically, a pattern comprises a template or algorithm and a statement of its range
of applicability. A catalogue records pattern descriptions, organised to facilitate
pattern selection. For example, [Gamma et al. 1995] catalogue creational patterns,
those providing architectural guidance; structural patterns, those guiding compo-
nent construction; and behavioural patterns, which relate to the interaction of
components. In providing for the selection of appropriate patterns, the description
of the intent of the pattern is crucial. This describes the situation for which the

7



8 Chapter 2. Patterns

pattern is appropriate.

The pattern catalogue uses meaningful pattern names to guide users to appro-
priate patterns. It is also common to use a visual representation. For instance,
[Gamma et al. 1995] and [Larman 2001] use UML diagrams to visualise object-
oriented program and design patterns. [Gamma et al. 1995] assist the developer by
providing connectivity diagrams to show how, for example, use of particular cre-
ational patterns suggests particular structural and behavioural patterns. A good
pattern catalogue can be applied to assist all elements of construction of a descrip-
tion (program, design etc) in its language – it is possible to construct a Smalltalk
program using [Gamma et al. 1995]’s patterns.

Patterns are usually specific to the language for which they are written: [Gamma et
al. 1995] note that some patterns provided for Smalltalk programming are built-in
features of other object oriented programming languages. In the formal language
context, some Z patterns for identifying proof obligations would be irrelevant in
the tool-supported B Method, in which the corresponding proof obligations are
automatically generated. Equally, if a Z practitioner has already decided to use
the Delta/Xi style, then the Delta/Xi pattern is superfluous. Furthermore, if a
different Z style is used, most of the patterns written for use with the Delta/Xi
pattern (promotion, change part of the state etc) are irrelevant. However, other pat-
terns generalise, or occur in similar forms across many media (eg across languages,
development phases, contexts):

• all notations require commentary which is clear, consistent, and adds meaning
to the text;

• all notations have common usage conventions that can be expressed as pat-
terns.

2.2 Antipatterns

The concept of patterns in software engineering has been extended to antipatterns
[Brown et al. 1998]. An antipattern presents an example of poor practice, a pit into
which developers (etc) often fall, and a way of avoiding or mitigating the resultant
effects.

In [Brown et al. 1998], most of the antipatterns, which relate to software configura-
tion management, describe universally poor practice. However, in other contexts,
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and particular in notations such as Z, one developer’s antipattern is another’s pat-
tern. This is because a formal text can have many purposes: a pattern that is
used to simplify the proof of formal conjectures may reduce the readability of the
Z text.

In writing antipatterns (and indeed patterns), and in selecting patterns for appli-
cation, it is therefore important to consider the purpose of the description. The
patterns presented here are most appropriate when the primary purpose of the
Z specification is for communication; we are also working on patterns for other
purposes including refinement, implementation and proof.

2.3 Generative patterns

In object-oriented programming, generative patterns are an element of adaptive
programming. Patterns written in a meta-language are used to automatically
derive programs in the object-oriented language. This is analogous to conventional
compilation of a high-level program into a lower-level program [Lopes & Lieberherr
1994].

A looser meaning of generative pattern in object-oriented patterns work is the
application of a series of patterns to create a program. Note that this is quite
different from the creational patterns of [Gamma et al. 1995]: the latter are patterns
that can be used to create or refactor specific elements of a program (classes,
structures, generic operations etc).

It is impossible to automatically generate a specification from a meta-language
template. The process of (commercial) specification establishes the requirements
and progressively assembles an abstract description of a suitable system to meet the
requirements. There can be no safe meta-level for a description that is continually
and actively evolving. However, the looser definition of generative patterns is
clearly applicable.



Chapter 3

Patterns in Z

3.1 Motivation

Z textbooks introduce the mathematical basis of Z, the notation, and essential
elements of the use of Z. However, few books provide advice on how to “do” Z
in practice. Illustrations clearly show how a feature was used by the author, but
context and intent are implicit, and there is rarely any advice on how to reuse or
adapt the Z text.

The pattern language represents the experience we and others have accumulated
in writing and maintaining specifications. For experienced formalists, it offers a
language for describing or summarising the approaches used in a particular spec-
ification. For the less experienced developer, the patterns give guidance on ways
of using Z to solve certain problems, all the way from small scale syntactic issues,
right up to using Z as a valuable part of the entire development process.

There are currently only a small number of well-known conventions for using Z,
and many users are unaware that other approaches are possible. For example, the
Delta/Xi style (“state and operations”) is often taken to be a characteristic of Z
itself, ignoring alternatives such as functional and algebraic styles. Z (ZRM or ISO-
Z) provides a core language. Additionally, it is usual to use the Z Mathematical
Toolkit, which adds many practical constructs to the core notation. This toolkit
is generally assumed to be part of the core, and its scope mistakenly considered
to impose fundamental restrictions (such as its definition of only finite sequences).
It is common for Z specifications to be coerced into these conventions, no matter
how inappropriate. By separating out and naming the Delta/Xi pattern and its
associated subpatterns, and describing toolkit patterns, we hope to make it clear
that these are just one choice of many.

A secondary motivation of our patterns work is to make more of the styles and
levels accessible to developers so that appropriate choices can be made for each

10



3.2 Structure of our Z pattern descriptions 11

application. For example, we have identified other architecture patterns that may
be used instead of Delta/Xi.

To reiterate, the primary purpose of our patterns is to assist in the purpose of
communication. Later, we consider conversion of a Z description to match a pat-
tern, and conversion between patterns with different aims. This would allow, for
example, the recasting of a specification written in a style that enhances proof,
into a style that is suitable for presentation to clients or software designers, or vice
versa.

In common with other languages that are the subject of software engineering pat-
terns, Z is an expressive notation that can be made accessible (for writing and
reading) to novices, but is generally the province of experts. We too provide a
catalogue and a standard pattern format incorporating a name and an intention.

We are only beginning to understand the power of patterns in Z; our catalogue
headings and pattern formats are still developing.

3.2 Structure of our Z pattern descriptions

Each reference work has its own structure for describing patterns. We use the
following structure.

• Name : Conveys the essence, and expands the community “vocabulary”

• Intent : A summary of what the pattern provides

• Problem : A detailed description of the problem in context

• Example : A specific instance of the problem

• Solution : A description of the structure that can solve the problem

• Illustration : An illustration of the effect of applying the solution

• Constraint : Something that affects the use of the pattern

• Variants : Modifications of the pattern for certain circumstances, particu-
larly where ZRM and ISO-Z solutions differ

• Related patterns : Other patterns to be used with, or in place of, this one

• Specimens : References to the literature where the pattern is used (often
only implicitly)

• � : Indicates the end of the pattern description
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Because of Z’s generality and power, there are often several ways to solve a problem,
with some solutions being better in some contexts. We include choice patterns,
describing these various solutions and when they are most appropriate.

Some patterns can be elaborated in more significant ways than are covered by
the Variants heading, the elaborations being almost further patterns in their own
right. We describe such elaborations in abbreviated pattern form after the main
pattern.

3.3 Pattern naming conventions

Patterns are usually named using verb phrases. This supports the descriptive
purpose of enriching one’s design vocabulary with pattern names.

• what do I want to do? – “I want to comment the intent”

• what did I do? – “I diagrammed the structure”

• what should I do now? – “I should apply syntax and type checks”

Certain architectural patterns are well-known Z concepts that would be made more
obscure by changing their names, for example, promotion, Delta/Xi. Also, domain
patterns typically already have a well-known name in the form of a noun phrase.

Antipatterns are named with noun phrases (for example, overlong name) that ex-
press the pitfall.

Choice patterns are named with present participles, for example, modelling product
types, to stress the active choice to be made when applying the pattern. The name
of a choice pattern is followed by (choice).

The names of pattern elaborations, and many components of generative patterns,
are noun phrases.

3.4 Visualisation patterns

There are many diagramming styles appropriate for summarising the structure
of Z components in different styles. For example, Venn diagrams can be used
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to represent almost any set-theoretic statement; state machines summarise event-
based structures, data-flow diagrams can represent functional styles etc.

Visualisation languages are easier to define in the context of patterns, as the full
generality of the specification language is restricted to certain usage styles. The
specific diagrammatic notation can itself be thought of as a sub-pattern, supporting
a particular architecture pattern. We have devised diagrammatic sub-patterns
for the Delta/Xi and morph architecture patterns. The diagrammatic morph sub-
pattern is described along with the main morph pattern, later. The diagrammatic
Delta/Xi sub-pattern is described here, because we use it in the following chapter
describing promotion. It is adapted from a notation proposed by [d’Inverno & Luck
2001].

Delta/Xi : diagram the structure

Intent: Summarise the structure of a Delta/Xi specification using a diagram.

Problem: Since a Z specification is presented ‘bottom-up’ (declaration before use)
and can be factored into many pieces, it may become difficult to ‘see the wood for
the trees’.

Solution: Construct a diagram to record the structure of the state and operation
schemas, highlighting any Delta/Xi-related patterns used.

Do not worry over-much about being consistent and complete, and about distin-
guishing every small difference: the purpose of the diagram is to give a graphical
overview of structure, not to be an alternative formal notation.

The following components are recommended.

• distinguish schemas by purpose
– draw state schemas as named rectangles

– draw operation schemas as named hexagons

– draw other data types as named parallelograms

– schemas not defined in the specification may be used in the diagram, for
clarity. Indicate these by a dashed box. (Use of the Delta/Xi : strict
convention sub-pattern means that ∆S and ΞS boxes are always dashed.
The occurrence of other dashed boxes might indicate a refactoring op-
portunity.)

• for schema inclusion, use solid arrows pointing from the including schema to
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Figure 3.1 (a) schema T includes schema S . (b) schema T references schema S .

the included schema
– for state inclusion, use a single line

– for an operation including a state schema, S , via ∆S (and thus intro-
ducing a before- and an after-state), use a double line and a triangular
‘Delta’ arrowhead, pointing to the rectangle, S .

– for an (initialisation) operation that includes only an after-state (S ′),
use a single line and an after-state ′ by the arrowhead

– an arrow directly to a box may be elided if there is an alternative path
to that box

• indicate other uses of schemas by dashed lines from the referring data type
to the referenced schema

• use highlighting (line thickness, box shading) to distinguish important parts
of the diagram
– if a description uses a pattern described with a diagrammatic form, the

diagram of the description can be constructed by instantiating the struc-
ture of the pattern. Use highlighting to distinguish the pattern from other
structural elements

– highlight the full operations, as contrasted to intermediate definitions

As much as possible, without distorting the diagram, inclusion arrows are drawn
upwards, so that the simplest schemas are at the top of the diagram, and constructs
that are more complex are further down the page.

• If schema T includes schema S , either as declaration as T == [ S ; . . . | . . . ],
or as a predicate as T == [ . . . | S ∧ . . . ], it can be drawn as figure 3.1a.

• If schema T refers to schema S other than by inclusion, for example as
T == [ f : x 7→ S . . . | . . . ], it can be drawn as figure 3.1b.



3.4 Visualisation patterns 15

Figure 3.2 (a) operation Op includes ∆S . (b) several operations Opi include ∆S . (c)
initialisation operation Init includes S ′.

• If operation schema Op includes schema S as Op == [ ∆S . . . | . . . ], it can
be drawn as figure 3.2a

• If multiple schemas Si have precisely the same relationships with other schemas,
their names can be listed in the same box, thereby drawing attention to their
similar structures, as in figure 3.2b

• If initialisation schema Init includes schema S as Init == [ S ′ . . . | . . . ], it
can be drawn as figure 3.2c

Illustration: Figures 4.1, 4.2 show the diagrams used to explain the promotion
pattern, and figure 4.3 shows one of its variants; figures 15.1, 15.2, 15.3 show it
applied to the refactored promotion example. Figures 11.1, 11.2 show the diagrams
used to explain the refinement pattern. Appendix A.1 shows the diagrams of a large
specification: the Purse specification structure.

Variants:

• The notation can be extended to show conjectures (as in the refinement pat-
tern).
– conjectures are drawn in an oval, labelled with a suitable name, pointing

to any referenced schemas (see the example in Appendix A.1).

• For large specifications, a diagram may be split into sub-diagrams for clarity.
It may be appropriate to draw a separate diagram for each operation, or
family of operations, reproducing (relevant parts of) the diagram.
– schemas or other data type boxes occurring in more than one sub-diagram

are represented as rounded boxes except on the first occurrence (see the
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example in Appendix A.1).

• If your application uses schemas in some particular way, extend the notation
to capture your structure.

�

3.5 Catalogue of Z patterns

In using Z patterns, we have found many variations that were not immediately
obvious. This could give rise to a very complex catalogue, and further work is
needed on the existing categories. In writing about patterns, we use the following
categories:

• Presentation patterns : ways of presenting, formatting and laying out Z spec-
ifications and documents

• Idiom patterns : styles of writing individual Z phrases

• Structure patterns : ways of structuring small pieces of Z specifications

• Architecture patterns : ways of structuring an entire specification

• Domain patterns : support for specific application domains

• Development patterns : assistance in parts of an engineering process, ranging
from assistance in selecting appropriate formal methods and for applying
formality at appropriate levels of rigour, to notation-specific development
patterns for a particular system.

Under each category we also list certain antipatterns, which illustrate commonly
occurring counter-examples to good style and best practice.

Themes re-occur in the different categories, and to some extent the divisions among
categories are arbitrary. For example, patterns relating to naming and formatting
exist at most levels. Patterns are context-dependent. So, for example, the particu-
lar details of a presentation pattern may be affected by the architecture, style and
purpose of the Z description, and by the application domain.
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SUB-CATEGORY
CATEGORY Documentation Style Usage
Presentation Comment the intention Format to expose structure

Provide navigation
Name consistently
Overlong name
Overmeaningful name

Idiom Assemble from chunks
Representing 1:many mappings
Use free types for unions
Making a schema binding
Making a local declaration
Belated constraint
Abused mu
Bemused lambda
Overloaded numbers

Structure Name meaningful chunks Use generics to control detail Modelling optional elements
Name predicates Fortran Modelling product types

Sørensen shorty Modelling membership or flags
Boolean flag
Partial precondition

Architecture Morph Promotion

Event traces Delta/Xi

Object Orientation
Algebraic style
Goldilocks chunks
Unsuitable Delta/Xi pattern

Domain Application oriented theory Domain specific toolkits
Schema operator toolkit

Development Focus the formality Do a refinement

Use integrated methods Animate
Do sanity checks
Express implicit properties
Apply syntax and type checking
Prove rigorously
Prove formally

Table 3.1 Z Pattern Catalogue. In this table we use particular fonts to indicate the
patterns, the antipatterns, and those with associated generative patterns and elabora-
tions.

Table 3.1 summarises the categorisation of patterns that we have identified so far.

The next chapter discusses the promotion pattern in detail. Later chapters sum-
marise (in considerably less and variable detail) other patterns in the patterns
catalogue. As this document develops over time, these patterns will be fleshed out
in more detail, and new patterns added as they are uncovered.
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3.6 Patterns for changing the purpose of a Z specification

Several patterns do not neatly fit into table 3.1. These are patterns that allow
the purpose of a specification to be changed. We focus on patterns that make Z
readable. However, readable Z may hamper proof, and is certainly not optimal for
implementation. In general, readability requires redundancy. High-level conversion
patterns are needed.

Convert to more provable Z

Intent: Make it easier to perform required proofs on a readable Z schema contain-
ing redundancy.

Problem: Readability patterns collect all the details of a concept in one place,
but putting all the predicates relevant to a particular specification concept inside
a state schema complicates proof by adding subgoals to every proof on that state.
Some of the predicates are there only to improve readability.

