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Abstract

We present a pattern-based approach to depicting the structure of formal spec-
ifications. We propose a diagram meta-pattern, and instantiate it to produce a
number of diagrammatic patterns for formal notations including B, CSP, and Z,
and composite notations Circus and CSP| |B. The ultimate objective is to support
practical use and reuse of specifications and their documentation.
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Chapter 1

Introduction

This paper is part of ongoing research on making formal techniques of software de-
velopment practically applicable. It brings together pattern concepts that address
the need for systematic, repeatable approaches to such developments, with forms
of illustration that can be used to summarise and explain formal text.

1.1 Diagrams are useful

We start from the observation that many people find diagrams useful to help them
understand complex structures.

We introduce patterns that can be used to produce diagrams that are helpful
abstractions of the formal text, and that can help to illustrate structure not im-
mediately visible from the text. These are the kinds of diagrams people sketch for
themselves when trying to understand a new concept in the formal text or formal
model; in some cases, authors already provide these kinds of illustrations.

There are numerous kinds of model in a computer system development, repre-
senting different stages of development, different aspects of the system, different
viewpoints, and different approaches to modelling. Diagrams can be used to sum-
marise the structure of the formal model, to emphasise important parts of the
model, whether structurally (the core or current focus of the formal text), or in
terms of the domain modelled (for example, a controlling part of the system, the
critical security or safety aspects of the system, or certain functionality).

In a diagram, it is easier than in formal text to apply typographic tricks to place or
reduce emphasis, by, for example, use of scale, colour or shading – this is evident
in computer-based presentations where current focus is highlighted visually using
colour variations etc. Our diagrams are treated as part of the informal supporting
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2 Chapter 1. Introduction

commentary; they are not automatically generated from the formal text. (This
should be contrasted with approaches where the diagrams themselves have ‘rigor-
ous’ interpretations, for example, UML.) The author chooses which elements to
emphasise, and which to elide, the better to explain the formal text to the reader.

Such diagrams can also contribute to the development process. An infelicity in the
appearance of a diagram may indicate a corresponding infelicity in the structure
of a model. If a diagram is produced after the model is completed (as is the case
of all the examples in this paper), the result may indicate a refactoring opportu-
nity: a chance to improve the model during subsequent development [Fowler 1999],
[Stepney et al. 2002].

1.2 Patterns

The concept of patterns [Alexander et al. 1977] is increasingly used in computer
systems analysis and development [Fowler 1997], [Gamma et al. 1995], [Coplien &
Schmidt 1995], [Martin et al. 1998]. Patterns are characteristics of models that
engineers wish to highlight. Sometimes a pattern is borrowed from another devel-
opment (directly or via a pattern catalogue); sometimes it is simply a metaphor for
a section of a one-off design – it may subsequently become a catalogued or reused
pattern.

As with any work on patterns, this paper offers a new presentation of existing
material. Existing concepts are applied to known formal idioms and structures,
and general conclusions drawn that are of relevance to wider work on patterns and
their representation, as well as for the practical use of formality.

Our experience of formal modelling indicates that patterns make formal modelling
more practically attractive and help in the development of commercially-relevant
support tools for formal specification, formal analysis, and formal development
[Stepney et al. 2003a], [Stepney et al. 2003b], [Stepney et al. 2003c], [Valentine et
al. 2004]. Diagrams are visual aids to representation or understanding of models.
Our experience with software engineering patterns suggests that diagrammatic
visualisations are a useful part of pattern descriptions, helping to record how the
patterns are used. Our goal is, therefore, to identify diagrammatic representations
for the identified formal patterns.

Our work on diagrams and diagram patterns for formal methods indicates that
many of the desirable characteristics of the diagram patterns are also desirable
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specification supporting documentation
formal schema : Z scope proof trees etc
informal diagram patterns

Table 1.1 Examples of formal and informal diagrams used in the specifica-
tion, or the supporting documentation

Item Relationship
UML class diagram classes associations, inheritance
UML sequence diagrams objects, messages temporal order
UML activity diagrams activities temporal ordering and flow
Cleanroom diagrams functions stimuli and responses
Jackson structures states decomposition, temporal order
Venn diagram sets union, intersection, etc
refinement square states operations, retrieve relation

Table 1.2 Examples of abstract items and relationships

characteristics in other areas of system modelling. The use of diagrams with for-
mality must be undertaken in an informed way; this is equally true where concepts
specified diagrammatically are re-engineered into formal descriptions. Table 1.1
summarises the potential interactions of formal text and diagrams.

We present many existing diagramming concepts and styles as patterns; we also
introduce a few new contributions for the various formal notations.

1.3 Meta-concepts for diagrams

Many diagrams express two concepts of interest: the items, and the relationships
between them. Table 1.2 gives abstract syntactic components of some common
diagrams. In general, a suitable notation can be designed by deciding a graphical
representation for the items and the relationships.

Table 1.3 gives some well-known concrete syntactic representations. We use this
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Item Relationship Example
polygon line, arrow UML class diagram,

Cleanroom diagram
boxes lines, position Jackson structures
polygon polygon Venn diagram
polygon (position) activity diagram
box arrow commuting square

Table 1.3 Examples of concrete representations of items and relationships

observation, that diagrams represent items and relationships using graphical sym-
bols, to define a pattern for defining diagrams (section 1.4).

