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An Example: the Sign Test
Knowledge scores (–18 to +18) from a group of nurses before 
and after attending a course on systematic reviews.
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An Example: the Sign Test
These 10 course attenders are a sample from the population 
of all course attenders.  

Would the other members of this population increase their 
knowledge score following the course?

In a significance test, we ask whether the difference observed 
was small enough to have occurred by chance if there were 
really no difference in the population.  

If it were so, then the evidence in favour of there being a 
difference between scores before and after the course would 
be weak.  

On the other hand, if the difference were much larger than we 
would expect due to chance if there were no real population 
difference, then the evidence in favour of a real difference 
would be strong.
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An Example: the Sign Test
Knowledge scores (–18 to +18) from a group of nurses before 
and after attending a course on systematic reviews.
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Is there good 
evidence that 
knowledge 
increases 
following the 
course?

Most nurses 
have higher 
scores after 
the course.

An Example: the Sign Test
To carry out the test of significance we suppose that, in the 
population, there is no difference between before and after 
the course.  

The hypothesis of ‘no difference’ or ‘no effect’ in the 
population is called the null hypothesis.  

We compare this with the alternative hypothesis of a 
difference between before and after, in either direction.

We find the probability of getting data as extreme as those 
observed if the null hypothesis were true.  

If this probability is large the data are consistent with the null 
hypothesis; if it is small the data are unlikely to have arisen if 
the null hypothesis were true and the evidence is in favour of 
the alternative hypothesis.

An Example: the Sign Test
Knowledge scores (–18 to +18) from a group of nurses before 
and after attending a course on systematic reviews.
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The sign test 
uses the 
direction of the 
difference 
only.

1 negative and 
11 positives.
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An Example: the Sign Test
Consider the differences between the knowledge scores 
before and after for each nurse.  

If the null hypothesis were true, then differences in number of 
attacks would be just as likely to be positive as negative, they
would be random.  

The probability of a change being negative would be equal to 
the probability of it becoming positive, 0.5.  

Then the number of negatives would behave in exactly the 
same way as the number of heads if we toss a coin 10 times.

An Example: the Sign Test
The number of negatives would behave in exactly the same 
way as the number of heads if we toss a coin 12 times.

This is quite easy to investigate mathematically.  We call it the 
Binomial Distribution with n = 10 and p = 0.5.  

----------------------------------------
Heads  Probability    Heads  Probability
----------------------------------------
0     0.0009766       6     0.2050781
1     0.0097656       7     0.1171875
2     0.0439453       8     0.0439453
3     0.1171875       9     0.0097656
4     0.2050781      10     0.0009766
5     0.2460938 

----------------------------------------

An Example: the Sign Test
The number of negatives would behave in exactly the same 
way as the number of heads if we toss a coin 12 times.

This is quite easy to investigate mathematically.  We call it the 
Binomial Distribution with n = 10 and p = 0.5.  
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An Example: the Sign Test
The number of negatives would behave in exactly the same 
way as the number of heads if we toss a coin 12 times.

This is quite easy to investigate mathematically.  We call it the 
Binomial Distribution with n = 10 and p = 0.5.  
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An Example: the Sign Test
If there were any subjects who had the same number of 
attacks on both regimes we would omit them, as they provide 
no information about the direction of any difference between 
the treatments.  In this test, n is the number of subjects for 
whom there is a difference, one way or the other.

Distribution 
of number 
of 
negatives if 
null 
hypothesis 
were true.

0
.0

5
.1

.1
5

.2
.2

5
P

ro
ba

bl
ity

0 1 2 3 4 5 6 7 8 9 10
Number of negatives

An Example: the Sign Test
The expected number of negatives under the null hypothesis 
is 5.  The number of negative differences is 1.  What is the 
probability of getting a value as far from this as is that 
observed? 

----------------------------------------
-ves   Probability    -ves   Probability
----------------------------------------
0     0.0009766 6     0.2050781
1     0.0097656 7     0.1171875
2     0.0439453       8     0.0439453
3     0.1171875       9     0.0097656
4     0.2050781      10     0.0009766
5     0.2460938

----------------------------------------
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An Example: the Sign Test
The expected number of negatives under the null hypothesis 
is 5.  The number of negative differences is 1.  What is the 
probability of getting a value as far from this as is that 
observed? 
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An Example: the Sign Test
The expected number of negatives under the null hypothesis 
is 5.  The number of negative differences is 1.  What is the 
probability of getting a value as far from this as is that 
observed? 