Solution: Move redundant predicates into conjectures that need only be proved
once.

Related patterns: A suitably well-developed application-oriented theory can also
ease the proof task.

�

Convert to implementable Z

Intent: Make it easier to implement a system that meets the proof-friendly or
readable Z pattern.

Problem: Readability requires redundancy; provability moves redundant predi-
cates to conjectures; redundant components should not be implemented, and con-
jectures cannot be directly implemented.

Solution: Remove redundant predicates and conjectures

�

These patterns (and their inverses) are the bases for generative sets of patterns for
refactoring specifications. The refactoring must give an equivalent specification.
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For example, a schema that is readable and is refactored to aid proof must be
semantically identical; only refactorings based on choice patterns are permitted.
However, these strict refactorings could take place in a wider context of refactoring.
For example, the removal of redundant predicates/conjectures could occur before
or after refinement or refactoring to generic schemas. (Meaning preservation is
considered further below.)



Chapter 4

The Promotion Pattern, and its
sub-patterns

4.1 Introduction

Before launching into the full Z Pattern Catalogue, in this chapter we describe
one particular pattern, promotion, in detail, showing the pattern, its generative
subpatterns, and some of its variations. In the following chapter, we show how
to use the generative subpatterns to generate a specification that exhibits the
promotion pattern.

Promotion is an elaboration of the architectural Delta/Xi pattern. Given it is so
common, we choose to class it as a pattern in its own right, too.

4.2 The Promotion pattern

Promotion

Intent: Specify a global system in terms of multiple instances of a local state, and
of operations that manipulate a local state.

Problem: A system that is essentially a hierarchy of components has operations
and state at different levels in the hierarchy. This is difficult to specify directly,
requiring Z structures such as µ and θ schema bindings.

Example: Some of the examples are presented below, including a banking system
comprising a collection of accounts; a system for managing a collection of electronic
(smart card) purses; an operating system for managing processes on a smart card.

20
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Solution: Build a specification for local state and operations and the global state
as a composite of local states. Use framing schemas to promote the local operations,
and use schema calculus to construct appropriate global operations.

Specimens: Unix File System [Morgan & Suffrin 1992] (first published example);
[Woodcock & Davies 1996] (useful refinement laws).

�

Illustrating the promotion pattern reveals the four sub-patterns that form promo-
tion’s set of generative patterns. These are summarised using the intent and the
solution only.

The illustration is documented according to the presentation pattern, comment the
intent, and illustrated by diagramming the structure.

Promotion : local state and operations

Intent: Describe the state and operations for one instance of a multi-instance
system.

Solution:

Local == [ state components | constraints ]

LocalOp == [ ∆Local ; inputs and outputs | constraints ]

�

Promotion : global state

Intent: Describe the global context of a multi-instance system.

Solution:

• the global state requires a set, ID of identities.

[ID ]

• gbl maps identities to instances of the local state.

Global == [ gbl : ID 7→ Local ]
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�

Promotion : framing schemas

Intent: Provide a context that describes how the global state is updated by the
results of local operations.

Solution: The context, or “frame” is written as a “framing schema”. This es-
tablishes the relationship of the state of a local instance to the global state, then
shows how the after-state of an operation on that local instance is used to update
the global state (the after-state of any suitable global operation) – no details of the
global operation or the local operation are required; the frame merely deals with
states established by operations defined elsewhere.

The following frame is for any operation that updates the state(s).

• ∆Global and ∆Local introduce the local and global states, pre- and post-
operation.

• x? is the global identity of an (existing) local instance.

ΦUpdate
∆Global
∆Local
x? : ID

x? ∈ dom gbl

θLocal = gbl x?

gbl ′ = gbl ⊕ {x? 7→ θLocal ′}

• x? is ascertained to be in the global set of local instances.

• The before-state of Local is the current local state associated with the identity,
x?.

• The global state is updated by overriding the gbl function with the maplet
from x? to the after-state of Local .

The frame for introducing a new local instance to the global state is similar to an
initialisation.

• Declarations are as before, except that there is only an after-state for Local .
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ΦNew
∆Global
Local ′

x? : ID

x? 6∈ dom gbl

gbl ′ = gbl ∪ {x? 7→ θLocal ′}

• x? does not have a mapping in the global state (it is an unused identity).

• The gbl function is updated by set union, adding the mapping from x? to the
after-state of Local .

The frame for an operation to remove a local instance from the global state is
similar, but removes the local instance from the global mapping. The frame is only
needed where the removal of a local instance must be verified using operations at
the local level (see [Barden et al. 1994, chapter 19] for details).

�

Promotion : global operations

Intent: Write a global operation in terms of the defined local operations.

Solution: Use schema calculus to extract the relevant local operation (or after-
state of a local operation) and conjoin the appropriate framing schema.

GlobalOp == ∃∆Local • ΦUpdate ∧ LocalOp

GlobalNew == ∃Local ′ • ΦNew ∧ InitLocal

Again, deletion is composed in a similar way.

�

Promotion : diagram the structure

Intent: Summarise the structure of the promotion pattern using a diagram.

Solution: The diagram of the structure of promotion is shown in figures 4.1 and
4.2. Figure 4.1 shows the structure for the update operations; figure 4.2 shows the
special form for the initialisation (creation of new local instances).
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Figure 4.1 Structure of the promotion pattern.

Figure 4.2 Structure of the promotion pattern, for the initialisation operation.

�

4.3 Elaboration Patterns for Promotion

The promotion pattern has several well-known elaborations, for coping with cases
that do not fit the plain pattern.

Promotion (elaboration): global constraints
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Intent: Add global state components to the collection of local instances

Solution:

GlobalwithState
Global
purely global state components

constraints on global state
constraints relating local states

The addition of global state components may require addition of constraints (a)
on the global state, and (b) relating the local instance states; the promoted local
operations may affect the global state through such constraints. There may also
be operations that act on the global state components alone.

Example: [Stepney et al. 2000] defines a collection of concrete (ie refined from the
abstract) electronic purses. The global state has additional mechanisms to control
interoperability of the purses. The extended global state is:

• conPurse is the global state for the local purses, ConPurse, using identities
from the set, NAME .

• ether and archive are global-only state elements.

ConWorld
conPurse : NAME 7 7→ ConPurse
ether : PMessage
archive : NAME ↔ Message

. . .
dom archive ⊆ dom conPurse

• the global state element, archive, is constrained to only known local purses.

All the single purse operations are promoted to the global world level. However,
the inputs and outputs from the local operation are not simply mapped into global
inputs and outputs; they are also linked to the ether (the message transport mech-
anism) by the framing schema, which extends the framing schemas pattern:
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ΦUpdateCon
∆ConWorld
∆ConPurse
m?,m! : MESSAGE
name? : NAME

name? ∈ dom conPurse
m? ∈ ether

θConPurse = conPurse name?
conPurse ′ = conPurse ⊕ {name? 7→ θConPurse ′}
ether ′ = ether ∪ {m!}
archive ′ = archive

In addition to the promoted operations, there are some global-only operations, for
example to add messages in the ether to the archive.

�

Promotion (elaboration): internal identifiers

Intent: Use a native element of the local state as the identifier.

The global identifiers used in promotion are arbitrary. Where the local state has
its own identity, this may be a suitable global identifier.

Solutions: There are two solutions, depending on whether the promotion uses
only internal identity, or uses both internal and global identity redundantly.

Solution 1: Internal identity only

Use Promotion : local state and operations thus:

• identity is included as a native attribute of the local state.

Local == [ self : ID ; . . . ]

• local operations must include a constraint that the identity is not changed
by the operation.

LocalOp == [ ∆Local ; . . . | self ′ = self ∧ . . . ]



4.3 Elaboration Patterns for Promotion 27

Use Promotion : global state thus:

• there is no global identifier; the global state is the set of local instances.

Global
gbl : PLocal

∀ x , y : glb | x 6= y • x .self 6= y .self

• different local states have different identities

Global operations must include constraints to check the identity of local instances.
For instance, the frame for the update operations modifies the predicates of the
framing schemas pattern as follows.

ΦUpdate
∆Global
∆Local
x? : ID

∃ x : gbl • x .self = x?

θLocal = ( µLocal | θLocal ∈ gbl ∧ self = x? )

gbl ′ = (gbl \ θLocal) ∪ θLocal ′

The frame for the operation to add a new piece of local state is as follows.

• the existence of the instance has to be checked by seeking an element of gbl
that has the given identifier, x?

• the local instance uses µ to bind to the relevant element of gbl

• the update replaces the local instance in the global set of instances with the
result of the local operation

ΦNew
∆Global
Local ′

x? : ID

∀ x : gbl • x .self 6= x?
self ′ = x?

gbl ′ = gbl ∪ {θLocal ′}
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• no pre-existing local state has the given identifier, x?

• the new local state has identifier x?

• the update adds the new local state to the global set

Solution 2: External and internal identities

The local definitions are the same as for the internal-only identifiers.

Use Promotion : global state thus:

• the global function is an injection, because there is a one-to-one
correspondence between ‘external’ and ‘internal’ names

Global
gbl : ID 7� Local

∀ x : dom gbl • (gbl x ).self = x

• for any instance, external and internal identities are the same.

Illustration: In the concrete specification of the electronic purse, the purse has a
name; this is the name that the purse is known by at the external level. The local
state is ConPurse:

ConPurse == [ name : NAME ; . . . | . . . ]

Use Promotion : global state thus:

• ConWorld , uses the same type as the local identifier for the domain of the
global conPurse.

ConWorld
conPurse : NAME 7 7→ ConPurse
. . .

∀ n : dom conPurse • (conPurse n).name = n
. . .

• every purse’s internal name must be the same as the name by which it is
known in the global system.
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The framing schemas pattern is applicable, as the additional constraint is carried
forward in the ∆ConWorld inclusion.

Specimen : Hall’s style [Stepney et al. 1992, chapter 3] combines both these
variants. It has a set of local states, and it has a derived mapping from (external)
identities to local states:

HallStyle
gbl : FLocal
idGbl : ID 7→ Local

idGbl = { l : gbl • l .self 7→ l }

�

Promotion (elaboration): combine promotions

Intent: Specify a system that conforms to the local-global format for the promotion
pattern, but has different sorts of local instance.

Solution:

• Each sort of local instance is associated with a separate component of the
global state.

Global
gbl1 : ID1 7→ Local1
. . .
gbln : IDN 7→ LocalN

• Constraints could be added as appropriate.

Illustration:

The specification of a Smart Card Operating System [Stepney & Cooper 2000]
specifies three types of application instances that the operating system has to con-
trol: fixed ISO applications, user programmable applications, and (for modelling
reasons) ‘absent’ applications. For technical reasons to do with a particular proof,
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in the specification these three types were combined using a free type, then pro-
moted in the simple manner. However, it would be possible to promote the three
types of local instances individually:

• fixed and user follow the global state pattern.

• absent has no local state other than an identifier, so the internal identifier
pattern of promotion is applied.

CardGlobal
fixed : ID 7→ Fixed
user : ID 7→ Appl
absent : P ID

disjoint〈dom fixed , dom user , absent〉

• The global identifiers for each promotion are drawn from the same set, ID ,
so are constrained to be disjoint.

�

Promotion (elaboration): multi-promotion

Intent: Specify a system that comprises multiple instances, but has global opera-
tions that may affect more than one local instance.

Solutions: The local state and operations and global state patterns are applied. The
framing schemas include multiple local instances. There are two possible patterns.
The first applies when the global operations affect a fixed number of local instances.
The second is more general, and applies when the number of local operations
affected by the global operation is variable or unknown.

Solution 1: A fixed number of local instances (illustrated for two instances, but
extensible to as many as are practical or desired).

Use Promotion : framing schemas thus:

• The (otherwise identical) local states are declared twice, distinguished by
decorations. (Note that in ∆Local 1, the decoration applies to the whole
∆Local phrase, and thus yields Local 1 and Local ′ 1.)
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ΦUpdate
∆Global
∆Local 1

∆Local 2

x?, y? : ID

{x?, y?} ⊆ dom gbl
x? 6= y?

θLocal 1 = gbl x?
θLocal 2 = gbl y?

gbl ′ = gbl ⊕ {x? 7→ θLocal ′1, y? 7→ θLocal ′ 2}

• the provided identifiers are different instances from the set of identifiers used
in the global system

• each local state instance is bound to one of the input identifiers

• the result of the global operation overrides the global state with the mappings
from each identifier to the after-state of the local operation on its local state

Then the global operation becomes

GlobalOp == ∃∆Local 1; ∆Local 2 •
ΦUpdate2 ∧ ALocalOp 1 ∧ AnotherLocalOp 2

Illustration 1: This pattern is illustrated in the specification of the electronic
purse transfer operations, chapter 15.

Figure 4.3 gives a diagram of the underlying structure of a multi-promotion, based
on the single promotion diagram. The relevant inclusion arrows are annotated with
the number of local states and operations.

Solution 2: An arbitrary number of local instances

If there is an arbitrary number of local states all affected by the same operation,
they can be bundled into a sequence, and the framing schema becomes
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Figure 4.3 Structure of the promotion pattern, with the multi-promotion elaboration,
fixed number of local states.

ΦUpdateAll
∆Global
ls : seq ∆Local
xs? : iseq ID

#xs? = #ls
ran xs? ⊆ dom gbl

∀ i : dom ls • ∃∆Local | θ∆Local = ls i • θLocal = gbl(xs? i)

gbl ′ = gbl ⊕ { i : dom ls ; ∆Local | θ∆Local = ls i • xs? i 7→ θLocal ′ }

The local operation is cast into a form for use with the framing schema (assuming
it has inputs and outputs declared as in? : IN , out ! : OUT ):

LocalOpS
ls : seq ∆Local
ins? : seq IN
outs ! : seq OUT

#ls = #ins? = #outs !

∀ i : dom ls •
∃∆Local ; in? : IN , out ! : OUT |

θ∆Local = ls i ∧ in? = ins? i ∧ out ! = outs ! i
• LocalOp
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Then the global operation becomes

GlobalOp == ∃ ls : seq ∆Local • ΦUpdateAll ∧ LocalOpS

Illustration 2: Consider a local state, Counter that holds an incrementable nat-
ural number. An operation on the local state resets the number to zero. Following
the local state and operations pattern, these are defined:

Counter == [ c : N ]

Reset == [ ∆Counter | c ′ = 0 ]

A global system of counters can be defined using the global state pattern:

CounterSystem == [ sys : NAME 7→ Counter ]

To simultaneously reset all the identified counters to zero (assuming a ΦUpdateAll
defined following the pattern above, but using the names of this example):

ResetS
ls : seq ∆Counter

∀ i : dom ls • ∃∆Counter | θ∆Counter = ls i • Reset

ResetAll == ∃ ls : seq ∆Counter • ΦUpdateAll ∧ ResetS

This is equivalent to

ResetAll
∆CounterSystem
xs? : iseq NAME

ran xs? ⊆ dom sys

∀ x : ran xs? •
∃∆Counter •

θCounter = sys x ∧ Reset ∧ sys ′ x = θCounter ′

�
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Generating a Promotion, by
example

5.1 Introduction

A generative pattern is one that helps us to construct a specification, rather than
simply describing a structure that a specification could have. We describe the
generative promotion pattern by the example of a bank account system.

5.2 Starting point: a local state

The starting point for applying the generative pattern is an existing specification
of the local state, here a single bank account:

• A limit is defined as an integer. It represents a global constant for the spec-
ification.

limit : Z

• A bank account has an integer balance.

Account
balance : Z
. . .

limit ≤ balance

• At any time, the account balance must be greater than the (lower) limit for
that account.

