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Abstract. We introduce a pattern language for using formal methods
in computer system engineering. We focus on the Z notation, but many
of the patterns are adaptable to other formal notations, or can be used
to help choose a notation, or to decide on a style of formality. As in
other pattern languages, we are providing a new presentation of exist-
ing practice, to make it accessible to computer systems engineering. We
propose an initial classification of Z patterns, present selected examples,
and outline issues of tool support.
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1 Introduction

Formal methods have been used in computer systems development for decades.
The most mature forms, particularly those used for hardware design, are com-
pact, well-defined, and well integrated in the development process: they are spe-
cialised methods (or tools) for specialist developers. However, most software-
oriented formalisms are under-exploited in commercial-scale development, be-
cause they are not properly integrated in existing development processes, and
are poorly supported by development tools.

In mature development approaches, the stages and steps of development are
clear and generally-accepted, whereas in these immature areas there is more art
than science; development success depends more on the character and skills of
personnel than on the power of the methods. Notations, methods and tools for
formal software specification and development currently require specialist knowl-
edge, in an area that is not generally recognised as meriting any development
specialism.

2 Motivation

This paper is a contribution to the commercial acceptance of formality, specif-
ically of Z. Z is a powerful notation, with few inbuilt assumptions about any
design philosophy or development method of its own. This power and freedom
can make it hard for the newcomer to decide how to structure and develop a Z



specification, and hard for a reviewer or implementor to comprehend a specifi-
cation written in an unfamiliar style.

Our motivation is a desire to make Z more usable by commercial non-
specialist developers. Our reason for investigating patterns comes from expe-
rience in the industrial use of Z. One of the authors was a member of Logica
UK’s Formal Methods Team, where she worked extensively on large-scale com-
mercial specification and proof, including a compiler [Stepney & Nabney 2003];
an electronic Purse [Stepney et al. 2000]; and a Smart Card Operating Sys-
tem [Stepney & Cooper 2003]. [Stepney 1998] reports on issues to do with per-
forming proofs on these industrial-scale Z specifications, and sketches require-
ments for proof tool support to help in this task.

Z textbooks introduce the mathematical bases of Z, the notation, and essen-
tial elements of the use of Z. However, few books provide advice on how to “do”
Z in practice. Illustrations clearly show how a feature was used by the author,
but context and intent are implicit, and there is rarely any advice on how to
reuse or adapt the Z text. The work in this paper is a new presentation of well-
known material, with the concept of pattern applied to enhance the “semantic
structure” of Z, thereby helping the writing, reading and presentation of Z. For-
malisms such as Z have a role to play in general software development. So the
patterns should enable

– writing of formal texts by generalists, because the patterns present formal
solutions to common problems

– development of tools to support the use of formal methods by generalists,
by recognising and assisting in the application of patterns, and by breaking
down the formal concepts into mechanisable or tool-supportable components

3 Patterns

Patterns, originally introduced by [Alexander et al. 1977] in the context of ar-
chitecture, have been introduced into software engineering, to document and
promote best practice, and to share expertise. A pattern provides a solution to a
problem in a context. Existing patterns cover a wide range of issues, from coding
standards [Beck 1997], through program design [Gamma et al. 1995], to domain
analysis [Fowler 1997], and meta-concerns such as team structures and project
management [Coplien 1995].

Patterns do not stand in isolation. As [Alexander et al. 1977] explain, a Pat-
tern Language is a collection of patterns, expressed at different levels, that can
be used together to give a structure at all levels to the system under develop-
ment. The names of the patterns provide a vocabulary for describing problems
and design solutions.

Typically, a pattern comprises a template or algorithm and a statement of
its range of applicability. A catalogue records pattern descriptions, organised to
facilitate pattern selection. In providing for the selection of appropriate patterns,
the description of the intent of the pattern is crucial. This describes the situation
for which the pattern is appropriate.



The pattern catalogue uses meaningful pattern names to guide users to ap-
propriate patterns. It is also common to use a visual representation. For instance,
[Gamma et al. 1995] and [Larman 2001] use UML diagrams to visualise object-
oriented program and design patterns. A good pattern catalogue can be applied
to assist all elements of construction of a description (program, design, etc).

Some patterns are general purpose, occurring in similar forms across many
media (for example, across languages, development phases, contexts). For ex-
ample, all notations require commentary which is clear, consistent, and adds
meaning to the text, and all notations have common usage conventions that can
be expressed as patterns.