It is useful to remember that an abstract syntax can be represented by more than
one concrete syntactic scheme. Equally, one concrete syntax can be used to rep-
resent different abstract concepts. This is both a strength and a weakness of
structural diagrams. Metaphors can be introduced into new diagram styles with
the deliberate intention of referencing another abstract syntax; however, metaphor-
ical usage can also be assumed where none is intended. For example, data flow
diagrams (in SSADM [CCTA 1990, Goodland & Slater 1995] or Yourdon [Your-
don 1989]) represent processes as boxes or ellipses, and data flow as arrows; many
readers assume that the relative location of the processes on the page implies an
ordering in their calling; in fact, there is no notational convention (in the cited
methods) for identifying the triggering input(s) of a process or a sequence of pro-
cesses. A pattern gives a concise summary of the author’s intent for the notation,
and may counter such mis-readings.

Observe that diagrams that try to express three concepts (perhaps, items plus
static and temporal relationships) tend to be harder to read and construct than
those which express only two concepts. For example, Jackson diagrams, used for
entity life histories in methods such as SSADM, represent life-cycle components as
boxes, organised into hierarchies using lines for static links. The life-cycle of an
entity is described by the left-right position of the lowest leaves of every subtree in
the hierarchy.
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1.4 Meta-pattern ideas

In [Stepney et al. 2003c], [Stepney et al. 2003a] we introduce a terminology and
notation for formal specification patterns. Textually, each pattern has a double bar
header, several line-delimited sections, and ends with a 2. Here we extend that
notation to allow meta-patterns: patterns for writing patterns. The approach is
similar to the general-purpose “pattern language for writing patterns” of [Meszaros
& Doble 1998]. The meta-pattern is itself a pattern (distinguished from an ordinary
pattern by its triple bar header), and its solution part includes an ordinary pattern
template that can be instantiated to produce specific patterns.

Our meta-pattern for writing diagram patterns that capture the structural aspects
of formal specifications is called Design the diagram.

Design the diagram

Intent

Give guidance for writing instantiated Diagram the structure patterns for particular
formal modelling concepts.

Problem

It is difficult to visualise the structure of a large, complex specification. It can also
be difficult to comprehend the details at a lower level. Diagrams help in many
cases, but it is important that the diagram provides the right level of abstraction,
and does not hinder understanding.

Solution

• Identify the Items and Relationships to be represented in a diagram.

• Identify how Items and Relationships are to be represented

• Instantiate the following template pattern, by providing values for the parts
in angle brackets:

〈X〉 : Diagram the structure
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Intent

Summarise [the 〈A〉 aspect of] the structure of a 〈X〉 specification
using a diagram.

Problem
〈An explanation of why that aspect of the structure benefits from

being expressed diagrammatically.〉

[Example]

〈A typical case of a description (specification etc) that contains the
structure but in which the structure is not as clear as it could be.〉

Solution

• The items are 〈ITEM〉. Represent them as 〈DIAGRAM ELEMENT
(ITEM)〉. [Label them with 〈ITEM LABEL〉.]

• The relationships are 〈RELN〉. Represent them as as 〈DIAGRAM
ELEMENT (RELN)〉. [Label them with 〈RELN LABEL〉.]

• [Use 〈EMPH〉 to emphasise aspects of interest.]

Illustration
〈Diagram the pattern structure〉
〈Diagram the example instance of the problem〉

[Constraint]

〈Give cases where the pattern is not useful.〉

[Variants]

• When the specification contains 〈VAR〉, use 〈DIAGRAM ELEMENT
(VAR)〉 to diagram it.

• Elide 〈DIAGRAM ELEMENT〉 under 〈CIRCUMSTANCE〉.

[Related pattern]

〈If the recommended pattern is derived from an existing diagram-
matic pattern, make the derivation clear: this should illuminate metaphor-
ical aspects if these exist.〉



1.4 Meta-pattern ideas 7

[Specimens]

〈Give examples in the literature where these, or similar, diagrams
are used or defined.〉

2

Illustration

The rest of this paper gives instantiations of this pattern.

Constraint

This pattern applies only to things that follow the ‘item, relationship’ metamodel.
Don’t try to diagram too much detail.

Related pattern

The generated pattern should be a sub-pattern of a structural, or chunking, pattern
in the relevant notation.

2

To illustrate instantiation of the meta-pattern, we choose examples drawn from the
B, CSP and Z specification languages, and from the Circus (Z+CSP) and CSP| |B
(B+CSP) combined languages.



Chapter 2

Application of Diagram Patterns
to B

In the B method [Abrial 1996], [Schneider 2001], language and usage is tightly
constrained to facilitate automated construction and discharge of proofs of consis-
tency. In effect, the principal patterns of usage are built into the method by the
support tools.

The aspect of B that can be most enhanced by diagrams is the structure of machines
within a specification (or development – the B method supports specification, re-
finement and code generation). A number of diagrammatic styles appear in the
literature. Laleau et al. [Laleau 2002], [Facon et al. 2000] use boxes to represent
machines, and different styles of arrow to represent different machine structurings.
An alternative diagrammatic approach, using nested ellipses and arrows, is used in
[Polack 2003]. Here, we present a pattern based on diagrams in [Schneider 2001].