34
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Various operations are defined on this single account:

AccountOp == [ ∆Account ; . . . | . . . ]

InitAccount == [ Account ′; . . . | . . . ]

The aim is to specify the whole bank account system, comprising many such single
accounts. Clearly, this matches the intent of the architecture pattern for promotion:

“Specify a global system in terms of a collection of local states, and of
operations that manipulate the local states.”

To construct the bank specification, we therefore apply the generative patterns
for promotion. We have a local state, but it does not exactly fit the local state
and operations pattern, because it requires the global constant, limit . Refactoring
is used to preserve the meaning of the existing specification, but to make the
specification match the generative pattern.

5.3 Step 1: refactor global attributes into the local state

In the account specification, the limit is intended to be different for different ac-
counts. As part of the first refactoring step, it is moved into the local state1.

Account
balance : Z
limit : Z
. . .

limit ≤ balance

The refactoring must preserve the meaning of operations as well as of the state.
In the original specification, limit cannot be changed because it is declared ax-
iomatically. So in the refactored specification, every operation requires a predicate
stating that the limit does not change. This could use the Delta/Xi : change part

1 Note that, if the bank set one limit that was applicable to every account, this could be defined
as part of the global state.



36 Chapter 5. Generating a Promotion, by example

of the state pattern, but as there is only one simple variable involved, the predicate
is included explicitly.

AccountOp == [ ∆Account ; . . . | limit = limit ′ ∧ . . . ]

The specification now matches the local state and operations pattern.

5.4 Step 2: introduce global state

Following the set of generative patterns, the global state is defined as a collection of
local states. No identifiers are included in the simple account definition, so a given
set is used at the global level. The global state representing the bank’s accounts
is thus a mechanical application of the global state pattern:

[ID ]

Bank == [ acc : ID 7→ Account ]

5.5 Step 3: define framing schemas

Reference to the generative patterns shows that a separate framing schema is
needed for operations that create, remove and change local instances of account.
These use the three versions of the framing schemas pattern. The frame for oper-
ations that change a local instance is given. (The other framing schema is for an
account creation, ΦNewAccount .)

ΦUpdate
∆Bank
∆Account
anId? : ID

anId? ∈ dom acc
θAccount = acc anId?
acc ′ = acc ⊕ {anId? 7→ θAccount ′}



5.6 Step 4: define global operations 37

5.6 Step 4: define global operations

The global operations pattern is used to express the system operations:

BankOp == ∃∆Account • ΦUpdate ∧ AccountOp

NewAccount == ∃Account ′ • ΦNewAccount ∧ InitAccount

There is also an operation, CloseAccount . This is a global operation that removes
an instance of account from the global state. It does not require a framing schema,
so long as there are no local side conditions on the deletion:

CloseAccount == [ ∆Bank . . . ]

Note that if there were local side conditions, such as the need to check that the
balance was zero, a framing schema would be used.

This results in the promoted bank account specification.

�

5.7 Further promotions

Application of the generative patterns has produced, merely by elaboration of
templates, a bank specification that is a promotion of the simple account specifi-
cation. Note that the ending point of this generation is a specification matching
the Delta/Xi pattern. This could itself become the local state for a promotion, if
the next requirement were to specify a chain of banks. In this way, promotion can
be used to generate any hierarchical structure of local states and operations.
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Presentation patterns

6.1 Introduction

Presentation patterns are analogous to low-level coding standards: how to com-
ment, how to cross reference, how to format. These patterns seem self-evident to
people used to structured programming or trained to follow company styles for
presentation. However, much published Z is not presented in a consistent man-
ner. The pattern solutions given here are based on experience of constructing and
proving large formal texts, and the needs of the checkers and reviewers of these
documents (eg [Stepney et al. 2000]).

Presentation patterns dictate presentational conventions for the Z documents and
components. The pattern details given here relate to Z written for the purpose of
communication. Whilst the patterns are still relevant to Z written for other pur-
poses, the detailed recommendations would be different. Similarly, several patterns
are illustrated for Z written according to the Delta/Xi pattern; the details of these
patterns would also change if the style of Z were different.

6.2 The presentation patterns

Comment the intention

Intent: Communicate the intent of every part of the specification, with a uniform
commenting style.

Problem: A Z specification that comprises only mathematics is not readable or
maintainable. The mathematics provides a reasonably unambiguous specification,

38
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but the variable names are an insufficient link to the real world.

Example : An unambiguous but obscure Z schema:

Memory
ram, rom : ADDR 7→ BYTE
inmap, outmap : PADDR

disjoint〈dom ram, dom rom〉
inmap ∪ outmap ⊆ dom ram
disjoint〈inmap, outmap〉

Solution: Provide a commentary in a particular style at a number of levels. The
text needs to be written and maintained with as much care as the Z, and must add
to the value of the mathematical statements: the text is not just a “translation”
of the maths.

• If necessary, include an introductory overview of the domain, as context for
the specification; use diagrams to capture the architecture.

• In the body of the specification, write a short sentence that conveys the intent
of every Z paragraph, linking to the real world; if the Z is long, provide further
commentary describing the intent of the internals. Do not simply “translate”
the Z into natural language in the comment: if the Z says x ′ = x + 1, a
comment like “increment x by 1” adds little value; a comment like “x counts
the number of input events” is better.

• Where a Z paragraph has internal structure (for example, an axiomatic para-
graph or schema has a declaration part and a predicate part; a free type
definition has a number of branches), let the comment structure clearly fol-
low that of the Z paragraph, with a readily identifiable part of the comment
provided for each part of the paragraph. For a schema, for example, precede
the Z paragraph with commentary on declarations, follow the paragraph with
commentary on the internal predicates. Use bullet lists to help distinguish
the separate parts.

Illustration:

The schema Memory defines the memory state of the device.
• ram describes the dynamic memory, as a mapping from memory

addresses to the byte values they contain
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• rom describes the read-only memory, as for ram

• inmap, outmap are the memory-mapped input/output memory lo-
cations

Memory
ram, rom : ADDR 7→ BYTE
inmap, outmap : PADDR

disjoint〈dom ram, dom rom〉
inmap ∪ outmap ⊆ dom ram
disjoint〈inmap, outmap〉

• ram and rom have distinct address spaces

• the memory mapped i/o lies within ram

• no address is both input and output

�

Format to expose structure

Intent: Expose the structure of each Z phrase by consistent and clear positioning
of its component parts.

Problem: Arbitrary formatting of complicated phrases makes a Z document hard
to read, because it hinders the readers’ “pattern matching” abilities for recognising
and understanding structure.

Solution: Define and use a consistent formatting style, for example:

• break lines according to the syntactic structure of the phrase: break lines at
nodes higher up the syntax tree before breaking at lower nodes

• break lines so that operators are at the beginnings of lines, where they are
more visible

• indent to clarify the structure – increase the indentation of a broken line and
align indentation of parts at similar levels

• place a consistent amount of white space around operators and other small
constructs; place more around relational operators than functions and gener-
ics
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• place more whitespace around the braces in set comprehensions and around
the square brackets in horizontal schemas than around the corresponding
brackets in set extensions and other bracketed constructs

Specimens: Example styles are used in [Stepney et al. 2000], and in the CADiZ
[Toyn 2001] and Formaliser [Stepney 2001] pretty-printers.

�

Provide navigation

Intent: Provide supplementary material to allow the reader to locate the declara-
tion and uses of any name in the Z document.

Problem: Real specifications can be large (several hundred pages), and a global
name may be used far from its declaration. That declaration provides context, type
information, and constraints, all of which are needed to understand the name. Ad-
ditionally, particularly when modifying a specification, an investigation of all uses
of a name is important. Tools provide on-line navigation (from full hyperlinking,
down to using grep), but it can be hard to discover the appropriate declaration or
all uses in a large paper document.

Solution: Provide a complete index of global name declarations. Global names
include schema components, indexed as, for example, compName; SchemaName.
If a specification is split across several documents, perhaps with a domain-specific
toolkit in a separate document, provide indexing into all the documents. (The well-
known Mathematical Toolkit names do not usually need to be indexed.) Consider
also providing an index of where global names are used.

Related patterns: Name consistently, to give clues to the meaning of a name. At
the architectural levels, Name meaningful chunks and Use Goldilocks chunks ensure
any local names have use and declaration simultaneously visible.

Specimens: [Stepney et al. 2000] has a full index; the CICS project [Wordsworth
1987] uses marginal cross-referencing. [Arthan 2000]’s convention is to use bold
font when declaring a global name, then ordinary font when using it.

�

Name consistently
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Intent: Use a naming convention that conveys structural information.

Problem: Names are important, and arbitrary component names can confuse and
disorient the reader. Even an originally good naming convention can be eroded
during maintenance.

Solution: Define, document and use a naming convention for a specification. The
convention may include type information, scope information (for example, short
names only for local scope or generic formal parameters), intent information (as
given by comment the intent), and a link to other names with a related intent (for
example, by consistent use of prefixes, suffixes or subscripts).

Related patterns: Delta/Xi has a convention for inputs, outputs and state changes.
Promotion has a convention for framing schema names. A complex convention can
lead to the overlong name antipattern.

Specimen: ZIP [Barden et al. 1994, chapter 8] introduces a simple convention for
typography of names in a Z specification.

�

6.3 Presentation antipatterns

Overmeaningful name

Intent: Properties implied by names should not be relied upon until made explicit
in the Z text.

Problem: An apparently meaningful name is declared, but is never constrained
to have the property its name suggests.

Example: A declaration even : N is made, and is never followed by any further
constraint on the values of even.

Solution: Do not build more into the name than the mathematics can deliver.
The name should be ‘meaningful’ in the way it links to the real world, not ‘over-
meaningful’ in implying restrictions that do not actually hold.

Variants: When using lightweight formality, it can be useful to build meaning into
the name that is not fully supported by the intentionally-abbreviated mathematics.
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In such cases, comment the intent carefully, pointing out this fact.

�

Overlong name

Intent: Use names that enhance the readability of the specification.

Problem: Long names can cause readability problems: they may cause overlength
lines and linebreaks that detract from readability; if they differ by only a few letters,
they may be difficult to distinguish; they may hinder the reader’s recognition of
the mathematical patterns in use.

Solution: Use names that are long enough to be meaningful, but short enough to
be readable. Make similar names more distinguishable by placing their differences
at the beginning, rather than the end, of the word.

�



Chapter 7

Idiom patterns

7.1 Introduction

Z is a powerful notation, and there can be several ways of achieving a particular
end. It is often useful to choose a particular idiomatic way of doing something,
and sticking to it. The idiom itself then becomes part of the vocabulary.

7.2 The idiom patterns

Assemble from chunks

Intent: Construct a complex Z structure from understandable chunks.

Problem: There can be a large gap between the high level concepts that we need
to express and the low level language elements that Z provides for their expression.
Often a complicated set needs to be defined, with only fairly primitive constructors
available.

Solution: Apply the “divide and conquer” principle. Specify simple component
sets that make sense in isolation, and then combine them using Mathematical
Toolkit operators, domain-specific toolkit operators, or schema calculus, as appro-
priate, into the complicated whole.

This “assembly” might join parts together (union, schema disjunction, concatena-
tion), remove parts (intersection, schema conjunction, set difference, restriction,
projection, filtering), supersede some parts (relational override), connect parts
stepwise (relational and schema composition, piping, relational closure), and so

44
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on. Ensure that the simpler parts themselves make sense in isolation (“all small
or medium widgets, except blue ones”).

Constraint: Sometimes things really are so baroque that they cannot be broken
down into simpler chunks any bigger than individual elements. If this is so, ask
why. If there is no need to follow an existing implementation or standard, try
simplifying the specification so that it can be chunked. At least try to isolate the
baroque part in a chunk of its own, with copious commentary: lotsOfEasyStuff ⊕
smallButHorrible.

Related patterns: At higher structural levels, equivalent compositional patterns
are name meaningful chunks and Goldilocks chunks. The naming of chunks uses the
presentation pattern name consistently. The goal of the Z text is emphasised by use
of the presentation pattern comment the intention, at both the component and com-
posite levels, but paying particular attention to any smallButHorrible chunk. The
Delta/Xi : disjoin errors sub-pattern uses the schema calculus to combine various
sub-operation schemas.

�

Representing 1-many mappings (choice)

Intent: Choose how to model a relationship with a set of target values.

Problem: Each element of X is related to a set of values of Y . There are several
ways to model this.

Solution choice:

1. Representing 1-many mappings : using a target set
f : X 7→ PY : this precisely expresses the problem, and is most useful if the
various ys associated with a particular x are being manipulated explicitly:
they are accessible as y ∈ f x . This formulation is difficult to use in a more
algebraic style, where there is frequent need to flatten sets of range sets using
generalised unions.

2. Representing 1-many mappings : using a relation
fr : X ↔ Y : this expresses the underlying structure, and tends to be most
useful if the relation is being manipulated as a whole, in an algebraic style.
Extraction of explicit range elements requires use of the relational image,
fr(| {x} |), in place of simple function application, f x .
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3. Representing 1-many mappings : using the inverse mapping
finv : Y 7→ X : if the inverse is a function, this may be a better model of the
relationship.

Constraint: The first two choices are not exactly isomorphic: the functional form
can distinguish absence from the mapping, x1 6∈ dom f , from mapping to the empty
set, f x2 = ∅, whereas the relational form cannot.

�

Making a schema binding (choice)

Intent: Specify a particular schema binding.

Problem: A particular schema binding has to be specified, that is, values need to
be associated with the variables (foo and bar) of an instance of the schema (θS ).
There are several ways to do this; one involves using µ in an idiomatic way.

Solution choice:

1. Making a schema binding : ISO-Z
In ISO-Z, schema bindings can be written directly, as in 〈| foo == x , bar ==
y |〉,

2. Making a schema binding : ZRM
In ZRM, schema bindings cannot be easily written; a mu-expression is often
used, as in µ S • foo = x ∧ bar = y .

�

Making a local declaration (choice)

Intent: Use local declarations in an expression or predicate.

Problem: There are several ways to do this; one involves using µ in an idiomatic
way.

Solution choice:

1. Making a local declaration : let-expression
In ZRM and ISO-Z, a let-expression can be used, as in let x == foo; y ==
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bar • expr . In ISO-Z a µ expression can be used in an idiomatic way to get
an equivalent construct, as in µ x == foo; y == bar • expr .

2. Making a local declaration : ZRM let-predicate
In ZRM, a let-predicate can be used, as in let x == foo; y == bar • pred .

3. Making a local declaration : ISO-Z quantifier
ISO-Z has no let-predicates; an existential quantifier can be used in an id-
iomatic way to get an equivalent construct, as in ∃ x == foo; y == bar •
pred .

�

Use free types for unions

Intent: Bundle together different types so they can be treated uniformly.

�

7.3 Idiom antipatterns

Belated constraint

Intent: Avoid separating named elements and parts of their definition.

Problem: A global name is declared and, much later in the specification, is con-
strained. Any use of the name between declaration and constraint is subject to
this constraint, but the reader is not yet aware of it.

Example: A global name is declared, say as n : N. n is used liberally in the
specification, but something seems a little off key. We read on, hopefully, and
many pages later, we discover the global constraint n ∈ even. All our laboriously
built-up understanding of the specification is destroyed in that one line (or, more
likely, it suddenly becomes clear why nothing really made sense until now!)

Solution: Specify any constraints along with the declaration, in the same para-
graph or as close to it as possible. If it really is not possible to write the constraint
with the declaration, put a clear comment at the declaration, with a forward ref-
erence to the constraint.
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Constraint: Some proof tools require each paragraph to be a conservative ex-
tension of the specification, because that makes certain sanity check proofs easier;
thus they disallow belated constraints. Also, purposes other than communication
may dictate different patterns (see convert to provable Z, above).