Some patterns are specific to the language for which they are written. For
example, [Gamma et al. 1995] note that some patterns provided for Smalltalk
programming are built-in features of other object oriented programming lan-
guages. In the formal language context, some Z patterns for identifying proof
obligations would be irrelevant in the tool-supported B Method, in which the
corresponding proof obligations are automatically generated. Equally, if a Z prac-
titioner is using an architectural pattern other than Delta/Xi, then most of the
patterns written for use with the Delta/Xi pattern (promotion, change part of the
state etc) are irrelevant.

4 Antipatterns

The concept of patterns in software engineering has been extended to antipat-
terns [Brown et al. 1998]. An antipattern presents an example of poor practice,
a pit into which developers (etc) often fall, and a way of avoiding or mitigating
the results.

In [Brown et al. 1998], most of the antipatterns describe universally poor
practice. However, in other contexts, and particularly in notations such as Z, one
developer’s antipattern may be another’s pattern. This is because a formal text
can have many purposes: a pattern that is used to simplify the proof of formal
conjectures may reduce the readability of the Z text. In writing antipatterns
(and indeed patterns), and in selecting patterns for application, it is therefore
important to consider the purpose of the description. The patterns presented
here are most appropriate when the primary purpose of the Z specification is
communication; we are also working on patterns for other purposes including
refinement, implementation and proof.

5 Patterns in Z

5.1 Motivation

Z provides a core language. (We refer to the two main variants of Z as ZRM
[Spivey 1992b] and as ISO-Z [ISO-Z 2002]. By Mathematical Toolkit, we mean
those well-known definitions in [Spivey 1992b, chapter 4] and [ISO-Z 2002, annex
B].) Additionally, it is usual to use the Z Mathematical Toolkit, which adds many



practical constructs to the core notation. This toolkit is generally assumed to
be part of the core, and its scope mistakenly considered to impose fundamental
restrictions (such as its definition of only finite sequences).

There are currently only a small number of well-known conventions for using
Z, and many users are unaware that other approaches are possible. For example,
the Delta/Xi style (“state and operations”) is often taken to be a characteristic
of Z itself, ignoring alternatives such as functional and algebraic styles.

It is common for Z specifications to be coerced into these conventions, no
matter how inappropriate. By separating out and describing toolkit patterns,
and by naming the Delta/Xi pattern and its associated subpatterns, we hope to
make it clear that these are just one choice of many.

We are only beginning to understand the power of patterns in Z; our catalogue
headings and pattern formats are still developing.

5.2 Structure of Z pattern descriptions

Each reference work has its own structure for describing patterns. We use the
following structure.

– Name: conveys the essence, and expands the community “vocabulary”
– Intent: a summary of what the pattern provides
– Problem: a detailed description of the problem in context
– Example: a specific instance of the problem
– Solution: a description of the structure that can solve the problem
– Illustration: an illustration of the effect of applying the solution
– Constraint: something that affects the use of the pattern
– Variants: modifications of the pattern for certain circumstances, particularly

where ZRM and ISO-Z solutions differ
– Related patterns: other patterns to be used with, or in place of, this one
– Specimens: references to the literature where the pattern is used (often only

implicitly)
– 2 : indicates the end of the pattern description

Because of Z’s generality and power, there are often several ways to solve a
problem, with some solutions being better in some contexts. We include choice
patterns, describing these various solutions and when they are most appropriate.

Some patterns can be elaborated in more significant ways than are covered by
the Variants heading, the elaborations being almost further patterns in their own
right. We describe such elaborations in abbreviated pattern form after the main
pattern (see [Stepney et al. 2003b] for elaborations of the promotion pattern).

5.3 Diagram patterns

There are many diagram styles appropriate for summarising different Z struc-
tures. For example, Venn diagrams can be used to represent set-theoretic state-
ments; state machines summarise event-based structures; data-flow diagrams can
represent functional styles.



We have distilled diagrammatic sub-patterns for specifications using the
Delta/Xi and morph architecture patterns. The full details of these can be found
in [Stepney et al. 2003c] [Stepney et al. 2003a]; the Delta/Xi sub-pattern is out-
lined below.

6 Catalogue of Z patterns

6.1 Introduction

In writing about patterns, we use the following categories (further work is needed
on the developing and refining these categories):

– Presentation patterns: ways of presenting, formatting and laying out Z spec-
ifications and documents.