B : Diagram the structure

Intent

Summarise the machine structuring of a B specification using a diagram.

Problem

A B specification may comprise many machines, interlinked by B concepts such
as USES, INCLUDES, EXTENDS and PROMOTES. The overall machine
structure is hard to deduce from the B notation alone (or from machine dependency
summaries produced by existing support tools).

Example

8
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The following extends Schneider’s registrar example [Schneider 2001, chapter 11].
The specification comprises B machines modelling aspects of a population registra-
tion system. We summarise the relevant B machines, giving only their structuring
clauses, key state elements, and operation headers.

A machine, Life, defines the variables man and woman, and operations born and
die that add and delete instances:

MACHINELife
SETSPERSON ; SEX = {male, female}
VARIABLESman,woman
. . .
OPERATIONS

born()
die()

END

The machine Marriage needs access to the Life data structure but does not change
its state; it has a USES clause referencing Life:

MACHINEMarriage
USESLife
VARIABLESmarriage
. . .
OPERATIONS

wed()
part()
partner()

END

The overall system machine, Registrar, specifies an interface to the operations
of the Life and Marriage machines. The EXTENDS clause indicates that the
Marriage machine is included, such that all its operations are promoted unaltered
to the interface of Registrar. Registrar defines the effect on a marriage of the
death of one of the partners in the externally-visible operation, dies. This calls
the die operation of the Life machine. Registrar gains access to the operations of
Life using an INCLUDES clause. The other operation of Life, namely born, is
promoted to the interface in a PROMOTES clause.
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MACHINERegistrar
EXTENDSMarriage
INCLUDESLife
PROMOTES born
OPERATIONS

dies()
END

Finally, there is an independent Dating machine. This machine accesses data
relating to unmarried individuals, and provides an operation, match. Dating has
its own interface to the outside world:

MACHINEDating
USESMarriage,Life
VARIABLES boyfriend , girlfriend
. . .
OPERATIONS

match()
END

The example demonstrates the different ways by which machines are interlinked:
USES for accessing but not changing state; INCLUDES for access to operations,
with PROMOTES to indicate which operations are externally visible to the in-
cluding machine; EXTENDS to encompass INCLUDES and PROMOTES when
all operations of the included machine are to be promoted. The nesting and the
external interfaces are difficult to visualise in the standard machine structures.

Solution

Use boxes to represent B machines. Represent interfaces among machines as fol-
lows:

• represent INCLUDES, and the including element of EXTENDS, by nesting
the included machine inside the including machine

• indicate USES by an arrow from the using to the used machine

In addition, show the operations of each machine as tabs from the side of the ma-
chine in which they are defined, protruding as far as they are accessible. Thus,
the operations of a machine that is referenced in the EXTENDS clause of an-
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part

wed

dies

born

partner

die

match

Registrar

Dating

Marriage
Life

Figure 2.1 B diagram: the example’s B machine structure (extended from
[Schneider 2001, p171])

other machine protrude to the outside of the extending machine, as do operations
referenced in a PROMOTES clause.

Label machines and operations with names from the B machines.

Use positioning to emphasise aspects of interest. For example, it may be helpful
to direct USES arrows downwards from the using to the used machine.

Illustration

Figure 2.1 extends the diagram from Schneider’s example; the Dating machine has
been added to illustrate the USES clause in full.

Constraint

Because of the nesting of boxes, the diagrams would be inappropriate for high
degrees of machine inclusion.

2



Chapter 3

Application of Diagram Patterns
to CSP

Communicating Sequential Processes (CSP) [Hoare 1985], [Roscoe 1997], [Schnei-
der 2000] is an algebra for expressing features of concurrent systems, including
protocols and other communicating programs. The commercial potential of CSP
is enhanced by Roscoe’s model checker, FDR, which analyses the failure-divergence
refinements of CSP specifications [FDR 2000], [Roscoe 1994].

CSP models processes and traces. To date, we have not found any useful diagrams
for CSP trace models. This may be an example of where the textual form is
more useful than a diagrammatic form. However, CSP process models do lend
themselves to the use of diagrams (as, indeed, was recognised by CSP’s inventor
[Hoare 1985, section 1.2]). See also [Brooke & Paige 2002].

A CSP process specification has two main levels of structure.

• a single sequential process and its state transitions

• a collection of processes communicating by shared events on named channels

We define a pattern for each of these, and then illustrate their combination into
the full CSP pattern.

12
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3.1 Processes: state transitions

CSP Transitions: diagram the structure

Intent

Summarise the structure of a CSP process state transition specification using a
diagram.

Problem

A CSP process specification contains a description of a process’s internal behaviour.
It can be difficult to determine the structure of a whole process from the structure
of its parts.

Solution

The representation of states and state transitions is adapted from the Harel Stat-
echart [Harel 1987] and UML state diagrams [Booch et al. 1999] notations.

• Represent states as rounded boxes, labelled with the state name.

• Represent transitions as arrows between the states, labelled with the events
and guards. Indicate the initial state by an incoming arrow, if necessary.
Label the arrow with an event, or sequence of events, or choice of events, if
appropriate.

• Indicate termination by an outgoing arrow, to a successful termination Skip
symbol (circle) or a deadlock Stop symbol (square).