�

Abused mu

Intent: Make the specification as accessible as possible to all levels of readers.

Problem: An expression containing µ is almost always unreadable, except to very
experienced specifiers.

Solution: Confine the use of µ to idiomatic ways, such as making a schema binding
(and possibly in making a local declaration, but let is to be preferred). If it is deemed
necessary to use µ in other contexts, comment the intention very carefully.

Specimens: [Barden et al. 1994, chapter 24] describes some uses and abuses of µ.

�

Bemused lambda

Intent: Make the specification as accessible as possible to all levels of readers.

Problem: In some contexts, experienced formalists use unnamed lambda func-
tions. This can considerably reduce the effort of specification, by making it clear
that a function is being defined, and in not requiring the invention of a name.
However, the type of the function is not explicit, and the use of lambda functions
is often confusing to less experienced readers.

Solution: Comment the intention of such lambda functions very carefully. Consider
whether to express implicit properties (of the function’s type).

�

Overloaded numbers

Intent: Exploit the Z type system and typechecking tools to catch as many errors
as possible.
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Problem: Subsets of N or Z are often used as convenient models of labels and
identifiers in specifications, but a typechecker cannot catch cases where the wrong
kind of label is being used.

Solution: Use given sets and free types, rather than subsets of N or Z, where
possible.

Specimen: [Brown 1979] quotes his eighth deadly sin as “to use numbers for
objects that are not numbers”.

�
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Structural patterns

8.1 Introduction

At the intermediate level, structural patterns guide the selection and construction
of components of the formal description. Whilst some of these patterns repre-
sent presentational issues, several capture solutions to potentially hard practical
problems.

8.2 The structural patterns

Use generics to control detail

Intent: Use type representations that are consistent throughout a development
but that, at any phase of development, carry the details relevant to only that level
of abstraction.

Problem: Z texts need to refer to many kinds of real-world and/or implement-
ation-level data. Full specification of the data types clutters high-level Z descrip-
tions and usually over-constrains possible implementations. Introducing more con-
crete types in a lower-level specification forces an expensive data-refinement proof
obligation. In some cases it is not possible to introduce the desired schema, because
of a recursive structure.

Example: A specification needs to represent personal details and addresses. The
representation depends on the level of detail required, and the planned use of the
specification. At the abstract level, [NAME ,ADDRESS ] is a sufficient model. At
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a more concrete level, however, it becomes necessary to define a (possibly complex)
internal structure for NAME and ADDRESS .

Solution: Make the specification generic in the types that will need to be elab-
orated. This abstract representation does not impose unnecessary constraints on
the specification. Later, define concrete types with the additional detail, and use
it to instantiate the generic specification.

Illustration: An abstract Customer has a name and address , of generic type.

Customer [NAME ,ADDRESS ]
name : NAME
address : ADDRESS

Some customers are personal (as opposed to companies) and have a name with
the format of a PersonalName (as opposed to a company name, say), a particular
concrete form.

PersonalName
title, forename, surname : String

Personal customers have a HouseAddress . Different countries use a different form
of CODE , so that is left generic here.

HouseAddress [CODE ]
house : N1

street , town, country : String
code : CODE

In the UK, the address code is a Postcode (details omitted)

Postcode == . . .

So a PersonalUKCustomer has a PersonalName, and HouseAddress instantiated
with a Postcode.

PersonalUKCustomer == Customer [PersonalName,HouseAddress [Postcode]]

Variants:
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1. A generic schema can be used in a recursive free type definition (suggested
by Rob Arthan).

Node[T ] == [ left , right : T ; value : N ]

TREE ::= leaf | node〈〈Node[TREE ]〉〉
TreeNode == Node[TREE ]

2. Type-constrained generics [Valentine et al. 2000] are an extension to Z that
allows definitions to require their generic parameters to be instantiated only
with schemas having certain signatures; this permits a wider use of generics
in Z specifications.

Specimens: Instantiation of generics with more concrete types is demonstrated
in [Polack & Stepney 1999]. Other variants appear in [Flinn & Sørensen 1992] and
various toolkit definitions.

�

Modelling optional elements (choice)

Intent: Provide a type that allows variables to take an unknown or optional value.

Problem: Some system domains use a type-correct marker, a null , to represent a
value that is known to be inapplicable in certain circumstances, but Z sets do not
have such a concept, and using powersets with null == ∅ is over-complicated.

Example: A database relation comprises n-tuples, each of which has a value for
each component attribute. If a particular attribute is not applicable to a particular
n-tuple, the null value is inserted.

Solution choice:

1. Modelling optional elements : free type
Use a free type to add the optional element

OPTTYPE ::= null | present〈〈TYPE 〉〉

Several different “null” elements can be accommodated, and can even have
some structure, such as null〈〈ID〉〉. However, it clutters the name-space with
new names for each new optional type, and has a wordy syntax.

2. Modelling optional elements : generic optional
[d’Inverno & Priestly 1995] give a compact treatment of the problem. They
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define a generic operator (on types) with the characteristics of the optionality;
this can be instantiated in the declaration of any variable that can take an
optional value.

optional [X ] == { a : PX | #a ≤ 1 }
relation(defined )
relation(undefined )

[X ]
defined , undefined : P optional [X ]

∀ a : optional [X ] •
defined a ⇔ a = 1
∧ undefined a ⇔ a = 0

∀ a : optional [X ] | defined a •
the a = ( µ x : X | x ∈ a )

Being generic, this approach introduces the new names optional , defined ,
undefined , and the, to the name-space only once, not once for each new
optional type.

�

Name meaningful chunks

Intent: Improve comprehensibility of a large or complex structure by building it
from identifiable components.

Problem: A reluctance to separate out and name components that are used only
once can lead to complex structures. The intent of the structure is not apparent
without careful deconstruction.

Solution: Construct and name components which are meaningful in themselves,
even if they are used only once.

Related Patterns: Assemble from chunks is the similar low level idiom pattern.
Predicates are covered by name predicates. The Delta/Xi : disjoin errors sub-pattern
uses the schema calculus to combine various named sub-operation schemas.

�
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Name predicates

Intent: Name a predicate to help expose its meaning, and to allow its use by name
elsewhere.

Problem: An interesting property might be used in a wider context, but it is
difficult to understand in that context – it is getting swamped by other details.
Also, the same property might be needed in several contexts.

Solution: Define the property as the predicate part of a schema, and use the
reference to the schema wherever the property is needed. Use [new/old ] renaming
if necessary.

Illustration:

Triangle == [ a, b, c : N ]

IsIsosceles == [ Triangle | a = b ∨ b = c ∨ c = a ]

IsEquilateral == [ Triangle | a = b = c ]

` ∀Triangle | IsEquilateral • IsIsosceles

Constraint: Take care that the declarations are of appropriate scope.

Related patterns: Name consistently: use the schema naming convention, with
some additional convention to show it is a property. (Here, properties are named
as IsX .) Also patterns assemble from chunks, name meaningful chunks.

Specimens: [Stepney et al. 2000] use the predicates SufficientFundsProperty and
Authentic in the relevant operations to impose two required properties on the
system.

�

Modelling product types (choice)

Intent: Choose the more appropriate product constructor for a context.

Problem: Z has two nearly-isomorphic product type constructors. Which one
should be used in a given context?

Solution choice:
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1. Modelling product types : schema
Component names are meaningful (for example, memory .register would refer
to the register component of the schema binding memory). This fits the in-
tention of name meaningful chunks. However, constructing particular schema
bindings is relatively verbose. Use a schema product where the names convey
some helpful meaning, and where component selection is common.

2. Modelling product types : Cartesian product
Components are located by position (for example, memory .3), which commu-
nicates little meaning. However, the tuple construction syntax is terse. Use
a Cartesian product when terseness is valuable, for example, the main use of
the product is writing explicit values, as in algebraic style operator definitions.
Use a Cartesian product when there are no meaningful names to be had, for
example, if the components are bundled into a tuple simply in orer to return
multiple results from a function.

Specimens: of schemas: [Polack et al. 1993], [Mander & Polack 1995]; of tuples:
many Mathematical Toolkit definitions

Variants: In ZRM, schema components can be directly selected, as in S .foo,
but schema bindings cannot be directly written (a mu-expression is often used,
following making a schema binding 2); tuples can be directly written, as in (x , y , z ),
but their components cannot be directly selected (a lambda-expression with a
characteristic tuple is often used, as in λ x : X ; y : Y ; z : Z • z ). ISO-Z allows
schema bindings to be directly written (see making a schema binding 1), and tuple
components to be directly selected, as in t .3, but there is still a difference in the
terseness of construction.

�

Modelling membership or flags (choice)

Intent: Provide a meaningful distinction between statuses.

Problem: When defining state indicators, specifiers sometimes define types which
are implementation-oriented, and are at once too general and too restrictive. In
particular, a free type definition of BOOLEAN 1 is often overloaded (used to rep-
resent too many different kinds of statuses) and unhelpful (it cannot be used as a
predicate, and cannot be extended to take further values).

1 Z does not have a built-in Boolean type; predicates are either true or false.
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Example:

BOOLEAN ::= btrue | bfalse

switchon : BOOLEAN

if switchon = btrue then . . .

Solution Choice:

1. Modelling membership or flags : free type
Define each set of related statuses as a free type, with each status being
represented by a branch with a meaningful name. The number of branches
can be extended as more statuses are uncovered.

2. Modelling membership or flags : boolean schemas
Use the schemas True == [ | true ]; False == [ | false ] as predicates, and
define Boolean == {True,False}.

Illustration 1:

SWITCH ::= on | off

switch : SWITCH

if switch = on then . . .

Note that this representation can easily be extended, for example, to

SWITCH ::= on | off | broken

Illustration 2:

switch : Boolean

if switch then . . .

Related patterns: A Boolean type should be used with caution; it may signal
the Boolean flag antipattern, indicating the specification is insufficiently abstract.

�

8.3 Structural antipatterns

Fortran
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Intent: Be as abstract as possible, avoiding over-specification of details such as
algorithms

Problem: “Fortran programs can be written in any language”

�

Sørensen shorty

Intent: Use the Mathematical Toolkit to help write compact definitions, but don’t
be too clever2

Example: The ZRM Mathematical Toolkit definition of squash is

∀ f : N1 7 7→ X •
squash f = f ◦ ( µ p : 1 . .#f �→ dom f | p ◦ succ ◦ p∼ ⊆ ( < ) )

Illustration: The ISO-Z Mathematical Toolkit definition of squash is

∀ f : Z 7 7→ X •
squash f = { p : f • #{ i : dom f | i ≤ p.1 } 7→ p.2 }

�

Boolean flag

Intent: Be specific about toggle- and selector-values: avoid the use of Boolean-
valued variables.

�

2 Named in honour of one of the pioneers of Z, Ib Sørensen, famed for his concise definitions.
Name used with permission!
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Architecture patterns

9.1 Introduction

Architecture patterns capture conventional ways of using the formal language to
produce an overall architecture that achieves the goals of the developer. Some
architecture patterns draw on conventional wisdom in the construction of large
or complex computer programs: such patterns are generalisable to other formal
notations. Other patterns relate specifically to Z.

Architecture patterns help to express a description in Z. They also help the reader
of the text. For example, the recognition that a particular form of expression is an
architecture pattern allows the reader to concentrate on the system specific detail
rather than the structure of the Z – this would apply to, for example, Delta/Xi
: change part of the state, Delta/Xi : project away clutter, and promotion, among
others.

Even experienced formalists find it difficult to take on a new style of specification.
This can result in inappropriate use of common architecture patterns, and inelegant
specifications that do not map cleanly onto the solution architecture. The Delta/Xi
pattern [Barden et al. 1994, chapter 3] is widely (too widely?) used.

9.2 The architecture patterns

Morph

Intent: Specify the translation of one formal entity into another.
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Problem: Some problems are cast in terms of one entity being translated into
another, where this translation is independent of any hidden state – that is, the
translation always provides the same result.

Example: A compiler translates source code into target code; it translates source
code into error messages during syntax and static analyses.

Solution: Specify a function (or relation) that translates the first entity into the
second. Use the structure of the entity being translated to break the function def-
inition into named meaningful chunks. (In particular, if the entity being translated
is of free type, break the function definition into the free type branches.)

Constraint: Any variation in the translation must be encoded as a parameter of
the function, or emerge as the result of a non-deterministic relation. The transla-
tion function can be used within a Delta/Xi state or operation schema, with state
variables being used as arguments, to provide such variation.

Related Patterns: Assemble from chunks, for defining a complicated or a multi-
part translation. Modelling 1:many relations – if morph is providing the steps to be
combined in a more general Unix-style pipe-and-filter specification, then make the
relational choice.

Specimens: [Stepney 1993] specifies a compiler using meaning functions to de-
fine the high- and low-level languages, and a compilation function to define the
translation.

�

Morph : diagram the structure

Intent: Summarise the structure of a Morph specification using a diagram.

Problem: Since a Z specification is presented ‘bottom-up’ (declaration before use)
and can be factored into many pieces, it may become difficult to ‘see the wood for
the trees’.

Solution: Construct a diagram to record the structure of the functions, highlight-
ing how their inputs and outputs are related.

Do not worry over-much about being consistent and complete, and about distin-
guishing every small difference: the purpose of the diagram is to be a graphical
overview of structure, not to be an alternative formal notation.
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The following components are recommended:

• draw the function being diagrammed as a grey background rectangle

• draw named functions used in the definition as named rectangles

• draw other functions, or parts of the specification that may be considered as
functions, as named ovals (these may indicate refactoring opportunities)

• draw inputs as arrows into the box; if the input is a constant, draw it ema-
nating from a constant source (indicated by a blob)

• draw outputs as arrows out of the box if the output is not used, draw it falling
into a sink (indicated by a blob)

• label lines with any intermediate names introduced in the specification, as
appropriate

• use different line styles to highlight different argument types

• ‘explode’ a product type input into its components (indicated by an ‘explod-
ing star’ symbol)

• copy (‘fork’) an argument into several different functions (indicated by a ‘plus’
symbol)

• draw curried functions as nested functions, if necessary

As much as possible, without distorting the diagram, let the arguments flow from
left to right. First minimise the number of crossing lines, and then as far as possible
have the arguments entering the boxes in the right order.

Illustration: Figures A.4, A.5 show the morph diagrams (including the compo-
nents listed above) of a large specification: two functions in a compiler specification.

�

Event traces

Intent: Specify an event-based system in terms of traces (with or without addi-
tional details of state and operations).

Problem: A system that is described in terms of possible events and their allowed
sequences is not primarily composed of state and operations, so it is difficult to
capture in a Delta/Xi model.

Solution: Specify the system using an event trace model. Specify the events, and
describe the system as the set of traces (sequences of events) that are allowed or
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disallowed.

Illustration:

• The system comprises events, with no elaboration.

[EVENT ]

• There are three separate types of event:

a, b, c : EVENT

• The SYSTEM comprises all event traces that have fewer a events than c
events

SYSTEM == { s : seq EVENT | #(s � {a}) < #(s � {c}) }

Constraints:

1. If modelling infinite sequences of events, the definitions in the Mathematical
Toolkit needs supplementing: it defines only finite sequences.

2. A more complex model is needed if properties such as fairness or timing
must be enforced. For pure event-trace systems, other formalisms such as
CSP[Hoare 1985] are more appropriate than Z.