– Idiom patterns: styles of writing individual Z phrases
– Structure patterns: ways of structuring small pieces of Z specifications
– Architecture patterns: ways of structuring an entire specification
– Domain patterns: support for specific application domains.
– Development patterns: assistance in parts of an engineering process, ranging

from assistance in selecting appropriate formal methods and for applying
formality at appropriate levels of rigour, to notation-specific development
patterns for a particular system.

Under each category we also list certain antipatterns.
Themes re-occur in the different categories, and to some extent the divisions

among categories are arbitrary. For example, patterns relating to naming and
formatting exist at most levels. Patterns are context-dependent. So, for example,
the particular details of a presentation pattern may be affected by the architec-
ture, style, and purpose of the Z description, and by the application domain.

Table 1 categorises the Z patterns that we have identified so far.

6.2 Presentation patterns

Presentation patterns are analogous to low-level coding standards: how to com-
ment, how to cross reference, how to format. These patterns seem self-evident to
people used to structured programming or trained to follow company styles for
presentation. However, much published Z is not presented in a consistent man-
ner. These patterns are based on experience of constructing and proving large
formal texts, and the needs of the checkers and reviewers of these documents (eg
[Stepney et al. 2000]).

6.3 Idiom patterns

Z is a powerful notation, and there can be several ways of achieving a particular
end. It is often useful to choose a particular idiomatic way of doing something,
and sticking to it. The idiom itself then becomes part of the vocabulary.



Sub-category
Category Documentation Style Usage
Presentation Comment the intention Format to expose structure

Provide navigation
Name consistently
Overlong name
Overmeaningful name

Idiom Assemble from chunks
Representing many-many mappings
Use free types for unions
Making a schema binding
Making a local declaration
Belated constraint
Abused mu
Bemused lambda
Overloaded numbers

Structure Name meaningful chunks Use generics to control detail Modelling optional elements
Name predicates Fortran Modelling product types

Sørensen shorty Modelling membership or flags
Boolean flag
Partial precondition

Architecture Morph Promotion
Event traces Delta/Xi
Object Orientation
Algebraic style
Goldilocks chunks
Unsuitable Delta/Xi pattern

Domain Application oriented theory Domain specific toolkits
Schema operator toolkit

Development Focus the formality Do a refinement
Use integrated methods Animate

Do sanity checks
Express implicit properties
Apply syntax and type checking
Prove rigorously
Prove formally

Table 1. Z Pattern Catalogue. In this table we use particular fonts to indicate the
patterns, the antipatterns, and those with associated generative patterns and elabo-
rations.

6.4 Structure patterns

At the intermediate structural level, structure patterns guide the selection and
construction of components of the formal description. Whilst some of these pat-
terns represent presentational issues, several capture solutions to potentially hard
practical problems.

6.5 Architecture patterns

Architecture patterns capture conventional ways of using the formal language to
produce an overall architecture that achieves the goals of the developer. Some
architecture patterns draw on conventional wisdom in the construction of large
or complex computer programs: such patterns are generalisable to other formal
notations. Other patterns relate specifically to Z.

Architecture patterns help to express a description in Z. They also help
the reader of the text. For example, the recognition that a particular form of



expression is an architecture pattern allows the reader to concentrate on the
system-specific detail rather than the structure of the Z – this would apply to,
for example, Delta/Xi: change part of the state, Delta/Xi: project away clutter, and
promotion, among others.

Even experienced formalists find it difficult to take on a new style of specifica-
tion. This can result in inappropriate use of common architecture patterns, and
inelegant specifications that do not map cleanly on to the solution architecture.
We have identified some alternatives to the widely-used Delta/Xi pattern.

6.6 Domain patterns

Almost all high-level programming languages use class libraries and packages
to provide incidental utilities and domain-specific concepts. In Z, toolkits play
a similar role. The Mathematical Toolkit provides generic definitions, laws and
constructs for use with sets, relations and predicates. However, its aim is to
provide a sufficient set of laws, rather than a complete language.

We envisage that further toolkit libraries will be developed with their asso-
ciated patterns in future engineering support for Z-based formal methods.

Toolkits could range in level and sophistication, from straightforward exten-
sions to the Mathematical Toolkit, to complete application-specific support with
template structures, special operators, and a full set of laws.

6.7 Development patterns

Development patterns give an engineering context for formal methods. Patterns
can be written to assist the choice of whether to use a formal method, in the
choice of a specific formal method, and in guiding the (top level) style of formal-
ity.