Illustration

Figure 3.1 illustrates these components for a process P defined as follows.

P = e → R

R = (f → g → S ) 2 (h → Q) 2 (j → Q)

S = term → Skip
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Figure 3.1 CSP Transitions: a sequential process, showing event transitions,
states, and Skip and Stop termination.

Q = die → Stop

Variant: Interrupts

Communication protocols often require the modelling of interrupts – higher-priority
events or transitions that must be serviced before the current event has been fully
serviced. Represent interrupts as transitions from outer boxes (the Harel conven-
tion).

For example, [Schneider 2000, section 3.4] specifies a writing protocol with an
interrupt:

process
Var = write?x → (Var(x ) 4 Var)

process
Var(x ) = read !x → Var(x )

The interrupting transition is shown in figure 3.2 as an event arrow from the outer
box, having ‘higher priority’ than the transition from the inner box.

A more complex interrupt structure is modelled in the Junior2 specification of [Schnei-
der 2000, section 3.4]:

process
Junior = Tasks 4 x : {ring , boss} → P(x )
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Figure 3.2 CSP Transitions: Schneider’s Var specification.

Figure 3.3 CSP Transitions: Schneider’s JUNIOR specification.

process
Tasks = tea → Tasks 2 copying → Tasks 2 filing → Tasks

process
P(ring) = message → Junior
P(boss) = takeCoat → hangCoat → Junior

process
Junior2 = Junior 4 fire → (real → home → Skip

2 drill → Junior2)

The two levels of interrupting transition are clear in figure 3.3.

2
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3.2 Processes: communication channels

CSP channels: diagram the structure

Intent

Summarise the structure of a CSP channel communication specification using a
diagram.

Problem

CSP specifications contain descriptions of processes communicating with others
using a variety of shared synchronised events. It can be difficult to determine the
structure of a whole specification by examining the structure of its processes.

Solution

The representation of processes and communication channels is an obvious gener-
alisation of the kind of block diagrams used by CSP authors [Schneider 2000].

• Enclose each sequential process in a rectangular box.

• Draw replicated processes with overlapped boxes.

• Indicate the communication channels as lines between communicating process
boxes, with arrows if the communication has a direction (rather than being
just a synchronisation event).

• Draw hidden channels inside the box representing the process that hides
them. Extend externally visible channels outside the process box.

• By default, do not distinguish replicated channels from single channels: the
CSP gives the details.

Illustration

Figure 3.4 illustrates these components for a process OuterProc defined as

OuterProc = (‖n Proc(n) ‖ Proc2) \ {mid}

where the Proc(i) have channels in and mid , and Proc2 has channels mid and out .
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Figure 3.4 CSP Channels: parallel communicating processes, showing repli-
cated processes and channels.

Figure 3.5 CSP Channels: a Dining philosophers specification. The philoso-
pher and fork processes are replicated.

Variants: Replication

• Indicate replicated channels with multiple heads or tails, if necessary (not
illustrated).

• ‘Explode’ replicated or labelled processes to show the constituent parts, if
necessary. For example, figure 3.5 shows the well-known dining philosophers
example [Hoare 1985, section 2.5], drawn with replicated processes; figure 3.6
shows an exploded variant.

2
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Figure 3.6 CSP Channels: exploded variant of the Dining philosophers
specification. The philosopher and fork processes are unfolded into separate
processes.

3.3 Processes: full diagrams

CSP: diagram the structure

Intent

Summarise the structure of a CSP specification using a diagram.

Problem

CSP specifications contain descriptions of various processes, each with its own
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internal behaviour, each communicating with certain others on a variety of shared
synchronised events. It can be difficult to determine the structure of a whole
specification from the structure of the processes and their parts.

Solution

• Use CSP Transitions: diagram the structure for the internal structure of a single
process

• Use CSP Channels: diagram the structure for the communication structure
between parallel processes (enclose the relevant process CSP Transitions di-
agram in the communicating process rectangular box)

• When two specifications have a refinement relationship between them, draw
the individual specifications as before, and indicate the refinement relation-
ship by position on the page, by drawing the more abstract specification
above the more concrete specification, and drawing the appropriate refine-
ment symbol between them

• If it is necessary to emphasise the state transitions over the communications,
reverse the weights of the arrows.

Illustration

Figure 3.7 illustrates the CSP Purse specification from [Srivatanakul et al. 2003],
given in appendix B.

An exploded variant of the Purse diagram, figure 3.8, shows how the various sub-
states engage in the parallel composition.

2
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Figure 3.7 CSP diagram: the Purse specification. Sequential processes are
shown as state transition diagrams; parallel communication channels are bold
arrows; refinement is shown by relative position
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Figure 3.8 CSP diagram: the refined CSP Purse specification, exploded
view. The Purse state is unfolded into separate parallel processes; the sub-
states are shown in the appropriate process.



Chapter 4

Application of Diagram Patterns
to Z

The Z notation is similar in origin to B, but does not have the constraining influence
of mechanised proof obligation generation. Z is used to produce precise but flexible
specifications, that can support refinement and proof if needed. Implicit patterns
of use have emerged in Z texts [Spivey 1992], [Barden et al. 1994], and in tool
implementations.