Variant: An event trace model can be combined with, or refined into, a Delta/Xi
model where operations are used to add detail of the events. If the system is defined
in terms of constraints on individual traces (as in the illustration), the trace can be
included as a state component, with each operation adding the relevant event to
the trace and obeying the constraint. However, if the system is defined in terms of
properties across traces, much machinery is needed to do the combination formally
[Cooper & Stepney 2000].

Related Patterns: Assemble from chunks, for defining a complicated set of se-
quences.

Specimens: [Cooper & Stepney 2000] specifies a segregation property as a prop-
erty of the system’s traces; [Heisel & Souquiéres 1999] captures system requirements
as a trace model.

�
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Delta/Xi

Intent: Specify a system characterised by discrete state elements and the opera-
tions on those states.

Solution: We do not go into details here. The style, sometime also called “State
and Operations style”, appears in most Z texts and papers, for example [Barden et
al. 1994, chapter 3] (where it is called “the Established Strategy”). Its two main
sub-patterns are

• Delta/Xi : state

• Delta/Xi : operations

Some more of its sub-patterns are given below.

Technical note: the so-called ‘Delta/Xi naming conventions’ are not pure conven-
tions, because some semantics are defined. The dash (after-state of a variable)
has semantics through schema composition; ? and ! (input and output variables)
have semantics through ZRM’s pipe, and ISO-Z gives a default semantics for the
∆ and Ξ schema names (and is motivation for the Delta/Xi : strict convention
sub-pattern).

Related Patterns: Name consistently when using the conventions of the style.
Change part of the state when specifying which part of the state the operations
change. Promotion allows local state and operations to be promoted to global state
and operations. The partial precondition antipattern reveals a common error in the
Delta/Xi total operation approach: a failure to cover all preconditions in the full
operation.

�

Delta/Xi : disjoin errors

Intent: Structure the operations in terms of correct and erroneous behaviour.

Problem: An operation may behave normally only under a small precondition.
Covering all the exception cases can lead to a large, unwieldy definition that is
hard to understand.

Solution: Construct operation schemas for each correct and incorrect invocation.



9.2 The architecture patterns 63

Combine them using schema calculus disjunction:

FullOp == Op1Ok ∨ Op2Ok ∨ Op1Error ∨ Op2Error ∨ OtherErrors

Note that this construction can introduce non-determinism into the specification,
where preconditions of the disjuncts overlap.

�

Delta/Xi : strict convention

Intent: Use the ∆/Ξ naming convention strictly, to avoid surprising the reader
with hidden constraints.

Problem: If a schema such as ∆S is encountered, it usually has a conventional
default meaning, S ∧ S ′, but it may have been defined to mean something else
(say an extra predicate or state component added). This can lead to confusion for
the reader expecting the default meaning.

Solution: Adhere strictly to the convention. ∆S always means S ∧ S ′; ΞS always
means [ ∆S | θS = θS ′ ]. Consequently, it is never necessary to explicitly define
∆S or ΞS , as they always have their default meanings.

�

Delta/Xi : change part of the state

Intent: Define an operation that changes only a small part of the state.

Problem: In a Delta/Xi specification with a large state, S , most operations specify
changes to only part of that state. ΞS constrains the entire state to be unchanged
– it is usually too strong. ∆S puts no constraints on the state change – it is usually
too weak.

Solution: Include a predicate of the form ΞS \ (x , y) in the operation schema,
which constrains the state components not in the hiding list to be unchanged.

Variants:

1. Unlike ISO-Z, ZRM does not allow schema expressions to be used as pred-
icates. In ZRM this pattern can be used by defining a new schema as the
required hiding, and using a reference to the new schema as a predicate.
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2. If the full state has been partitioned into Goldilocks chunks sub-states, the
unchanging sub-states can be expressed as ΞSubS , and the changing sub-
state by ∆S . If the partition is done cleanly, most operations affect only a
few sub-states; change part of the state is used on these sub-states.

Related patterns: Name predicates describes using a schema as a predicate.
Delta/Xi : strict convention says why extra constraints should not be built into the
∆S schema

�

Delta/Xi : project away clutter

Intent: Retain a clear signature when introducing auxiliary variables to a Z
schema.

Problem: In a Delta/Xi specification, local variables can be introduced by exis-
tential quantification in the predicate part, but that makes the predicate difficult
to read, and the variables are not then available to other schemas if the definition
is being assembled from chunks. Alternatively, local variables can be introduced
in the declaration part, but then they are visible in the final schema, so are not
strictly local, pollute the name-space, and potentially cause type problems.

Example:

T 1 == [ S ; x : X | predX ]
T 2 == [ S ; x : X ; y : Y | predXY ]
S0 == T 1 ∧ T 2

has the x and y visible in S0’s signature, whereas

T 1 == [ S | ∃ x : X • predX ]
T 2 == [ S | ∃ x : X ; y : Y • predXY ]
S0 == T 1 ∧ T 2

has the right signature for S0, but does not merge the x in T 1 with that in T 2.

Solution: Introduce the local variables in the declaration part of the relevant
schema(s). Use Z projection, �, to list only the elements that must be visible.
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Illustration:

T 1 == [ S ; x : X | predX ]
T 2 == [ S ; x : X ; y : Y | predXY ]
Sfin == (T 1 ∧ T 2) � S

• sfin has all the variables of T 1 and T 2, with appropriate merges, but only
the declarations of S are visible.

�

Delta/Xi : hide a state component

Intent: Take a state component out of the visible signature of a schema. (Z hiding
operator.)

�

Delta/Xi : partial precondition

Intent: Write total operations.

Problem: Often, when using the Delta/Xi pattern, operations are intended to be
total, but are mistakenly partial, because some case has been accidentally omitted.

Solution: Check that the operation is total, by calculating the precondition. Add
any further necessary cases in the predicate part.

�

Object orientation (choice)

Intent: Specify the system in an object-oriented style.

Problem: Object-oriented structuring is appropriate to a development, yet there
seems to be no natural way to use such a style in conventional formal methods
such as Z.

Solution Choice: Depending on how much of the object-oriented machinery is
need, several approaches are possible.
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1. Object orientation : promotion
Use promotion as a simple way of composing component parts into a whole.

2. Object orientation : Hall’s style
Use Hall’s style [Hall 1990] to take promotion closer to an object-oriented
style.

3. Object orientation : Object-Z
If full-blown object orientation is required, use one of the object-oriented
extensions to Z, such as Object-Z [Duke & Rose 2000], [Smith 2000].

Specimens: See the Object-Z web site at http://svrc.it.uq.edu.au/

�

Algebraic style

Intent: Specify a system in terms of properties.

Specimen: [Woodcock & Loomes 1988, chapter 11] presents a theory of natural
numbers in an algebraic style. For large algebraic specifications, other formalisms
may be more appropriate (for example, OBJ [Goguen & Malcolm 1996]).

�

Goldilocks chunks

Intent: Construct a large specification from substates that are “just the right
size”.

�

9.3 Architecture antipatterns

The only architecture antipattern here, consistent with our secondary aim of mak-
ing the various styles more accessible to the developer, is:

Unsuitable Delta/Xi pattern
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Intent: Use the architectural style most suited to the problem structure.

Problem: Because the Delta/Xi pattern is so common, sometimes specifiers try to
use it for every specification, rather than only when it fits the problem structure.

Solution: Be aware that there are other specification structures (including those
in this pattern catalogue), and use the most appropriate, or develop your own.

�
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Domain patterns

10.1 Introduction

Almost all high-level programming languages use class libraries and packages to
provide incidental utilities and domain-specific concepts. In Z, toolkits play a
similar role. The Mathematical Toolkit, which supplements core ISO-Z and ZRM,
provides proven generic definitions, laws and constructs for use with sets, relations
and predicates. However, its aim is to provide a sufficient set of laws, rather than
a complete language.

We envisage toolkit libraries as a future parallel to pattern development in the
engineering support for Z-based formal methods.

Toolkits could range in level and sophistication, from straightforward (but perhaps
unproven) extensions to the Mathematical Toolkit, to complete application-specific
support with template structures and special operators. Here, one small sample
pattern is described in general terms. Others are represented collectively as the
pattern “concept”, application-oriented theory.

10.2 The domain patterns

Schema operator toolkit

Intent: Collect together schema operators for a specialised application.

Problem: A particular specification domain or style repeatedly combines schemas
in a specific way, but there is no built-in schema operator that captures this com-
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bination. A classic example is the xor , exclusive ∨ operator.

Solution: Use generics, and the ‘type constrained generic’ approach, to add a
toolkit of user-defined schema operators.

Constraint: Most current Z tools do not support this extension.

Specimens: Type-constrained generics are described in [Valentine et al. 2000],
along with examples of their use. Tools such as CADiZ provide extensions to ISO-
Z (or ZRM), largely in response to user demand.

�

Application-oriented theory

Intent: Structure the specification using concepts applicable to the domain.

Problem: Z is a powerful language, and as such, has little that is specific to any
particular domain. It can be difficult to know where to start when specifying a
new area.

Solution: Build suitable general definitions and conjectures for the application
domain, and use them to help structure the specification and proofs. As experience
in the domain grows, refactor these definitions into more generic forms, and make
them the basis of a new “domain specific toolkit”.

Specimens: [Woodcock & Loomes 1988, chapter 10] introduces this concept, il-
lustrating it with a “revolutionary theory” of clocks. A few other specialist Z
toolkits have been developed. A real number toolkit is described in the [Valen-
tine 1993][Barden et al. 1994, chapter 10]. A fuzzy logic toolkit is presented in
[Matthews & Swatman 2000]. Other toolkits, for infinite sequences, for trees and
graphs, etc, have been suggested.

�
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Development patterns

11.1 Introduction

Development patterns give an engineering context for formal methods. Patterns
can be written to assist the choice of whether to use a formal method, in the choice
of a specific formal method, and in guiding the (top level) style of formality.

It is easy to write gibberish in a formal method. There are various ways during
the development process of helping to validate a specification: to ensure that it is
well-formed, meaningful, and says what is intended. These are captured as usage
patterns.

Two development patterns have already been sketched:

• Convert to provable Z: see section 3.6.

• Convert to implementable Z: see section 3.6.

11.2 The development patterns

Focus the formality

Intent: Exploit mathematical rigour in an focussed way; apply it to only parts of
the system or the development process.

Example: A system that is too large to develop efficiently with formal methods,
or which does not justify the expenditure and personnel required for a formal
development, nevertheless could benefit from some formality.
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Solution: Decide where to focus the formal methods effort, based on which parts
of the system are most critical, or least understood. In an iterative development,
the focus can be widened in later iterations as more effort becomes justified, or more
experience becomes available. This may require refactoring of earlier specifications.

�

Focus the formality (elaboration) : lightweight

Intent: Exploit formality in an ad hoc or loosely controlled way; demonstrate or
detail only key parts of a system.

Problem: A system is being developed by a (set of) recognised non-formal meth-
ods or processes. The context requires or dictates this, but also requires that the
level of confidence in certain properties is greater than can be guaranteed by the
overall development approach.

Example: A system that has a small critical section, or a small number of critical
properties that must be clearly specified and/or guaranteed.

Solution: Proceed with the informal specification as planned. Identify the critical
section, or the part of the specification that is needed to investigate the critical
properties. Using guidelines or intuition, produce a formal representation of the
critical section and critical properties; produce some form of formal or informal
proof of the required properties.

Constraint: The formal analysis is constrained (implicitly) by the assumptions of
the formalisation; if a provably-correct Z model is needed for future development,
there is unlikely to be a satisfactory lightweight specification.

Related patterns: Integrated methods, particularly those in which formal specifi-
cations are produced by guidelines rather than formal translation among formally-
defined notations. Formal requirements, ie a formalisation of informal models for
checking requirements, identifying missing constraints etc. Prove formally, and
other validation approaches such as prove rigorously and animate.

Specimen: A lightweight Z analysis of CORBA [Basin et al. 2002]. One of the
first uses of the term ‘lightweight formalism’ was in [Easterbrook et al. 1996], on
spacecraft fault protection systems, using diagrammatic methods and PVS.

�
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Focus the formality (elaboration) : requirements

Intent: Use a formal approach in the requirements elicitation process.

�

Focus the formality (elaboration) : specification only

Intent: Use Z to express or explore the specification, with no intention of attempt-
ing proof or formal development.

�

Do a refinement

Intent: Connect, by formal proof of a refinement conjecture, specifications of the
same system at different levels of abstraction.

The generative patterns of classic refinements are,

• Do a refinement: abstract model
Intent: Provide an abstract specification.
�

• Do a refinement: concrete model
Intent: Provide an equivalent specification at a lower level of detail.
�

• Do a refinement: retrieve relation
Intent: Formally express the mapping between each abstract component and
its concrete equivalent.
�

• Do a refinement: implementation conjecture
Intent: Prove that the concrete operations implement the abstract specifi-
cation.
�

The underlying structure of a refinement is summarised in figure 11.1. The retrieve
relation is the schema R. The refinement conjecture is represented as the ellipse,
refn.
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Figure 11.1 Structure of the refinement pattern using diagram the structure.

Figure 11.2 Structure of the refinement pattern, abbreviated form.

The conjecture statement refers to all states and operations. To clarify the struc-
ture, we choose to replace it by a dotted line linking the corresponding concrete
and global operations referenced in the conjecture, and labelled with the relevant
retrieve relation, figure 11.2.

The refinement pattern has a large number of elaborations, some of which are listed
in table 12.1, below.

�

Use integrated methods
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Intent: Use complementary formal methods, or formal and semi-formal methods,
in an integrated manner

Specimens: [Semmens et al. 1992] is a summary of different formal and semi-
formal combinations. Z and SSADM are used together by [Polack et al. 1993,
Mander & Polack 1995]. Circus [Woodcock & Cavalcanti 2002] is a formal language
that combines Z and CSP.

�

Prove rigorously

Intent: Establish a theorem by a combination of rigorous proof and informal
argument appealing to intuition.

�

Prove formally

Intent: Formally prove a conjecture using mathematical laws and axioms of the
appropriate domain.

�

Apply syntax and type checks

Intent: Find typographic errors and other accidental features of the formal text.

Related patterns: The overloaded numbers antipattern reduces the effectiveness
of typechecking.

�

Animate

Intent: Explore dynamic properties of a specification. In particular: in a Delta/Xi
specification, explore the sequence of states the system may progress through;
in a Morph specification, explore the intermediate forms an entity takes during
transformation.
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�

Do sanity checks

Intent: Avoid common pitfalls and omissions in the formal and text descriptions.

Solution: Prove that the specification is not so constraining that it has no models.
For Delta/Xi, prove the existence of the initial state and the non-emptiness of the
precondition of every operation. Prove that the specification is not so loose that
it permits undesired behaviour. For Delta/Xi, prove the totality and determinism
of every operation, if such properties are required.

�

Express implicit properties

Intent: Make desired but implicit properties explicit.

Solution: Cast the desired properties as conjectures and prove rigorously or prove
formally that they are consequences of the specification.

�
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Z generative patterns

Generative patterns are appropriate for any Z concept that is expressed in a series of
steps or components. Simple generative patterns could be used to initiate beginners
into the writing of specifications in any format.

At the hard end of formal notations, generative patterns are proposed to assist in
refinement, retrenchment and proof.

Elaborations exist for all the proposed generative patterns. For example, the refine-
ment pattern outlined above has elaborations to deal with particularly problematic
elements of practical refinements. Patterns can be used to determine the kind(s) of
refinement to use: forward or backward rules, blocking or non-blocking systems etc.
In addition, there are elaborations that help the specifier to arrive at refinements.
These could be used to guide the weakening of preconditions, and the making de-
terministic of the abstract specification (or their inverses for concrete-to-abstract
refinement).