It is easy to write gibberish in a formal notation. There are various ways
during the development process of helping to validate a specification: to ensure
that it is well-formed, meaningful, and says what is intended. These are captured
as usage patterns.

Do a refinement, a generative pattern with elaborations, is outlined briefly
and illustrated using the diagram the structure pattern.

7 Five illustrative patterns

Table 1 shows the Z patterns that we have identified so far. We illustrate these
with the examples below; they have been selected to illustrate the pattern struc-
ture, antipatterns, good Z style, and some of the new patterns available with
ISO-Z. The promotion pattern, which is itself an elaboration of Delta/Xi, is cov-
ered in detail in [Stepney et al. 2003b]. The remaining patterns are described in
the full Z pattern catalogue [Stepney et al. 2003c].



Comment the intention
Intent: Communicate the intent of every part of the specification, with a uniform
commenting style.
Problem: A Z specification that comprises only mathematics is not readable or
maintainable. The mathematics provides a reasonably unambiguous specifica-
tion, but the variable names are an insufficient link to the real world.
Example: an unambiguous but obscure Z schema:

Memory
ram, rom : ADDR 7→ BYTE
inmap, outmap : PADDR

disjoint〈dom ram,dom rom〉
inmap ∪ outmap ⊆ dom ram
disjoint〈inmap, outmap〉

Solution: Provide a commentary in a particular style at a number of levels.
The text needs to be written and maintained with as much care as the Z, and
must add to the value of the mathematical statements: the text is not just a
“translation” of the maths.

– If necessary, include an introductory overview of the domain, as context for
the specification; use diagrams to capture the architecture.

– In the body of the specification, write a short sentence that conveys the
intent of every Z paragraph, linking to the real world; if the Z is long, provide
further commentary describing the intent of the internals.

– Where a Z paragraph has internal structure let the comment structure clearly
follow that of the Z paragraph. For a schema, for example, precede the
Z paragraph with commentary on declarations (global names), follow the
paragraph with commentary on internals.

Illustration:

The schema Memory defines the memory state of the device.
– ram describes the dynamic memory, as a mapping from memory

addresses to the byte values they contain
– rom describes the read-only memory, as for ram
– inmap, outmap are the memory-mapped input/output memory loca-

tions

Memory
ram, rom : ADDR 7→ BYTE
inmap, outmap : PADDR

disjoint〈dom ram,dom rom〉
inmap ∪ outmap ⊆ dom ram
disjoint〈inmap, outmap〉



– ram and rom have distinct address spaces
– the memory mapped i/o lies within ram
– no address is both input and output

2

Overloaded numbers
Intent: Exploit the Z type system and typechecking tools to catch as many errors
as possible.
Problem: Subsets of N or Z are often used as convenient models of labels and
identifiers in specifications, but a typechecker cannot catch cases where the wrong
kind of label is being used.
Solution: Use given sets and free types, rather than subsets of N or Z, where
possible.
Specimen: [Brown 1979] quotes his eighth deadly sin as “to use numbers for
objects that are not numbers”.
2

Modelling product types (choice)

Intent: Choose the more appropriate product constructor for a context.
Problem: Z has two nearly-isomorphic product type constructors. Which one
should be used in a given context?
Solution choice:

1. Modelling product types: schema
Component names are meaningful (for example, memory .register would refer
to the register component of the schema binding memory). This fits the in-
tention of name meaningful chunks. However, constructing particular schema
bindings is relatively verbose. Use a schema product where the names convey
some helpful meaning, and where component selection is common.

2. Modelling product types: Cartesian product
Components are located by position (for example, memory .3), which com-
municates little meaning. However, the tuple construction syntax is terse.
Use a Cartesian product when terseness is valuable, for example, the main
use of the product is writing explicit values, as in algebraic style operator
definitions. Use a Cartesian product when there are no meaningful names to
be had, for example, if the components are bundled into a tuple simply in
order to return multiple results from a function.