------------------
-ves   Probability
------------------
0     0.0009766
1     0.0097656
9     0.0097656
10     0.0009766

------------------
Total   0.0214844

An Example: the Sign Test
The probability of getting as extreme a value as that 
observed, in either direction, is 0.0214844.

If the null hypothesis were true we would have a sample 
which is so extreme that the probability of it arising by chance
is 0.02, one in fifty.

Thus, we would have observed an unlikely event if the null 
hypothesis were true.  

The data are not consistent with null hypothesis, so we can 
conclude that there is strong evidence in favour of a 
difference between knowledge scores before and after the 
course.  
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The sign test
The sign test is an example of a test of significance.  

The number of negative changes is called the test 
statistic, something calculated from the data which can be 
used to test the null hypothesis.

Principles of significance tests

The general procedure for a significance test is as follows:

1. Set up the null hypothesis and its alternative.

2. Check any assumptions of the test.

3. Find the value of the test statistic.

4. Refer the test statistic to a known distribution which it 
would follow if the null hypothesis were true.

5. Find the probability of a value of the test statistic arising 
which is as or more extreme than that observed, if the 
null hypothesis were true.

6. Conclude that the data are consistent or inconsistent with 
the null hypothesis.

Principles of significance tests

The general procedure for a significance test is as follows:

1. Set up the null hypothesis and its alternative.

Null hypothesis:

‘No difference between before and after’ OR ‘Probability of 
a difference in knowledge score in one direction is equal to 
the probability of a difference in knowledge score in the 
other direction’.

Alternative hypothesis:

‘A difference between before and after’ OR ‘Probability of a 
difference in knowledge score in one direction is not equal 
to the probability of a difference in knowledge score in the 
other direction’.
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Principles of significance tests

The general procedure for a significance test is as follows:

1. Set up the null hypothesis and its alternative.

2. Check any assumptions of the test.

Assumption:

That the subjects are independent.

Principles of significance tests

The general procedure for a significance test is as follows:

1. Set up the null hypothesis and its alternative.

2. Check any assumptions of the test.

3. Find the value of the test statistic.

Test statistic:

Number of negatives (= 1).

Principles of significance tests

The general procedure for a significance test is as follows:

1. Set up the null hypothesis and its alternative.

2. Check any assumptions of the test.

3. Find the value of the test statistic.

4. Refer the test statistic to a known distribution which it 
would follow if the null hypothesis were true.

Known distribution:

Binomial, n = 10, p = 0.05.
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Principles of significance tests

The general procedure for a significance test is as follows:

1. Set up the null hypothesis and its alternative.

2. Check any assumptions of the test.

3. Find the value of the test statistic.

4. Refer the test statistic to a known distribution which it 
would follow if the null hypothesis were true.

5. Find the probability of a value of the test statistic arising 
which is as or more extreme than that observed, if the 
null hypothesis were true.

Probability:

P = 0.02

Principles of significance tests

The general procedure for a significance test is as follows:

1. Set up the null hypothesis and its alternative.

2. Check any assumptions of the test.

3. Find the value of the test statistic.

4. Refer the test statistic to a known distribution which it 
would follow if the null hypothesis were true.

5. Find the probability of a value of the test statistic arising 
which is as or more extreme than that observed, if the 
null hypothesis were true.

6. Conclude that the data are consistent or inconsistent with 
the null hypothesis.

Conclusion: inconsistent.

Principles of significance tests

There are many different significance tests, all of which 
follow this pattern.
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Statistical significance
If the data are not consistent with the null hypothesis, the 
difference is said to be statistically significant.

If the data are consistent with the null hypothesis, the 
difference is said to be not statistically significant.

We can think of the significance test probability as an 
index of the strength of evidence against the null 
hypothesis.

The probability of such an extreme value of the test 
statistic occurring if the null hypothesis were true is often 
called the P value.  

It is not the probability that the null hypothesis is true.  
The null hypothesis is either true or it is not; it is not 
random and has no probability.