Table 12.1 identifies some complex Z patterns for which generative patterns have
been identified. The list is not exhaustive, either in terms of the list of generative
patterns, or in the detail of elaborations and component patterns.
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Generative Elaboration Intention
Pattern
Delta/Xi: Specify a system as a state,

state and with operations based on
operations that state.
disjoin errors Promotion (see below)

diagram the structure
strict convention
change part of the state
project away clutter
hide a state component
partial precondition

Promotion: specify a system characterised as a collection
local state and of local states, and of operations based on
operations those defined on the local state
global state global constraints add global state components to the collection
framing schemas of local instances
global operations internal identifiers Use a native element of the local instances

as the identifier
diagram the structure combine promotions specify a system that conforms to the

local-global format for the Promotion structural
pattern, but has different sorts of local instance

multi-promotion specify a system that comprises multiple
instances, but has global operations that may
affect more than one local instance

Refinement reduce the level of abstraction by
abstract model provable refinements
concrete model weakest concrete form Use the retrieve relation
retrieve relation to calculate the weakest concrete form.
implementation conjecture widen precondition (Various patterns)

reduced non-determinism (Various patterns)
backwards refinement use backwards refinement rules
blocking semantics allow a blocking semantics in

concrete specification

Table 12.1 Generative Z Patterns and their Elaborations



78 Chapter 12. Z generative patterns



Part II

Refactoring





Chapter 13

Refactoring

Refactoring [Fowler 1999] originated as a technique for improving the structure of
code, in a disciplined, manageable manner. The behaviour of the code remains
unchanged, so refactorings can be validated by testing: the regression test suite
is rerun after every meaning-preserving refactoring, so that any new bugs can be
immediately detected and removed. A refactoring is never finalised until it has
been shown to pass the tests; it is also critical that the original code is preserved
until the refactoring process is shown to provide structural benefits – it must be
possible to reverse the refactoring if necessary.

Refactoring is particularly emphasised as part of the XP discipline [Beck 1997],
which relies heavily on an incremental approach to design and coding. The Clean-
room development process [Dyer 1992], which allows a component to be changed
provided the input to output function is unchanged, can be thought of as an early
example of meaning-preserving refactoring.

Refactorings can be used to ensure that evolving code makes use of patterns.
Furthermore, the need or potential to refactor can be identified either reviewing
code for antipatterns (Fowler’s bad smells!) or by recognising sections of code as
patterns, or by observing that there are patterns whose intent matches the overall
intention of the (sub)program.

Each individual refactoring change is very small – renaming a component, or mov-
ing a feature, or splitting a method. Thus each change can be understood and
tested in isolation. Large improvements to the structure of the code are made by
applying a sequence of such small, controlled changes towards some goal.
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Refactoring in Z

14.1 Introduction

Like code, a specification is a model of a system. It can be refactored to improve
its structure in many ways. Changes already encountered in this report include,

• changes to an existing specification as requirements evolve; refactoring may
also be needed in order to extend the specification

• a specification written for one purpose (eg readability) may need to be re-
structured for other purposes (eg to ease the proof of conjectures)

• a deeper appreciation of implementation constraints, requiring changes to the
structure of the specification

As in code, refactoring can be used to bring a loosely-structured specification in
line with particular structural and presentation patterns. Refactoring can also
be used to convert between patterns; in particular, generative patterns can guide
refactoring.

In formal development, refactoring is not confined to specification models. The
same general concepts can be applied to proofs. Mathematicians invest effort in
rewriting proofs to make them clearer, or more general, or shorter (or to find new
insights in, and applications for, their theorems).

It may be essential to be able to refactor proofs, to make them more comprehensible
to third parties, say. It may also be essential to be able to refactor proof scripts,
the ‘programs’ that proof tools run to perform a proof. For example, changes to a
specification may require that conjectures are re-expressed; re-proof could be made
much more efficient if the existing proof script were refactored and re-run, rather
than re-created from scratch. This is analogous to regression testing where code
refactorings require modifications to the test suite. Proof refactoring is subject to
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ongoing work, and is not considered further in this report.

14.2 Meaning preservation in Z

Refactoring preserves the meaning of a document. Meaning preservation is (theo-
retically) simple in code refactoring: the program must perform the same functions
and produce the same outcomes from the same inputs. The notion is refined some-
what in the concept of bisimilarity, used to describe two transition systems that
simulate each other (and adopted in, for example, comparing graphs)1.

The meaning of a specification can be defined in many ways, making meaning-
preservation in specification a rather more interesting concept than in program-
ming.

Some possible variants of meaning preservation are listed below, with comments
on their relevance and demonstrability.

• model equality : The expressions in two specifications should be seman-
tically equivalent. Model equivalence could be established in the context of
particular semantics, such as that established by ISO-Z [ISO-Z 2002]. The
semantic equivalence of terms is established in the toolkits and standards;
meaning preservation can be demonstrated if the specification changes use
only equivalent terms. This form of meaning preservation is (should be) fully
supportable by Z tools.

• model isomorphism : The expressions in two specifications should be se-
mantically isomorphic (as in schema declarations and cross-products). This
form of meaning preservation is (should be) fully supportable by Z tools.

• observational equality : The observed behaviour must be equal (for ex-
ample, same inputs give same outputs, for Delta/Xi, or same traces for event
traces) even though the preconditions may have been modified (ie one spec-
ification has a weaker operation precondition), and extra names may have
been introduced.

• observational isomorphism : The observed behaviour must be isomorphic
(allowing renaming, or refinement).

• conjectural equivalence : Provable properties should be preserved. Theo-
rems on the original specification must be theorems of the refactored specifi-

1 A transition system simulates another if it performs the same sequence of actions.
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cation, and this must be established by posing equivalent conjectures (equiv-
alent, because there may have been renaming, for example) and proving them
true.

• essential meaning equivalence : The essential meaning [France 2001]
of the specification is unchanged by the refactoring, in that the refactored
specification still captures the intent and covers the same names of interest
as the original specification. This weak definition can only be established
to hold informally, for example by reference to domain experts. However, it
should not be dismissed, particularly where refactoring takes place before the
requirements are frozen.

There are undoubtedly other useful forms of meaning preservation in specification
refactoring. There are also changes that are desirable but definitely change the
meaning. These changes look superficially like refactoring steps. Such benefactor-
ings can be used to fix bugs, to tidy up infelicities, and to upgrade specifications
in a manageable way. This recognises that the purpose of changing a specifica-
tion may be to modify its meaning, particularly early in a development, or in a
maintenance revision.

Separating out refactorings (changing structure without changing meaning) from
benefactorings (changing meaning without changing structure) can help provide
a disciplined framework to specification evolution, and to the maintenance and
upgrade process.

14.3 Incremental refactoring process

Each refactoring step should be the smallest logically complete change that can be
made, and pushed all the way through the specification and proof. A small change
to the specification can have a large knock-on effect on the proof. This is another
reason refactoring steps should be as small as possible. It is very easy to get lost
in the morass of changes, and forget or miss a needed change to a proof. Errors
are easier to locate if the change is small. Small steps are also easier to document,
and to record in the change lists.

For example, one of LFM’s specifications has a system state comprising about 30
components, with about 15 predicates constraining them. Early on in the original
specification development, the state was partitioned into four fairly independent
sub-states (independent because few of the predicates involve components in differ-
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ent substates, and most of the operations change components in a single sub-state).
During one subsequent upgrade cycle, it became clear that one of the state com-
ponents, and its associated predicates, would fit better in a different sub-state,
because there it would result in significantly fewer of the predicates and operations
referencing multiple substates. The declaration and the predicates were moved in
a single refactoring step, and the required changes pushed through the operation
definitions and proofs. This was the smallest logically complete step that could
be made: taking two steps (declarations, then predicates, say) would have left the
intermediate specification type-incorrect and unprovable.

Although a refactoring is the smallest possible complete change, some refactorings
can be broken down into smaller steps that are only partly valid. Even though the
whole specification and proof is inconsistent, portions of it can be checked. So, for
example, in the context of a refinement proof, a modification can proceed by six
small steps:

• modify and check the abstract specification

• modify and check proofs about the abstract specification

• modify and check the concrete specification

• modify and check proofs about the concrete specification

• modify and check the retrieve relation specification

• modify and check the refinement proof

At any step an error might be discovered (for example, that a global property does
not hold). This might require earlier steps to be modified.

Benefactoring should use the same discipline as refactoring, of taking only small,
provable (in some sense), controlled steps.

It is possible to introduce errors during an attempted refactoring step (especially at
present, where tool support is not yet fully developed). Also, some refactoring steps
can result in larger than anticipated changes to the specification, and particularly
the proof. If the benefit from the refactoring is small, it might be better to revert
rather than continue with the big restructuring. So make sure it is possible to roll
back each change (using the version control system) so that it is possible to recover
from mistaken attempts to refactor.

Refactoring can inflate change control lists, and make the changes look bigger than
they really are, which might dismay any third party expecting to evaluate only a
small upgrade. In LFM’s projects, we took care to separate out the list of changes
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that were refactorings from those that were real functionality changes, to help
structure the evaluation task.

14.4 Identifying Z refactorings

The pattern language that we are constructing for Z allows us to capture insights as
patterns; the patterns can then form steps or goals for refactoring. Refactoring op-
portunities become more apparent as the specifier gains experience. Additionally,
performing proof gives additional insight into the structure of the system.

For example, in the electronic purse project [Stepney et al. 2000], it was noticed that
certain combinations of state components appeared in the refinement proofs, and
that these combinations mapped to meaningful concepts in the application domain.
So these were introduced into the specification as derived state components. This
refactoring improved the clarity and structure of both the specification and the
proofs.

Lessons learned while doing the proof can be used to refactor the proof itself.
For example, in the electronic purse project, a similar property was being proved
several times. So this property was parameterised, extracted as a proved lemma,
then used it several times in the main proof. This shortened and simplified the
main proofs. The lemma made sense as a property in the application domain, so
this refactoring also made the proof structure easier to understand.



Chapter 15

Refactoring to Promotion, by
example

15.1 Introduction

This chapter describes refactoring to promotion by use of an example. We start
with an initial specification closely based on the ‘Abstract World’ specification
from the LFM electronic purse development[Stepney et al. 2000]. This is a case
where a specification originally written in a flat Delta/Xi style is then identified
later as a candidate complex enough for the promotion elaboration.

The structural promotion pattern is the target pattern for the refactoring, and the
generative patterns guide the refactoring steps. Some of the refactoring transfor-
mations do not seem obvious and might be missed without the generative patterns
as a reference. Indeed, some of the transformations temporarily make the specifi-
cation structure more baroque.

15.2 Starting point: the existing specification

• purses are identified by a name

[NAME ]

• The abstract world comprises two mappings
– balance maps purse names to their balances

– lost maps purse names to the total amount they have lost because of
failed transfer operations

87



88 Chapter 15. Refactoring to Promotion, by example

AbWorld
balance : NAME 7 7→ N

lost : NAME 7 7→ N

dom balance = dom lost

• The balance and lost domains are the same, and, indeed define the purse
names known to the system

There is a standard precondition for operations involving transfer between two
purses. This is specified separately and included in each operation to aid readabil-
ity, following the name predicates pattern.

• Transfer operations always have two input purse names and an input repre-
senting the value to be transferred between the purses.

AbTransferPre
AbWorld
from?, to? : NAME
value? : N

{from?, to?} ⊆ dom balance
to? 6= from?
value? ≤ balance from?

• The two identified purses are known and distinct (it does not make sense to
transfer money from one purse to itself).

• there is sufficient funds for the transfer.

There are two transfer operations; one that succeeds, and one that fails. They
have the same declarations as AbTransferPre.

AbTransferOkay
∆AbWorld
from?, to? : NAME
value? : N

AbTransferPre

balance ′ = balance ⊕ {from? 7→ balance from?− value?,
to? 7→ balance to? + value?}

lost ′ = lost
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Figure 15.1 Structure of the abstract world of electronic purses, before refactoring

• A successful transfer decrements value? from the from? purse’s balance, and
adds it to the to? purse’s balance, leaving all other balances unchanged.

• Success means the lost components are unchanged.

AbTransferLost
∆AbWorld
from?, to? : NAME
value? : N

AbTransferPre

balance ′ = balance ⊕ {from? 7→ balance from?− value?}
lost ′ = lost ⊕ {from? 7→ lost from? + value?}

• A lost transfer decrements value? from the from? purse’s balance, and loses
it, modelled by adding it to the from? purse’s lost component.

• No other purse is affected.

Figure 15.1 represents the structure of the specification before refactoring. The
Delta/Xi pattern is highlighted; there is also a schema that includes the state, used
(as a precondition) in the operations.

This specification matches the promotion intent; it is a Delta/Xi specification, and
it describes a system made up of instances of a local state and global operations
based on operations on the local states.

The refactoring steps are based on the four elements of the generative pattern
for promotion. The first generative pattern, local state and operations, requires
substantial refactoring over several steps. The second generative pattern, global
state, emerges as a side effect.
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15.3 Step 1: introduce local state

The first goal for refactoring is to define the local state. The system described
above has a collection of purses, so the purse becomes the local instance.

The individual purses each have a balance and a lost component. It is formed
by removing the identifying functions and predicates from the original state spec-
ification. The result matches the state element of the local state and operations
generative pattern element:

AbPurse
balance : N
lost : N

The global elements from the original state are refactored to match the global state
pattern:

[NAME ]

AbWorld
abPurse : NAME 7 7→ AbPurse

The preservation of meaning for abPurse can be established by expanding the
schema to a single function from NAME to the tuple (balance, lost). This is equiv-
alent to the original state schema, AbWorld .

To complete these refactorings, and to preserve the full sense of the original specifi-
cation, the original precondition and operation specifications have to be refactored
to use the local and global states.

• The precondition schema declarations are not affected: purses are still identi-
fied by name, even though the name has been relocated to the global context.
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AbTransferPre
AbWorld
from?, to? : NAME
value? : N

{from?, to?} ⊆ dom abPurse
to? 6= from?
value? ≤ (abPurse from?).balance

• Each reference to a purse in the original precondition is replaced by a call to or
application of the abPurse function. Otherwise, the precondition predicates
are unchanged.

The operations must introduce the global and local state schemas. To allow global
operations to use the local state, explicit after-state purses are constructed.

• A successful transfer involves explicitly two purses. The refactoring is influ-
enced by the form of the elaboration pattern, multi-promotion in its version
for a fixed number of local instances. The declarations are made accordingly.
Making a schema binding 2 is used to construct purse instances.

AbTransferOkay
∆AbWorld
∆AbPurse 1

∆AbPurse 2

from?, to? : NAME
value? : N

AbTransferPre

AbPurse ′ 1 = ( µ∆AbPurse | θAbPurse = abPurse from?
∧ balance ′ = balance − value?
∧ lost ′ = lost

• AbPurse ′ )

AbPurse ′ 2 = ( µ∆AbPurse | θAbPurse = abPurse to?
∧ balance ′ = balance + value?
∧ lost ′ = lost

• AbPurse ′ )

abPurse ′ = abPurse ⊕ {from? 7→ θAbPurse ′ 1, to? 7→ θAbPurse ′ 2}

• AbPurse 1 has value? subtracted from its balance; no other element is changed.
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• AbPurse 2 has value? added to its balance; no other element is changed.

• The global world mappings to the instances of the two purses are overwritten
with the after-states of each purse.

The lost case is refactored similarly.

• An unsuccessful transfer involves exactly one purse. The refactoring is influ-
enced by the form of the standard pattern, framing schemas. The declarations
are made accordingly.