4.1 Z graphical notation

The Z formal notation already includes a graphical component, in that certain
chunks of specification (vertical schemas) are enclosed in boxes:

SchemaName
declaration1
declaration2
. . .

predicate1
predicate2
. . .

This notation aids the readability of Z, by making the separation between the
schema items obvious. However, the relationship between the items is not very
clear. The diagram patterns are designed to overcome this limitation for a variety
of ways of defining items and their relationships in Z.

22
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4.2 The Delta/Xi pattern

The first Z pattern provides diagrammatic summaries of the most common style of
Z specification, the state-and-operations or Delta/Xi style. This comprises schemas
defining the state (as above). Operations are also defined in schemas which use the
names of state schemas, prefixed with ∆ (if the operation can change the state) or Ξ
(if the operation does not change the state). The prefix indicates the introduction of
before- and after-states, and, in the case of Ξ, predicates equating the components
of the before state to those of the after state. In addition, any named schema
can be included in other schemas (declarations are concatenated; predicates are
conjoined), and can be used in most Z structures requiring a mathematical set or
relation.

The Delta/Xi pattern underlies many other patterns, including promotion and
refinement patterns [Stepney et al. 2003b], [Stepney et al. 2003c]. Some of these
give rise to variants, or to separate diagram patterns.

Delta/Xi : diagram the structure

Intent

Summarise the structure of a Delta/Xi specification using a diagram.

Problem

A Z specification is written ‘bottom-up’ (declaration before use) and can be fac-
tored into many pieces. Components are included in various other components, so
that it becomes difficult to see the overall structure.

Solution

The diagram records the structure of the state and operation schemas, highlighting
any Delta/Xi-related patterns used. The notation is adapted and extended from
that used by [d’Inverno & Luck 2001].

Use different polygons to distinguish kinds of schema purpose:
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• Draw state schemas as named rectangles

• Draw operation schemas as named hexagons

• Draw other data types as named parallelograms

• Where appropriate for clarity, use extra structuring schemas not defined in
the specification. Indicate these by a dashed box. (Use of the Delta/Xi : strict
convention sub-pattern means that ∆S and ΞS boxes are always dashed. The
occurrence of other dashed boxes might indicate a refactoring opportunity.)

Use arrows to represent structural links:

• for schema inclusion, use solid arrows pointing from the including schema to
the included schema
– for state inclusion, use a single line

– for an operation including a state schema, S , via ∆S (and thus intro-
ducing a before- and an after-state), use a double line and a triangular
‘Delta’ arrowhead, pointing to the rectangle, S .

– for an (initialisation) operation that includes only an after-state (S ′), use
a single line and an after-state ′ by the arrowhead

– for clarity, elide an arrow directly to a box if there is an alternative path
to that box

• Indicate other relationships among schemas by dashed lines from the referring
construct to the referenced schema

Use highlighting (line thickness, box shading) to distinguish important parts of the
diagram

• If a description uses a pattern described with a related or derived diagram-
matic form, the diagram of the description can be constructed by instantiating
the structure of the pattern. Use highlighting to distinguish the pattern from
other structural elements

• Highlight the full operations, as contrasted to intermediate definitions

Use a positional convention. Where possible, without distorting the diagram, draw
inclusion arrows upwards, so that the simplest schemas are at the top of the dia-
gram, and constructs that are more complex are further down the page. (This is
to help the reader; position is not intended to express any structural information.)

Illustration
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Figure 4.1 Z Delta/Xi diagrams: (a) schema T includes schema S , (b)
schema T references schema S (c.1) operation Op includes ∆S , (c.2) several
operations Opi include ∆S , (c.3) initialisation operation Init includes S ′

Figure 4.1 shows the pattern representations of the commonest structural compo-
nents of Delta/Xi Z specifications:

• First, schema T includes schema S , either as declaration as T == [ S ; . . . |
. . . ], or as a predicate as T == [ . . . | S ∧ . . . ].

• Then schema T refers to schema S other than by inclusion, for example as
T == [ f : x 7→ S . . . | . . . ].

The three operation illustrations are:

• operation schema Op includes schema S as Op == [ ∆S . . . | . . . ];
• multiple schemas Opi have precisely the same relationships with other schemas,

so their names can be listed in the same box, thereby drawing attention to
their similar structures;

• an initialisation schema Init includes schema S as Init == [ S ′ . . . | . . . ].

Appendix C, figures C.1–C.4, give an example of the use of the diagrams to express
the structure of a large specification, the purse [Stepney et al. 2003c].

Variants

• The notation can be extended to show conjectures.
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Figure 4.2 Z Delta/Xi diagrams: (a) The refinement pattern in full, showing
the refinement relation R and the refinement conjecture; (b) the abbreviated
pattern, showing the refinement relation, and the conjecture replaced by a dotted
line between abstract and concrete operations

– Draw a conjecture in an oval, labelled with a suitable name, pointing to
any referenced schemas (see Appendix C, figure C.2), or the refinement
conjecture in Figure 4.2.

• The notation can also be extended to show only the refinement relation, for
the refinement pattern elaboration.
– Elide the refinement conjecture, and use a dotted line to indicate the

relationship between abstract and concrete operations (figure 4.2).