Interpreting the P value
As a rough and ready guide, we can think of P values as 
indicating the strength of evidence like this:

P value Evidence for a difference or
relationship 

Greater than 0.1:  Little or no evidence

Between 0.05 and 0.1: Weak evidence

Between 0.01 and 0.05: Evidence 

Less than 0.01: Strong evidence

Less than 0.001: Very strong evidence

Significance levels and types of error
How small is small?  A probability of 0.02, as in the example 
above, is clearly small and we have a quite unlikely event.  
But what about 0.04, or 0.06, or 0.1?

Suppose we take a probability of 0.01 or less as constituting 
reasonable evidence against the null hypothesis.  If the null 
hypothesis is true, we shall make a wrong decision one in a 
hundred times.  

Deciding against a true null hypothesis is called an error of 
the first kind, type I error, or � (alpha) error.  

We get an error of the second kind, type II error, or �
(beta) error if we decide in favour of a null hypothesis which 
is in fact false.
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Significance levels and types of error
The smaller we demand the probability be before we decide 
against the null hypothesis, the larger the observed 
difference must be, and so the more likely we are to miss 
real differences.  

By reducing the risk of an error of the first kind we increase 
the risk of an error of the second kind.

No errorType I error,
alpha error.

Test significant

Type II error,
beta error

No errorTest not 
significant

Alternative 
hypothesis true

Null hypothesis 
true

Significance levels and types of error
The smaller we demand the probability be before we decide 
against the null hypothesis, the larger the observed 
difference must be, and so the more likely we are to miss 
real differences.  

By reducing the risk of an error of the first kind we increase 
the risk of an error of the second kind. 

The conventional compromise is to say that differences are 
significant if the probability is less than 0.05.  

This is a reasonable guideline, but should not be taken as 
some kind of absolute demarcation.

If we decide that the difference is significant, the probability
is sometimes referred to as the significance level.

Significant, real and important
If a difference is statistically significant, then may well be 
real, but not necessarily important.  

For example, we may look at the effect of a drug, given for 
some other purpose, on blood pressure.  

Suppose we find that the drug raises blood pressure by an 
average of 1 mm Hg, and that this is significant.

A rise in blood pressure of 1 mm Hg is not clinically 
significant, so, although it may be there, it does not matter.  

It is (statistically) significant, and real, but not important.
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Significant, real and important
If a difference is not statistically significant, it could still be 
real.  

We may simply have too small a sample to show that a 
difference exists.  

Furthermore, the difference may still be important.  

‘Not significant’ does not imply that there is no effect.  

It means that we have failed to demonstrate the 
existence of one.

Presenting P values
Computers print out the exact P values for most test 
statistics.  

These should be given, rather than change them to ‘not 
significant’, ‘ns’ or P>0.05.  

Similarly, if we have P=0.0072, we are wasting information 
if we report this as P<0.01. 

This method of presentation arises from the pre-computer 
era, when calculations were done by hand and P values 
had to be found from tables.  

Personally, I would quote this to one significant figure, as 
P=0.007, as figures after the first do not add much, but the 
first figure can be quite informative.  

Presenting P values
Sometimes the computer prints 0.0000.  This may be 
correct, in that the probability is less than 0.00005 and so 
equal to 0.0000 to four decimal places.

The probability can rarely be exactly zero, so we usually 
quote this as P<0.0001.
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Significance tests and confidence intervals
Often involve similar calculations.

If CI does not include the null hypothesis value, the 
difference is significant.

E.g. for a difference between two proportion, null 
hypothesis value = 0.

If 95% CI contains zero, difference is not significant.  

If 95% CI does not contain zero, difference is significant. 

E.g. ulcer healing 63% (31/49) vs. 50% (26/52). 

95% CI for difference: –7 to +33 percentage points.  

Difference could be zero.  Not significant.

Significance tests and confidence intervals
Ulcer healing simulation:
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Significance tests and confidence intervals
The null hypothesis may contain information about the 
standard error.

E.g. comparison of two proportions, the standard error for 
the difference depends on the proportions themselves.  

If the null hypothesis is true we need only one estimate of 
the proportion.  

This alters the standard error for the difference.