AbTransferLost
∆AbWorld
∆AbPurse
from?, to? : NAME
value? : N

AbTransferPre

AbPurse ′ = ( µ∆AbPurse | θAbPurse = abPurse from?
∧ balance ′ = balance − value?
∧ lost ′ = lost + value?

• AbPurse ′ )

abPurse ′ = abPurse ⊕ {from? 7→ θAbPurse ′}

• AbPurse has value? subtracted from its balance, and added to lost .

• The global world mapping to the purse is overwritten with the purse’s after-
state.

This intermediate refactoring preserves the meaning of the original specification,
but is otherwise considerably more obscure than the original. Further refactoring
is required1.

15.4 Step 2: introduce local operations

Having extracted the local and global states, attention now turns to the extraction
of local operations. These are specified to include the local part of the precondition
schema.
1 This first refactoring is, in fact, closer to the form of the actual AbPurse specification[Stepney
et al. 2000]. See Appendix A.1 for diagrams of the full specification.
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• The declaration of AbWorld has been replaced by the local AbPurse.

• The other declarations are again as for the original precondition schema.

TransferPre
AbPurse
from?, to? : NAME
value? : N

value? ≤ balance
to? 6= from?

• The predicates are the local ones from the original precondition schema.

• The validity of from? and to? cannot be checked in the local context.

The local operations separately specify transfer from a purse, transfer to a purse
and the lost transfer. The schemas are taken to be self-explanatory.

TransferFrom
∆AbPurse
from?, to? : NAME
value? : N

TransferPre

balance ′ = balance − value?
lost ′ = lost

TransferTo
∆AbPurse
from?, to? : NAME
value? : N

TransferPre

balance ′ = balance + value?
lost ′ = lost
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TransferLost
∆AbPurse
from?, to? : NAME
value? : N

TransferPre

balance ′ = balance − value?
lost ′ = lost + value?

15.5 Step 3: introduce framing schemas

The next generative pattern is framing schemas. Each kind of operation requires
a frame. All the local operations are simple changes to the local state. However,
at the global level, a successful transfer updates the state of two purses whilst the
unsuccessful transfer updates only one purse.

The validity of the purses involved in a transfer must be checked at the global level,
since the name identifiers have only been assigned to the global state. This check
needs to appear as part of the frame(s).

• The declarations are as for the refactored transfer operation above

ΦTransfer
∆AbWorld
∆AbPurse 1

∆AbPurse 2

from?, to? : NAME
value? : N

{from?, to?} ⊆ dom balance
from? 6= to?

θAbPurse 1 = abpurse from?
θAbPurse 2 = abpurse to?

abPurse ′ = abPurse ⊕ {from? 7→ θAbPurse ′ 1, to? 7→ θAbPurse ′ 2}

• The identities of the two purses are checked against the known identities.
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• The abPurse after-state is formed by overriding the mappings for the two
instances with the results of the local operations.

The single purse TransferLost could be provided with a framing schema, ΦTransferLost ,
by an application of the framing schemas pattern:

ΦTransferLost
∆AbWorld
∆AbPurse
from?, to? : NAME
value? : N

{from?, to?} ⊆ dom balance
from? 6= to?

θAbPurse = abpurse from?

abPurse ′ = abPurse ⊕ {from? 7→ θAbPurse ′}

However, it is equally valid, and requires fewer definitions, to think of the unsuc-
cessful global operation as affecting two purses, one of which is unchanged.

15.6 Step 4: Define the global operations

The final step applies the global operations pattern.

AbTransferOkay == ∃∆AbPurse 1; ∆AbPurse 2 •
ΦTransfer ∧ TransferFrom 1 ∧ TransferTo 2

AbTransferLost == ∃∆AbPurse 1; ∆AbPurse 2 •
ΦTransfer ∧ TransferLost 1 ∧ ΞAbPurse 2

Note: the version using the ΦTransferLost frame is:

AbTransferLost == ∃∆AbPurse • ΦTransferLost ∧ TransferLost

�
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15.7 Resulting specification, summary

Gathering together all the pieces produced above, the complete specification of the
abstract purse world comprises (a) local specifications, (b) framing schema(s) and
(c) global transfer operations that promote the local transfer elements.

This could be demonstrated to be strictly equivalent to the original by a schema
expansion refactoring of both versions, and simplifying. Alternatively, conjectures
on the operations could be formulated and proved. Neither is demonstrated here.

Local state : one purse

[NAME ]

AbPurse
balance : N
lost : N

TransferPre
AbPurse
from?, to? : NAME
value? : N

value? ≤ balance
to? 6= from?

TransferFrom
∆AbPurse
from?, to? : NAME
value? : N

TransferPre

balance ′ = balance − value?
lost ′ = lost
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TransferTo
∆AbPurse
from?, to? : NAME
value? : N

TransferPre

balance ′ = balance + value?
lost ′ = lost

TransferLost
∆AbPurse
from?, to? : NAME
value? : N

TransferPre

balance ′ = balance − value?
lost ′ = lost + value?

Global state : world of purses

AbWorld
abPurse : NAME 7 7→ AbPurse
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Figure 15.2 Structure of the abstract world of electronic purses, after refactoring to a
two-state promotion

ΦTransfer
∆AbWorld
∆AbPurse 1

∆AbPurse 2

from?, to? : NAME
value? : N

{from?, to?} ⊆ dom balance
from? 6= to?

θAbPurse 1 = abpurse from?
θAbPurse 2 = abpurse to?

abPurse ′ = abPurse ⊕ {from? 7→ θAbPurse ′ 1, to? 7→ θAbPurse ′ 2}

AbTransferOkay == ∃∆AbPurse 1; ∆AbPurse 2 •
ΦTransfer ∧ TransferFrom 1 ∧ TransferTo 2

AbTransferLost == ∃∆AbPurse1; ∆AbPurse 2 •
ΦTransfer ∧ TransferLost1 ∧ ΞAbPurse 2

The specification is slightly longer, but more readable. Writing further operations
that change purses is straightforward: the local component operations are added,
and the global operation pattern applied.

Figures 15.2 represents the structure of the specification after refactoring. Fig-
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Figure 15.3 Structure of AbTransferLost after refactoring using the single local instance
promotion

ure 15.3 shows the alternative form of AbTransferLost , using a separate, single-
instance promotion. The diagrams look more complicated than the pre-refactoring
diagram; this demonstrates how much specification structure was implicit before
(hidden in the state and operation schemas). The more explicit structure makes a
specification easier to comprehend.
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Refactoring catalogue

16.1 Introduction

In this chapter we describe some of the refactorings that LFM found useful in its
various Z projects. Some of these are done simply to improve and clarify structure.
Others are done to conform to various Z conventions, as expressed in [Barden et
al. 1994], and in the Z patterns described above.

The proofs in these projects were all performed by hand, with minimal tool support
(type checking only). The specifications and proofs were independently evaluated;
some of the structural improvements are designed to make evaluation of proofs
easier. Different refactorings might be more appropriate for tool-supported proofs
(discussed below).

Many refactorings can be applied in either direction (since they are meaning pre-
serving). In particular, every choice pattern has an associated refactoring, convert-
ing between the choices. Which direction to perform the refactoring in a particular
case depends on the specific context.

16.2 Structure of Z refactoring descriptions

The statement of each refactoring has the following structure (some parts may be
omitted for brevity)

• Name

• Problem : Short statement of the problem

• Solution : Shorter statement of the solution

100
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• Discussion : Short statement of the refactoring change, and issues

• Steps : Process to be followed to achieve the refactoring

• Example

• Variants

16.3 Refactoring choice patterns

As we noted earlier, every choice pattern has an associated refactoring, converting
between the choices. Some of the explicit refactorings are given here.

Convert a Cartesian Product to a Schema

Problem : You have a Cartesian product type being used as a record, with lots
of component references.

Solution : Introduce a schema product type, and use it instead.

Discussion : This converts from a one use of the choice pattern, modelling prod-
uct types : Cartesian product, to the other, modelling product types : schema. The
components of a Cartesian product are labelled by their positions, a not-very mean-
ingful number. The components of a schema product are labelled by their names,
and these can be chosen to be much more meaningful.

Steps :

• create the new definition, with a new name (if the name of the new and
old definitions are to be the same, first do a refactoring to rename the old
definition)

• typecheck, to ensure there are no name clashes

• change each occurrence of the old name to the new one, and each occurrence
of a component reference from the number to its name (this requires more
than just mechanical changes, see the example)

• typecheck, to ensure the name has been used properly

• propagate the replacement through the proofs

• delete the old definition

• typecheck, to ensure no uses have been missed
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Example : A syntactic structure is defined as a Cartesian product; its semantics
are given by meaning functions applied to the numbered components.

binaryOp == EXPR ×OP × EXPR

∀ b : binaryOp • Me b = Mo b.2 (Me b.1,Me b.3)

The refactoring redefines the syntactic structure as a schema product; its semantics
are given by meaning functions applied to the named components.

BinaryOp == [ lhs , rhs : EXPR; op : OP ] . . .

∀BinaryOp • Me θBinaryOp = Mo op (Me lhs ,Me rhs)

�

Curry a Function

Problem : You have a function argument that is a product type, but want to
apply the function to only part of that product.

Solution : Replace the product type with a curried form.

Discussion : The currying pattern used here is a lower-level of the choice pattern,
modelling product types.

Example : before

add : N× N→ N

increment : N→ N

∀m, n : N • add(m, n) = m + n

∀ n : N • increment n = add(1, n)

After

add : N 7→ N→ N

increment : N→ N

∀m, n : N • add m n = m + n

increment = add 1

�
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16.4 Other refactorings

Rename a Component

Problem : You have a specification component with a name that does not indicate
its purpose, or otherwise does not name consistently

Solution : Change the name.

Discussion : This refactoring is most useful in the early stages of specification.
Initial names choices can become inappropriate as the specification develops and
the purpose of a component is clarified. The refactoring may even be a response
to the overmeaningful name antipattern, in which the initial name contains more
“semantics” than its definition. The naming convention is often evolving at this
point: name consistently may be applied only once the naming conventions have
stabilised.

Steps :

• choose the new name

• update the naming convention documentation if necessary

• rename in the definition, and any indexes that refer to it

• propagate the name change throughout the specification and proofs.

A typechecker can help to find all the places the name needs to be changed.

�

Extract Commonality

Problem : You have a term, predicate or chunk that is used in several places in
the specification or proof.

Solution : Introduce a new definition to name meaningful chunks or name predi-
cates, and use that name in place of the term.

Discussion : Make sure the newly named term is a meaningful concept in its
own right, not just derived from a textual coincidence. Let the name capture this
meaning (and follow any naming convention pattern in use). The use of the name
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makes the specification more readable, and more concise.

The new name might be introduced as a global definition (possibly an entry in
a domain specific toolkit), a schema, a derived state component, a local definition
(existentially quantified), or a lemma (in which case the “name” occurs in the
informal commentary rather than the formal text).

Steps :

• create the new definition

• typecheck, to ensure there are no name clashes

• for each use of the term in the scope of the definition
– replace the use of the term with the name

– typecheck, to ensure the name has been used properly in this case

– propagate the replacement through the proofs (this may require the addi-
tion of an expansion step, replacing the name with its definition, at each
point in the proof when the definition is used)

Variants : A special case of this refactoring is Genericise Common Definitions,
used where several similar definitions acting on different types. The solution is to
define a generic construct that captures all the behaviours. This uses generics to
control detail.

�

Inline a Name

Problem : You have a name with a relatively simple definition, used only once or
a few times.

Solution : Remove the name, and replace its use(s) with its definition.

Discussion : This is essentially the Extract Commonality refactoring in reverse.
Getting the right size of chunking is an art. Too few names and the reader has to
puzzle out large swathes of mathematics. Too many names, and the reader has to
remember their meaning when puzzling out their uses.

Steps :

• for each use of the name
– replace the name with its definition
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– typecheck, to ensure the name has been used properly

• delete the definition of the name

• typecheck, to ensure no uses have been missed

�

Split a State Component

Problem : You have a state component that is a product type, where each com-
ponent is being referenced independently of the others.

Solution : Replace the single component with a separate component for each part
of the product.

Discussion : The parts of the product type are acting independently, and so do
not need to be bundled together.

Example : Structure before:

S == [ c : A× B ; . . . | P(c.1); Q(c.2); . . . ]

Structure after:

S == [ ca : A; cb : B ; . . . | P(ca); Q(cb); . . . ]

�

Merge State Components

Problem : You have two or more state components that are constantly being
referenced together.

Solution : Replace the separate components with a single product type component
(Cartesian or schema product).

Discussion : The separate components are acting as parts of a greater whole, and
so can be combined into that whole.

Example : Structure before:

S == [ ca : A; cb : B ; . . . | P(ca, cb); Q(ca, cb, . . .); . . . ]
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Structure after (Cartesian product):

S == [ c : A× B ; . . . | P(c); Q(c, . . .); . . . ]

Structure after (schema product):

C == [ ca : A; cb : B ]

S == [ c : C ; . . . | P(c); Q(c, . . .); . . . ]

If some of the predicate part can also be bundled, alternative structure after (Carte-
sian product):

C == { ca : A; cb : B | P(ca, cb) }
S == [ c : C ; . . . | Q(c, . . .); . . . ]

Alternative structure after (schema product):

C == [ ca : A; cb : B ; . . . | P(ca, cb) ]

S == [ c : C ; . . . | Q(c, . . .); . . . ]

�

Split a State into Substates

Problem : You have a large number of state components.

Solution : Structure the state into substates.

Discussion : This applies the name meaningful chunks and assemble from chunks
patterns. Smaller chunks of state may be easier to understand, and may simplify
operation definitions. Components that constrain each other, and components
that change together, are candidates for being in the same substate. Most state
predicates are on substates, with few on the global state. Also most operations
affect only a single substate, and the unchanging nature of the other substates can
be captured with a few Ξ schemas, rather than a long list of unchanging state
components (see Delta/Xi : change part of the state).

This refactoring may be followed by expand schemas slowly refactoring, to take
advantage of the opportunity to expand only the relevant substates (this may result
in some extra steps being added, as the substates are expanded one by one).

Steps :
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• define substate schemas; typecheck

• modify the state schema to use these; typecheck

• modify each operation schema to use these, including the use of ∆ and Ξ
substate schemas; typecheck

• define substate initialisation operations; typecheck

• use schema calculus to define the state initialisation operation using the sub-
state initialisations; typecheck

• propagate through the proofs

Example : before

S == [ x , y : Z; a, b : PZ | x ∈ a; y 6∈ b; a 6= b ]

Op == [ ∆S ; x? : Z | x ′ = x?; a ′ = a ∪ {x?}; y ′ = y ; b ′ = b ]

InitS == [ S ′ | x ′ = 0; y ′ = 1; a ′ = {x ′}; b ′ = ∅ ]

After

Sx == [ x : Z; a : PZ | x ∈ a ]

Sy == [ y : Z; b : PZ | y 6∈ b ]

S == [ Sx ; Sy | a 6= b ]

Op == [ ∆Sx ; ΞSy ; x? : Z | x ′ = x?; a ′ = a ∪ {x?} ]

InitSx == [ Sx ′ | x ′ = 0; a ′ = {x ′} ]

InitSy == [ Sy ′ | y ′ = 1; b ′ = ∅ ]

InitS == InitSx ∧ InitSy . . .

�

Move a State Component between Substates

Problem : You have a substate component frequently being used along with
components in another substate.

Solution : Move the component and any predicates into the other substate. This
normally has to be done as one step, since the specification is likely to inconsistent
during the move. The specification is only typechecked after the whole move.