• For large specifications, a diagram may be split into sub-diagrams for clarity,
perhaps using a separate diagram for each operation, or family of operations,
reproducing relevant parts of the diagram.
– Represent schemas or other data type boxes occurring in more than one

sub-diagram as rounded corners drawn inside the boxes (see Appendix
C).

2
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4.3 The Delta/Xi pattern, State Transition viewpoint

Occasionally it is useful to diagram the implicit underlying state transition relation
in a Delta/Xi pattern specification. A similar diagram to the CSP Transitions
diagram is used.

Delta/Xi Transitions: diagram the structure

Intent

Summarise the state transition structure of a Delta/Xi specification using a dia-
gram.

Problem

The Delta/Xi pattern defines a state and operations on that state. This can be
considered as a state transition relation, although the actual sub-states and tran-
sitions are usually implicit. Sometimes they are not, and it can be useful to draw
a diagram of the actual state transition relations.

Solution

The (sub-)states, and the state transitions, governed by operations, are represented
as follows.

• Represent states and sub-states in rounded boxes, labelled with the schema
name of the state, or the predicate distinguishing the sub-state. Nest sub-
states inside their states.

• Represent transitions with arrows between states. Draw a transition that
may occur from several sub-states (that is, an operation whose precondition
is true in several sub-states) from the largest including sub-state. Label the
arrow with an operation, sequence of operations, or choice of operations, as
appropriate.

• Indicate initialisation to the initial state by an incoming arrow, if necessary.

• Indicate finalisation by an outgoing arrow to a termination symbol (circle).
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Figure 4.3 Z Delta/Xi Transitions diagram: showing operation transitions
and sub-states, initialisation, and finalisation

Figure 4.4 Z Delta/Xi Transitions diagram: the concrete unpromoted Purse.

Illustration

Figure 4.3 shows the basic notations.

[Stepney et al. 2000] gives a Z specification of an electronic Purse and its refinement.
The concrete unpromoted Purse is diagrammed in figure 4.4.

Related Pattern

CSP Transition: diagram the pattern, section 3.1, above.

2
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4.4 The Promotion pattern

Simple Z state and operation specifications can be combined into a system specifi-
cation using promotion. Promotion is a special case of the Delta/Xi pattern, and
is described in [Stepney et al. 2003b].

Promotion : diagram the structure

Intent

Summarise the structure of the promotion pattern using a diagram.

Problem

Using Z promotion pattern adds a certain amount of surface complexity to the
specification, which can make it hard to follow.

Solution

Use the layout illustrated in figure 4.5 to separate the local state and operations,
the framing (Φ) schemas, and the global system state and operations.

Illustration

Figure 4.5 shows two instances of promotion. The first shows the structure for
update operations; the second shows the special form for initialisation (creation of
new local instances).

Promotion is used in the Purse diagrams, Appendix C – figure C.1 summarises the
entire Purse specification structure, exposing the promotion structure; figure C.4
details the concrete specification, highlighting the promotion components.

Related Pattern

Delta/Xi: diagram the pattern provides the basic notations.
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Figure 4.5 Z diagram: (a) structure of the promotion pattern (b) structure
of the promotion pattern, for the initialisation operation

2

4.5 The Morph pattern

The Morph pattern could be used for any functional specification – translations,
mappings, functions. Some diagrams already exist for morphs, for instance, Clean-
room boxes [Prowell et al. 1999] represent functions and function decomposition.
For Z morphs, we use a variant of these notations, focusing on the component
functions and the data inputs and outputs. The decomposition is static, unlike
the evolving Cleanroom diagrams. Morph diagrams provide visual assurance that
the system-level stimulus/response mapping is preserved by the combination of the
lower level functions.

Z Morph : diagram the structure

Intent

Summarise the structure of a Z specification that uses the Morph pattern using a
diagram.



4.5 The Morph pattern 31

Problem

A morph, such as a compiler specification, is a mapping that itself comprises many
lower-level mappings. The bottom-up style of Z gives clear expression to low-
level mappings, but the relationship of each low-level component to the whole is
concealed in the detail.

Solution

Construct a diagram to record the structure of the functions, highlighting how
their inputs and outputs are related.

Represent functions by polygons:

• draw the highest level mapping or function of interest as a grey background
rectangle

• draw named component functions used in the definition as named rectangles

• draw other functions, or parts of the specification that may be considered as
functions, as named ovals (these may indicate refactoring opportunities).

Represent inputs (stimuli) and outputs (responses) by arrows:

• draw input arrows into the box; if the input is a constant, draw it emanating
from a constant source (indicated by a blob)

• draw output arrows out of the box; if the output is not used, draw it falling
into a sink (indicated by a blob)

• label lines with any intermediate names introduced in the specification, as
appropriate

Use different line styles to highlight different argument types. Decorate line junc-
tions representing duplication or separation of component input items:

• use an ‘exploding star’ symbol to ‘explode’ a product type input into its
components

• use a ‘plus’ symbol to copy (fork) an argument into several different functions

Use a positional convention as much as possible so that, without distorting the
diagram, the arguments flow from left to right. First, minimise the number of
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crossing lines, and then as far as possible have arguments entering boxes in the
correct order.

Illustration

Figures D.1 and D.2 (Appendix D) show Z morph diagrams for two functions in a
compiler specification.