Specimens: of schemas: [Polack et al. 1993], [Mander & Polack 1995]; of tuples:
many Mathematical Toolkit definitions.
Variants: In ZRM, schema components can be directly selected, as in S .foo, but
schema bindings cannot be directly written (a mu-expression is often used, as
in µS • foo = x ∧ bar = y); tuples can be directly written, as in (x , y , z ),
but their components cannot be directly selected (a lambda-expression with a
characteristic tuple is often used, as in λ x : X ; y : Y ; z : Z • z ). ISO-Z allows



schema bindings to be directly written, as in 〈| foo == x , bar == y |〉, and tuple
components to be directly selected, as in t .3, but there is still a difference in the
terseness of construction.
2

Delta/Xi: diagram the structure

Intent: Summarise the structure of a Delta/Xi specification using a diagram.
Problem: Since a Z specification is presented ‘bottom-up’ (declaration before
use) and can be factored into many pieces, it may become difficult to ‘see the
wood for the trees’.
Solution: Construct a diagram to record the structure of the state and operation
schemas, highlighting any Delta/Xi-related patterns used.

Do not worry over-much about being consistent and complete, and about
distinguishing every small difference: the purpose of the diagram is to give a
graphical overview of structure, not to be an alternative formal notation.

The following components are recommended.

– distinguish schemas by purpose
• draw state schemas as named rectangles
• draw operation schemas as named hexagons
• draw other data types as named parallelograms
• schemas not defined in the specification may be used in the diagram,

for clarity. Indicate these by a dashed box. (Use of the Delta/Xi: strict
convention sub-pattern means that∆S and ΞS boxes are always dashed.)

– for schema inclusion, use solid arrows pointing from the including schema to
the included schema
• for state inclusion, use a single line
• for an operation including a state schema, S , via ∆S (and thus introduc-

ing a before- and an after-state), use a double line and a delta arrowhead,
pointing to the rectangle, S .
• for an (initialisation) operation that includes only an after-state (S ′),

use a single line and an after-state ′ by the arrowhead
• an arrow directly to a box may be elided if there is an alternative path

to that box
– indicate other uses of schemas by dashed lines from the referring data type

to the referenced schema
– use highlighting (line thickness, box shading) to distinguish important parts

of the diagram
• if a description uses a pattern described with a diagrammatic form, the

diagram of the description can be constructed by instantiating the struc-
ture of the pattern. Use highlighting to distinguish the pattern from other
structural elements
• highlight the full operations, as contrasted to intermediate definitions

As much as possible, without distorting the diagram, inclusion arrows are
drawn upwards, so that the simplest schemas are at the top of the diagram, and
constructs that are more complex are further down the page.



Fig. 1. (a) schema T includes schema S . (b) schema T references schema S .

Fig. 2. (a) operation Op includes ∆S . (b) several operations Opi include ∆S . (c)
initialisation operation Init includes S ′.

– If schema T includes schema S , either as declaration as T == [ S ; . . . | . . . ],
or as a predicate as T == [ . . . | S ∧ . . . ], it can be drawn as figure 1a.

– If schema T refers to schema S other than by inclusion, for example as
T == [ f : x 7→ S . . . | . . . ], it can be drawn as figure 1(b)

– If operation schema Op includes schema S as Op == [ ∆S . . . | . . . ], it can
be drawn as figure 2(a)

– If multiple schemas Si have precisely the same relationships with other
schemas, their names can be listed in the same box, thereby drawing at-
tention to their similar structures, as with Opi in figure 2(b)

– If initialisation schema Init includes schema S as Init == [ S ′ . . . | . . . ], it
can be drawn as figure 2(c)

Illustration: [Stepney et al. 2003c] shows the diagrams of a large Delta/Xi spec-
ification.
Variants:

– The notation can be extended to show conjectures (as in the do a refinement
pattern, below).
• conjectures are drawn in an oval, labelled with a suitable name, pointing

to referenced schemas
– For large specifications, a diagram may be split into sub-diagrams for clarity.

It may be appropriate to draw a separate diagram for each operation, or
family of operations, reproducing (relevant parts of) the diagram.



Fig. 3. Structure of the do a refinement pattern using diagram the structure.

• schemas or other data type boxes occurring in more than one sub-
diagram are represented as rounded boxes on subsequent occurrences
(see the example in [Stepney et al. 2003c]).

– If your application uses schemas in some particular way, extend the notation
to capture your structure.

Specimen: this pattern is adapted from [d’Inverno & Luck 2001].
2

Do a refinement
Intent: connect, by formal proof of a refinement conjecture, specifications of the
same system at different levels of abstraction.
Solution: Use the generative refinement patterns:

– Do a refinement: abstract model – provide an abstract specification
– Do a refinement: concrete model – provide an equivalent specification at a

lower level of detail
– Do a refinement: retrieve relation – formally express the mapping between

each abstract component and its concrete equivalent
– Do a refinement: conjecture – prove that the concrete operations and invariant

maintain the invariant of the abstract specification

The underlying structure of a refinement is summarised in figure 3. The retrieve
relation is the schema R. The refinement conjecture is represented as the ellipse,
refn.