�
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Split an Operation into Disjuncts

Problem : You have an operation with a top level disjunct amongst its predicates.

Solution : Split the operation into two parts, one for each disjunct.

Example : before

Op == [ ∆S | P; Q ∨ R; S ]

After

OpQ == [ ∆S | P; Q; S ]

OpR == [ ∆S | P; R; S ]

Op == OpQ ∨ OpR

�

Split an Operation into a Composition

Problem : You have an operation with some existentially quantified state com-
ponents that are acting as “intermediate” variables.

Solution : Split the operation into two on these components, and compose the
parts.

Discussion : This is effectively expanding out the definition of schema composi-
tion1.

Example : before

Op == [ ∆S | ∃ S 0 • P(θ S , θ S 0) ∧ Q(θ S 0, θ S ′) ]

After

Op1 == [ ∆S | P(θ S , θ S ′) ]

Op2 == [ ∆S | Q(θ S , θ S ′) ]

Op == Op1 o
9 Op2

1 This suggests there should be a similar refactoring for schema piping. However, since we have
yet to come across a realistic case of piping in a large specification, we leave out the description.
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�

Reorder Product Arguments

Problem : You have two functions, one with a product range, one with a product
domain, that you want to compose, but the products have their items in different
orders.

Solution : Reorder one of the products to match the other.

Example : before

f : X 7→ Y × Z
g : Z × Y 7→W
h : X 7→W

∀ x : X • ∃ y : Y ; z : Z | (y , z ) = f x • h x = g(z , y)

After:

f : X 7→ Y × Z
g : Y × Z 7→W
h : X 7→W

h = f o
9 g

�

Reorder Curried Arguments

Problem : You have a function that you want to partially apply, but the argument
order does not support that.

Solution : Reorder the arguments so that it can be partially applied.

Example : before

f : X 7→ Y 7→ Z
g : X 7→ Z

∃ y : Y • ∀ x : X • f x y = g x

After
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f : Y 7→ X 7→ Z
g : X 7→ Z

∃ y : Y • f y = g

�

Thin Early, Thin Often

Problem : You have a large, clumsy hypothesis in a goal you are trying to prove.

Solution : Thin the hypothesis as early and as often as is possible.

Discussion : Thinning declarations and predicates from the hypothesis has two
advantages: it keeps the hypothesis small and manageable; and it indicates more
clearly what remaining properties are still required to discharge the goal.

�

Move a Common Proof Step Before a Branch Point

Problem : You have a proof that has branched into several “cases” (for example,
when splitting up a disjunct in the hypothesis), and a similar step is used in each
branch (for example, cutting in a particular value).

Solution : Move the step before the case split, and do it only once.

Discussion : If the step is only “similar” in each branch, it is first necessary
to apply some other refactorings to make the step the same in each branch (for
example, by parameterising the proof on the case branch parameter) before this
refactoring can be performed.

�

Turn a Common Proof Step into a Lemma

Problem : You have a chunk of proof that is used in several places.

Solution : Extract the commonality as a lemma.
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Discussion : This is a special case of extract commonality . Make sure the lemma
is meaningful in isolation, and is not just a “textual macro”.

�

Schema expansion

Problem: You need to manipulate the internals of a schema, or schema expression.

Solution: Expand the schema.

Discussion: Sometimes it is necessary to present a schema in an expanded or
fully normalised form, to understand the internals, or to negate a schema, or to
calculate a precondition, for example. This refactoring should make use of the
Expand schemas slowly refactoring.

Steps:

• Expand the schema calculus operators, using their definitions.

• Expand schema components, by inlining included schemas.

• Expand toolkit definitions in declarations, and move the constraints to the
predicate part, leaving only type information.

�

Expand schemas slowly

Problem : You have a large or deeply nested schema that is being expanded, or
flattened, in a single step, resulting in the sudden appearance of a lot of (as yet)
unnecessary terms.

Solution : Expand the schema incrementally, exposing only those terms needed
at any given stage.

Discussion : This may require the prior use of the split a state into substates or the
split an operation into disjuncts refactoring, to provide parts that can be expanded
separately.

If the schema is used as a predicate in the goal’s hypothesis, consider duplicating
the required term outside the schema, rather than expanding the schema. Use the
term as required, then thin it.
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�

16.5 Refactoring as a proof technique

The concept of refactoring can be used when performing a (hand) proof. A proof
can be considered to be the documentation of a sequence of meaning preserving
transformations of a goal that improves its structure in a particular way, to the
predicate true.

Many proof steps can be applied in either a forward or backward manner, and
hence are meaning preserving. Examples include one-pointing or applying Leibniz
(replacing equals by equals), schema expansions, and various eliminations. Such
steps can be treated as refactorings. The presentation of the proof can be con-
structed by repeating the following steps:

• copy and paste the most recent form of the goal

• perform the desired refactoring by suitably editing the copy

• typecheck

For brevity of presentation, several refactorings (such as several one-pointings) may
be performed on a single copy of the goal. However, to make such a presentation
step comprehensible to reviewers, no single part of the goal changed by a refactoring
should be further changed by a subsequent refactoring in the same step (that is,
restrict multiple refactorings to distinct parts of the goal).

The names of the refactorings performed form part of the documentation of the
proof step.
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Benefactorings

Some benefactorings used in LFM projects are noted here.

Change a Type

Problem : A functionality change requires a component’s type to be changed.
For example, a simple type might need to be extended to a product type.

Solution : Before adding any new functionality, make the minimal change to the
type (so, add the new component throughout, but don’t use it yet).

Steps :

• modify the type in the abstract model; typecheck

• modify any global property proofs about the abstract model

• modify the type in the concrete model; typecheck

• modify any global property proofs about the concrete model

• modify the retrieve relation that links the modified types if appropriate; type-
check

• modify the refinement proof as necessary

�

Add a State Component

Problem : A functionality change requires a new state component.

Solution : Add the component, and perform the knock-on changes, without
adding any extra functionality based on the component.

113
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Discussion : This is the change a type refactoring applied in a slightly larger
context to adding a state component to a Delta/Xi specification, in order to add
more functionality.

Steps :

• add the component to the abstract model; typecheck

• add abstract constraints; typecheck

• modify any global property proofs about the abstract model

• add the component to the concrete model; typecheck

• add concrete constraints; typecheck

• modify any global property proofs about the concrete model

• modify the retrieve relation to link the new abstract and concrete compo-
nents; typecheck

• modify the refinement proof as necessary

�

Add an Operation

Problem : A functionality change requires a new operation.

Solution : Add the operation, and perform the knock-on changes.

Discussion : When following the Delta/Xi pattern, adding an operation has little
effect on the specification. If the model has theorems about global properties, it is
necessary to modify their proofs to ensure the properties still hold.

Variant : Steps for promotion

• add the new local operation; typecheck

• add a new framing schema, if necessary

• add the new global operation; typecheck

• modify any global property proofs about the model

Variant : Steps for refinement

• add the operation to the abstract model; typecheck

• modify any global property proofs about the abstract model
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• add the operation to the concrete model; typecheck

• modify any global property proofs about the concrete model

• add a new branch to the refinement proof to cover the new operation

�

Add a Function Argument

Problem : A functionality change a new argument to a function.

Solution : First add the argument, then add the constraints separately.

�
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Part III

Wrapping up





Chapter 18

Tool support

18.1 Introduction

The use of (generative sets of) patterns to produce Z specifications and to refactor
existing specifications goes some way towards facilitating the use of Z – particularly
in conjunction with existing Z tools.

However, commercial specification developers need more, and better-targetted,
tools. The required tools should both exploit and support patterns and refac-
toring:

• Where a pattern or some part of it is fixed-form, a tool should support it
directly (perhaps as a built-in generic instantiated by the user).

• Where a pattern provides a template, or where various forms apply in different
contexts, the tool should guide the user.

• New Z tools should aim to support documentation formats, presentation
patterns and alternation between well-defined choice patterns.

• Existing Z tools might be refactored to exploit similar patterns directly.

18.2 Existing Tool Support

Tool support for patterns is an important requirement for the (industrial) specifi-
cation development process. Manual application of patterns during development is
difficult – even simple things like name consistently can be overlooked, especially if
the naming convention is evolving with the specification. Conforming to patterns
during maintenance is even more difficult, especially if the particular patterns used
have not been documented.
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In the object-oriented community, there is work on integrating patterns into the
development process. Some schemes have been invented for encoding patterns in
classes, but the match is not good. Patterns are at a different level from the lan-
guage constructs. Mostly, naming conventions and comments are used to indicate
the presence or use of patterns in the code. But some tool support is possible, both
in software development and in formal notations. Rather than try to invent a new
general purpose meta-language to support the identified patterns, tool developers
should first concentrate on supporting the individual patterns explicitly.

Current Z tools are mostly syntax- and type-checkers, and proof tools. Compared
to programming language IDEs, they provide relatively unsophisticated develop-
ment environments.

The presentation patterns are supported to a greater or lesser extent by current
Z tools, but even there little is automatic. Existing tools format to expose struc-
ture: most LATEX-based tools, for example, [Spivey 1992a], give the user complete
control over line breaks, indentation and white space within phrases; other tools
such as CADiZ [Toyn 2001] and Formaliser [Stepney 2001] have automatic ‘pretty-
printing’ layouts, but they do not always give optimal readability, and are not
configurable to different layout standards. Similarly, provide navigation is sup-
ported in LATEX-based tools via the LATEX \index command and in HTML-based
tools via hyperlinks. Z-Eves [Saaltink 1997] has a good navigation interface. Name
consistently is partially supported by search and replace; such operations are even
more useful when scope-sensitive. Graphical tools for GUI design show how a tool
can automatically generate underlying code such that user changes to that code
are reflected back in the GUI design. A similar approach could be used to support
many of the Z patterns.

Z development process patterns are, surprisingly, the best supported, because many
of the identified patterns are validation patterns requiring proof, for which proof
tools exist. But even proof tools provide little explicit support for validation proof
patterns – they are general purpose, rather than sensitive to the particular proofs
required. There is some support for animation, ranging from conventions for semi-
automatic translation of Z to an executable form [West & Eaglestone 1992], [Hewitt
et al. 1997], to executable subsets of Z itself [Valentine 1992]. Making such con-
ventions and tools sensitive to particular structural patterns would greatly smooth
the process.

Z tools implement various patterns and refactorings. Tools such as CADiZ pro-
vide sanity checks such as precondition calculation, schema expansion, and other
rewritings that preserve the mathematical semantics of the Z specification. The
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current motivation for these refactorings is the need to provide normalised speci-
fication components for mechanised proof assistance. The profile of the software
engineering motivations needs to be raised!

18.3 A better way of supporting patterns

Template support for presentation patterns such as comment the intention could
be provided: addition of a declaration or predicate would cause a new comment
line to be provided, with a prompt to the developer to explain the addition (either
on the comment line or in an existing comment line). The tool should manage
the linking of comment lines to the Z lines; reordering of declaration or predicates
should cause corresponding reordering of their associated comments.

Tool support for choice patterns would allow users to change their minds. As a
trivial example, Formaliser can convert between a horizontal and vertical schema
display. Support for modelling product types, to assist in changing the representa-
tion between schemas and Cartesian products, could be implemented by adaptation
from existing tool support for schema expansion.

Architecture patterns are not yet well supported by tools. Delta/Xi is supported,
simply because its naming conventions are partly encoded in the Z core language,
yet tools need to ‘understand’ whether a particular schema is a state, an operation,
or a piece of scaffolding.

Interactive support in the form of state and operation templates, framing schema
templates for promotion, and function definitions broken down over free types for
morph, could all be automated. The Delta/Xi diagrams presented above show the
schema components and their interrelationships; these could form a framework for
“intelligent” architectural support, extending the existing tool facilities for tracking
named component usage in a specification.

One day, tools may be configurable to support different specification aims (read-
ability, provability, etc). They may be able to detect antipatterns in each style of
specification, and able to guide the developer to a better representation, based on
the patterns appropriate to that form of specification.
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18.4 Tool support for refactoring

A code refactoring can affect an entire program. For example, changing the name
of a method involves a change at every place that method is called. However,
although widespread, such a change is shallow. Deeper code refactorings tend to
be confined to small regions of code. It is by having small changes (either small in
depth, or small in breadth) that code refactoring is manageable.

Formal specification and proof refactorings tend to have more widespread effects,
because of the impact of a specification change on the proofs and later development
steps. For example, adding a component or predicate to the state may involve
adding it to the proof of every operation. Again, the changes tend to be shallow:
the addition will probably have little or no effect on most operations. However,
every proof needs to be checked, and this can be tedious without suitable tool
support.

Tools are currently being built to support code refactorings. For example, the
latest version of JBuilder includes a refactoring wizard; the Demeter tool (North-
eastern University, Boston, US) supports generic Java programming, and a range
of refactoring and reuse facilities [Demeter Research Group 1999]. Similar tool
support (within a proof tool) for formal refactoring would be a benefit. Such a
tool could support common refactorings such as those described earlier

Also important is support for pushing a relatively small change through the proof.
This requires facilities for parameterising tactics for machine-generated proofs.
This is a matter of on-going research.
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Conclusion

Z patterns have something in common with many of the software engineering pat-
tern languages.

• [Beck 1997]’s Smalltalk coding standards provide inspiration for commenting
and presentations

• [Gamma et al. 1995]’s design patterns are similar in intent to many of the
presentation and structural Z patterns

• [Larman 2001]’s UML patterns can be compared to the higher-level architec-
ture patterns, and the generative use of patterns

A Pattern Language for Z, which is essentially a packaging of existing language
elements and usage according to their context of use, will help to make explicit the
wider range of conventions and styles available. In addition, it will help to provide
good solutions to well-known recurrent problems.

Refactoring is a natural partner of patterns. The patterns provide refactoring
targets, and alert developers to potential refactorings. Everyone refactors, as un-
derstanding of the system being described or experience of the description language
evolves. The trick is to do refactoring in a controlled, reversible manner. This re-
quires tool support, for the modelling language, and for the development process
which is the context for the use of the language. It also requires a good under-
standing of,

• the purpose of the model (communication, proof, or whatever)

• the required form of meaning preservation, so that the legitimacy of the
refactoring can be demonstrated.
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Appendix A

Diagram illustrations

A.1 Delta/Xi pattern diagrams

This section illustrates the use of Delta/Xi : diagram the structure on a large real-
world specification, that of the electronic Purse in [Stepney et al. 2000].

It makes use of several features:

• dotted boxes for items not occurring explicitly in the specification

• indicating multiple similar schemas with overlapping boxes (and a naming
convention)

• splitting the diagram into three, and using rounded boxes to indicate overlap

• highlighting the use of the promotion pattern (shaded boxes)

A.2 Morph pattern diagrams

This section illustrates the use of Morph : diagram the structure on a medium-sized
example specification, that of the toy compiler in [Stepney 1993], and on a large
real-world specification, that of the real compiler in [Stepney & Nabney 2003].
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Figure A.1 Diagram of the structure of the abstract Purse model [Stepney et al. 2000,
chapter 3].
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Figure A.2 Diagram of the structure of the concrete Purse model, local state [Stepney
et al. 2000, chapter 4].
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Figure A.3 Diagram of the structure of the concrete Purse model, global state [Stepney
et al. 2000, chapter 5], promotion pattern highlighted.
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Figure A.4 Diagram of the structure of the Tosca command compile function, applied
to the choice command [Stepney 1993, section 11.4.5].
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Figure A.5 Diagram of the structure of the DeCCo Pasp program meaning function
[Stepney & Nabney 2003, section I.14.4].
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