Variants

The notation can capture special features of functional specification. For example,
curried functions can be drawn as nested functions.

2



Chapter 5

Application of Diagram Patterns
to Circus

Circus [Cavalcanti et al. 2002], [Woodcock & Cavalcanti 2002] is a combination
of Z and CSP, with a strict formal semantics in the style of Unified Programming
[Hoare & He 1998]. One Circus style describes the state transitions in Z (Delta/Xi),
and communication between processes as CSP events. When Circus is used in this
style, the diagram pattern comprises the appropriate CSP diagram patterns and
Delta/Xi: diagram the structure.

Circus: diagram the structure

Intent

Summarise the structure of a Circus specification using a diagram.

Problem

Circus specifications contain descriptions of various processes, each with its own
internal state and behaviour, each communicating with certain others on a variety
of shared synchronised events. It can be difficult to determine the structure of a
whole specification from examining the structure of its parts.

Solution

There are two kinds of structure to a Circus specification.

• For a single sequential process, the state transition structure is specified as
a Z Delta/Xi style. Use the corresponding Delta/Xi : diagram the structure
pattern.

33
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Figure 5.1 Circus diagram: the Buffer specification. The state and opera-
tions structure is shown using Z Delta/Xi diagrams; the transitions are shown
using CSP diagrams, with the relevant Z operation.

• For a collection of sequential processes communicating by shared events on
named channels, the communications are specified in CSP style. Use the
corresponding part of the CSP : diagram the structure pattern.

Illustration

[Cavalcanti et al. 2002] use Circus to specify a buffer. A diagram of this specifica-
tion is shown in figure 5.1.

Constraint

This diagram pattern is appropriate only when the Circus specification is written
using the relevant Z pattern. (Other patterns for Circus specifications are being
developed.)

2



Chapter 6

Application of Diagram Patterns
to CSP| |B

CSP| |B (Communicating B machine) [Treharne & Schneider 2000], [Schneider &
Treharne 2002], [Treharne et al. 2003] is an informal combination of B and CSP. It
describes the state transitions in B, and communication between processes in CSP.

The CSP| |B diagram pattern combines the appropriate CSP diagram pattern and
the B diagram pattern.

CSP| |B: diagram the structure

Intent

Summarise the structure of a CSP| |B specification using a diagram.

Problem

CSP| |B specifications contain descriptions of several B machines, each with its
own internal state and behaviour, communicating with certain others on a variety
of shared synchronised events. It can be difficult to determine the structure of a
whole specification from examining the structure of its parts.

Solution

There are two kinds of structure to a CSP| |B specification.

• For a single sequential process, the state transition structure is specified as a
B machine. Use the B: diagram the structure pattern.

35
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Figure 6.1 CSP| |B diagram: a combination of the CSP and B diagrams.

• For a collection of sequential processes communicating by shared events on
named channels, the communications are specified in CSP style. Use the
corresponding CSP : diagram the structure pattern.

Illustrations

The basic notation is illustrated in figure 6.1.

The “Bank Counter” CSP| |B specification from [Treharne et al. 2003] is dia-
grammed in figure 6.2.

2
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Figure 6.2 CSP| |B diagram: the Bank Counter specification. Sequential
processes are shown as B machine diagrams; parallel communication channels
are shown as CSP bold arrows.



Chapter 7

Conclusions

This paper presents diagrammatic patterns for a number of well-known and recent
formal notations and conventions. We show how the basic structure of a formal
specification can be captured and emphasised. The ability of some of these patterns
to illustrate the structure of one of the largest Z specifications published to date
(appendix C) gives us confidence in their scalability.

We have also shown how more advanced concepts can be added, either by extending
existing diagram notations, or by combining patterns. The ability to combine the
separate diagram patterns for combined languages (as for Circus and CSP| |B)
gives us confidence that these patterns are robust.

The diagram patterns are defined according to the Design the Diagram meta-
pattern. This gives a consistent style of presentation, and assists in the construc-
tion of catalogues and other pattern support. Our diagram patterns are derived
from diagrams in the literature, and the kinds of diagrams people sketch when
explaining, or trying to understand, specifications.

An important feature of Diagram the structure patterns is that these are informal
diagrams, not an alternative formalism. Consistency of notational usage is not
generally of great import, so long as the required structural highlighting is achieved.
Completeness is usually not needed: completing a diagrammatic representation
with “clutter” hides the structure rather than emphasising it.

We have drawn our diagrams from existing formal specifications. However, the
patterns are intended for use during specification development. Diagrams drawn
post hoc may not look as elegant as ones prepared as part of the development, but
they may be used to indicate refactoring opportunities.

Diagrams can be used in many ways, but are essentially intended to be part of
the documentation of a formal development. One could envisage formal support
tools producing summary diagrams (as is already done in, for example, Microsoft
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Access’s “relationships view” of the conceptual structure of a database); however,
the contribution of diagram patterns to formal tool support is far out-weighed by
the importance of the formal patterns themselves.
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Appendix B

CSP Example

Here we provide the CSP specification underlying figure 3.7 (reproduced from
[Srivatanakul et al. 2003]).

First we introduce some useful constants.