The conjecture statement refers to all states and operations. To clarify the
structure, we choose to replace it by a dotted line linking the corresponding
concrete and global operations referenced in the conjecture, and labelled with
the relevant retrieve relation, figure 4.

The do a refinement pattern has a large number of elaborations, some of
which are listed in table 2, below.
2



Fig. 4. Structure of the do a refinement pattern, abbreviated form.

8 Z generative patterns

In object-oriented programming, generative patterns are an element of adap-
tive programming. Patterns written in a meta-language are used to automat-
ically derive programs in the object-oriented language. This is analogous to
conventional compilation of a high-level program into a lower-level program
[Lopes & Lieberherr 1994].

A looser meaning of generative pattern in object-oriented patterns work is
the application of a series of patterns to create a program. Note that this is
quite different from the creational patterns of [Gamma et al. 1995]: the latter
are patterns that can be used to create specific elements of a program (classes,
structures, generic operations etc).

It is impossible to automatically generate a specification from a meta-language
template alone. The process of (commercial) specification establishes the require-
ments and progressively assembles an abstract description of a suitable system
to meet the requirements. There can be no safe meta-level for a description that
is continually and actively evolving. However, the looser definition of generative
patterns is clearly applicable.

Generative patterns are appropriate for any Z concept that is expressed in
a series of steps or components. Simple generative patterns could be used to
initiate beginners into the writing of specifications in any format. They form the
beginnings of a method for Z. At the hard end of formal notations, generative
patterns are proposed to assist in refinement, retrenchment and proof.

Elaborations exist for all the proposed generative patterns. For example, the
refinement pattern has elaborations to deal with particularly problematic ele-
ments of practical refinements. Patterns can be used to determine the kind(s)
of refinement to use: forward or backward rules, blocking or non-blocking se-
mantics, etc. In addition, there are elaborations that help the specifier to arrive
at refinements. These could be used to guide the weakening of preconditions,
and the making deterministic of the abstract specification (or their inverses for
abstraction).



Generative Elaboration Intention
Pattern
Delta/Xi: Specify a system as a state, and
state operations based on that state.
operations Promotion (see below)
disjoin errors

diagram the structure
strict convention
change part of the state
project away clutter
hide a state component
partial precondition
Promotion: Specify a system characterised as a
local state and collection of local states, and of

operations operations based on those defined
global state on the local state.
framing schemas global constraints Add global state components to the
global operations collection of local instances.

internal identifiers Use a native element of the local
diagram the structure instances as the identifier.

combine promotions Specify a system that conforms to the
local-global format for the Promotion
architecture pattern, but has different
sorts of local instance.

multi-promotion Specify a system that comprises multiple
instances, but has global operations that
may affect more than one local instance.

Do a refinement: Reduce the level of abstraction by
abstract model provable refinements
concrete model weakest concrete form Use the retrieve relation to
retrieve relation calculate the weakest concrete form.
refinement conjecture widen precondition (Various patterns)

reduced non-determinism (Various patterns)
backwards refinement Apply reverse refinement rules
blocking semantics Allow a blocking semantics in

concrete specification

Table 2. Generative Z Patterns and their Elaborations. Note that promotion is both
an elaboration of Delta/Xi, and a generative parttern in its own right.

Table 2 identifies some generative patterns. The table is not exhaustive, either
in terms of the list of generative patterns, or in the detail of elaborations and
component patterns. See [Stepney et al. 2003b] for more details of the promotion
generative patterns.

9 Tool support

9.1 Introduction

The use of (generative sets of) patterns to produce Z specifications goes some
way towards a Z method – particularly in conjunction with existing Z tools.
However, commercial specification developers need more, and better-targeted,
tools. The required tools should both exploit and support patterns:

– Where a pattern or some part of it is fixed-form, a tool should support it
directly (perhaps as a built-in generic pattern instantiated by the user).



– Where a pattern provides a template, or where various forms apply in dif-
ferent contexts, the tool should guide the user.

– New Z tools should aim to support documentation formats, presentation
patterns and alternation between well-defined choice patterns.

– Existing Z tools might be refactored to exploit patterns.