Npurse = 4 [number of purses (variable)]
InitBal = 1 [initial balance in each purse (variable)]
TotalBal = Npurse ∗ InitBal [hence, total system balance]
PID = 0 . . (Npurse − 1) [purse identifiers]
VALUE = 0 . . TotalBal [value transferred between purses]

Channel fin signals the system to finalise. Channel transfer identifies the transfer
action, labelled by from purse, to purse, and transfer value. Channel total outputs
the total value stored and lost in the system, on finalisation. The internal channel
rnd is used to generate a random value that is considered lost.

channel
fin; transfer : PID .PID .VALUE ; total : VALUE .VALUE
rnd : VALUE

A system is Secure if, on finalisation, the total value stored is no greater than the
initial balance (‘no value created’), and if the values stored and lost together equal
the initial balance (‘all value accounted’).

process
Secure =

transfer?from.to.val → Secure
2 fin → rnd?v → total !(TotalBal − v).v → Skip
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process
SecureSystem = Secure \ {|rnd |}

In the purse system specification, the channel obs is used to observe the balance
and lost components of each purse on finalisation. The channels ok , lose, and
ignore synchronise the purses on the particular choice of transfer operation.

channel
obs : PID .VALUE .VALUE ; ok ; lose; ignore

When a Purse engages in a fin event, it outputs its state, then terminates. When
it engages in a transfer event, it behaves like a FromPurse, a ToPurse, or an
OtherPurse, depending on its id .

Purse(id , bal , lost) =
fin → obs !id .bal .lost → Skip
2 transfer?from.to.val →

if to = from then Purse(id , bal , lost)
else if (id = from) then FromPurse(id , bal , lost , val)
else if (id = to) then ToPurse(id , bal , lost , val)
else OtherPurse(id , bal , lost)

A FromPurse, if it has sufficient balance for the requested transfer, non-deter-
ministically chooses to do an ok transfer (decrementing its balance), or to lose
the transfer (decrementing its balance and incrementing its lost), or to ignore the
transfer (leaving its state unchanged). A ToPurse increments its balance for an ok
transfer, otherwise does nothing. An OtherPurse does nothing.

process
FromPurse(id , bal , lost , val) =

if val ≤ bal then (
ok → Purse(id , bal − val , lost)
u lose → Purse(id , bal − val , lost + val)
u ignore → Purse(id , bal , lost)

) else (ignore → Purse(id , bal , lost))
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process
ToPurse(id , bal , lost , val) =

ok → Purse(id , bal + val , lost)
2 lose → Purse(id , bal , lost)
2 ignore → Purse(id , bal , lost)

process
OtherPurse(id , bal , lost) =

ok → Purse(id , bal , lost)
2 lose → Purse(id , bal , lost)
2 ignore → Purse(id , bal , lost)

A purse System runs the purses in synchronised parallel, with each purse initially
having a zero lost component.

process
System = |[{|ok , lose, ignore, fin, transfer |} ]| id : PID • Purse(id , InitBal , 0)

The processes Observe and Gather collect and output the total value of all the
purses’ balances and lost components on finalisation.

process
Observe(tb, tl , ids) =

obs?id .bal .lost → Gather(tb + bal , tl + lost , ids ∪ {id})

process
Gather(tb, tl , ids) =

if ids = PID then total !tb.tl → Skip else Observe(tb, tl , ids)

The ObservedSystem is the purse System and the initial Observe process, with the
internal channels hidden.

process
ObservedSystem =

(System |[ {|obs|} ]|Observe(0, 0, ∅)) \ {|obs , ok , lost , ignore|}

The ObservedSystem is a SecureSystem: it does not create value, and accounts for
all lost value.
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assert
SecureSystem vFD ObservedSystem



Appendix C

Z Delta/Xi pattern diagram
illustrations

This appendix illustrates the use of the Z Delta/Xi : diagram the structure pattern
on a large real-world specification, that of the electronic Purse in [Stepney et al.
2000], shown in figures C.1–C.4.

These diagrams makes use of several features:

• using dotted boxes for items not occurring explicitly in the specification

• indicating multiple similar schemas with overlapping boxes (and a naming
convention)

• splitting the diagram into three, and using rounded boxes to indicate overlap

• highlighting the use of the promotion pattern (shaded boxes)
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Figure C.1 Z diagram: summary of the structure of the full Purse model
[Stepney et al. 2000].
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Figure C.2 Z diagram: detail of the structure of the abstract Z Purse model
[Stepney et al. 2000, chapter 3].
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Figure C.3 Z diagram: detail of the structure of the concrete Z Purse
model, local state [Stepney et al. 2000, chapter 4].
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Figure C.4 Z diagram: detail of the structure of the concrete Z Purse model,
global state [Stepney et al. 2000, chapter 5], promotion pattern highlighted.



Appendix D

Z Morph pattern diagram
illustrations

This appendix illustrates the use of the Z Morph : diagram the structure pattern on
a medium-sized example specification, that of the toy compiler in [Stepney 1993]
(figure D.1), and on a large real-world specification, that of the real compiler in
[Stepney & Nabney 2003] (figure D.2).
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Figure D.1 Z diagram: the structure of the Tosca command compile func-
tion, applied to the choice command [Stepney 1993, section 11.4.5].
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Figure D.2 Z diagram: the structure of the DeCCo Pasp program meaning
function [Stepney & Nabney 2003, section I.14.4].