9.2 Existing Tool Support

Manual application of patterns during development is difficult – even simple
things like name consistently can be overlooked, especially if the naming conven-
tion is evolving with the specification. Conforming to patterns during mainte-
nance is even more difficult, especially if the particular patterns used have not
been documented.

In the object-oriented community, there is work on integrating patterns into
the development process. Some schemes have been invented for encoding patterns
in classes, but the match is not good. Patterns are at a different level from
the language constructs. Mostly, naming conventions and comments are used
to indicate the use of patterns in the code. But some tool support is possible,
both in software development and in formal notations. Before trying to invent
a new general purpose meta-language to support the identified patterns, tool
developers should concentrate on supporting the individual patterns explicitly.

Current Z tools are mostly syntax- and type-checkers, and proof tools. Com-
pared to programming language IDEs, they provide relatively unsophisticated
development environments.

The presentation patterns are supported to a greater or lesser extent by cur-
rent Z tools, but even there little is automatic. Existing tools format to expose
structure: most LATEX-based tools, for example, [Spivey 1992a], give the user
complete control over line breaks, indentation and white space within phrases;
other tools such as CADiZ [Toyn 2002] and Formaliser [Stepney 2001] have auto-
matic ‘pretty-printing’ layouts, but they do not always give optimal readability,
and are not configurable to different layout standards. Similarly, provide navi-
gation is supported in LATEX-based tools via the LATEX \index command and
in HTML-based tools via hyperlinks. Z-Eves [Saaltink 1997] has a good navi-
gation interface. Name consistently is partially supported by search and replace;
such operations are even more useful when scope-sensitive. Graphical tools for
GUI design show how a tool can automatically generate underlying code such
that user changes to that code are reflected back in the GUI design. A similar
approach could be used to support many of the Z patterns.

Z development process patterns are, perhaps surprisingly, the best supported,
because many of the identified patterns are validation patterns requiring proof,
for which proof tools exist. But even proof tools provide little explicit support
for validation proof patterns – they are general purpose, rather than sensitive
to the particular proofs required. There is some support for animation, rang-
ing from conventions for semi-automatic translation of Z to an executable form
[West & Eaglestone 1992], [Hewitt et al. 1997], to executable subsets of Z itself



[Valentine 1992]. Making such conventions and tools sensitive to particular pat-
terns would greatly smooth the process.

9.3 A better way of supporting patterns

Template support for presentation patterns such as comment the intention could
be provided: addition of a declaration or predicate would cause a new comment
line to be provided, with a prompt to the developer to explain the addition
(either on the new comment line or in an existing comment line). The tool should
manage the linking of comment lines to the Z lines; reordering of declaration or
predicates should cause corresponding reordering of their associated comments.

Tool support for choice patterns would allow users to change their minds.
As a trivial example, Formaliser can convert between a horizontal and vertical
schema display. Support for modelling product types, to assist in changing the
representation between schemas and Cartesian products, could be implemented
by adaptation from existing tool support for schema expansion.

Architecture patterns are not yet well supported by tools. Delta/Xi is sup-
ported, simply because its naming conventions are partly encoded in the Z core
language, yet tools need to ‘understand’ whether a particular schema is a state,
an operation, or a piece of scaffolding.

Interactive support in the form of state and operation templates, framing
schema templates for promotion, and function definitions broken down over free
types for morph, could all be automated. The Delta/Xi diagrams presented above
show the schema components and their interrelationships; these could form a
framework for “intelligent” structural support, extending the existing tool facil-
ities for tracking named component usage in a specification.

One day tools may be configurable to support different specification aims
(readability, provability, etc). They may be able to detect antipatterns in each
style of specification, and able to guide the developer to a better representation,
based on the patterns appropriate to that form of specification.

10 Conclusion

Z patterns have something in common with many of the software engineering
pattern languages. [Beck 1997]’s Smalltalk coding standards provide inspiration
for commenting and presentation. [Gamma et al. 1995]’s design patterns are sim-
ilar in intent to many of the Z presentation, architecture and structure patterns.
[Larman 2001]’s UML patterns can be compared to the higher-level architecture
patterns, and the generative use of patterns.

A Pattern Language for Z, which is essentially a packaging of existing lan-
guage elements and usage according to their context of use, helps to make ex-
plicit the wider range of conventions and styles available. In addition, it helps
to provide good solutions to well-known recurrent problems.
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