Confidence interval:SE = 0.0977

Significance test: SE = 0.0987

95% CI and 5% significance test sometimes give different 
answers near the cut-off point.
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Multiple significance tests
If we test a null hypothesis which is in fact true, using 0.05 
as the critical significance level, we have a probability of 
0.95 of coming to a ‘not significant’ (i.e. correct) conclusion.

If we test two independent true null hypotheses, the 
probability that neither test will be significant is 
0.95 × 0.95 = 0.90.  

If we test twenty such hypotheses the probability that none 
will be significant is 0.9520 = 0.36.

This gives a probability of 1 – 0.36 = 0.64 of getting at least 
one significant result.

We are more likely to get one than not.  

The expected number of spurious significant results is 
20 × 0.05 = 1.

Multiple significance tests
Many medical research studies are published with large 
numbers of significance tests.  

These are not usually independent, being carried out on 
the same set of subjects, so the above calculations do not 
apply exactly.  

If we go on testing long enough we will find something 
which is ‘significant’.

We must beware of attaching too much importance to a 
lone significant result among a mass of non-significant 
ones.  

It may be the one in twenty which we should get by chance 
alone.

Multiple significance tests

� Many subgroups.

� Many outcome variables. 
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Many subgroups
Williams et al. (1992) randomly allocated elderly patients 
discharged from hospital to two groups: timetabled visits by 
health visitor assistants versus no visit unless there was 
perceived need.  

Patients assessed for physical health, disability, and mental 
state using questionnaire scales.  

No significant differences overall between the intervention 
and control groups.

Williams, E.I., Greenwell, J., and Groom, L.M.  (1992)  The care of people over 
75 years old after discharge from hospital: an evaluation of timetabled visiting 
by Health Visitor Assistants. Journal of Public Health Medicine 14, 138-44.

Many subgroups
Williams et al. (1992) 

Among women aged 75-79 living alone the control group 
showed significantly greater deterioration in physical score 
than did the intervention group (P=0.04), and among men 
over 80 years the control group showed significantly 
greater deterioration in disability score than did the 
intervention group (P=0.03).

The authors stated that ‘Two small sub-groups of patients 
were possibly shown to have benefited from the 
intervention.  . . .  These benefits, however, have to be 
treated with caution, and may be due to chance factors.’

Many subgroups: Bonferroni correction
Multiply the P values by the number of tests.

If any is then significant, the test of the overall composite 
null hypothesis is significant.

E.g. Williams et al. (1992). 

Subjects were cross-classified by age groups, whether 
living alone, and sex, so there were at least eight 
subgroups, if not more.  

Even if we consider the three scales separately, the true P 
values are 8 × 0.04 = 0.32 and 8 × 0.03 = 0.24.

Composite null hypothesis: there is a difference between 
the treatments in at least one group of subjects.
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Many subgroups: Bonferroni correction
Composite null hypothesis: there is a difference between 
the treatments in at least one group of subjects.

This is not the same as: the difference between the 
treatments varies between different group of subjects.

This needs a test of interaction (Week eight).

Multiple outcome measurements
E.g. Newnham et al. (1993) randomized pregnant women 
to receive a series of Doppler ultrasound blood flow 
measurements or to control.  

They found a significantly higher proportion of birthweights 
below the 10th and 3rd centiles (P=0.006 and P=0.02).

These were only two of many comparisons.  At least 35 
were reported in the paper, though only these two were 
reported in the abstract.  

Birthweight was not the intended outcome variable for the 
trial. 

Newnham, J.P., Evans, S.F., Con, A.M., Stanley, F.J., Landau, L.I.  (1993)  
Effects of frequent ultrasound during pregnancy: a randomized controlled trial. 
Lancet 342, 887-91.

Multiple outcome measurements
These tests are not independent, because they are all on 
the same subjects, using variables which may not be 
independent.

The proportions of birthweights below the 10th and 3rd 
centiles are clearly not independent, for example.  

We can apply the Bonferroni correction.

For the example, the P values could be adjusted by 
35 × 0.006 = 0.21 and 35 × 0.02 = 0.70.

Because the tests are not independent, the adjusted P 
value is too big.

Test is conservative.
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Primary outcome variable and primary analysis
In some studies, we can avoid the problems of multiple 
testing by specifying a primary outcome variable in 
advance.  

We state before we look at the data, and preferably before 
we collect them, that one particular variable is the primary 
outcome.  

If we get a significant effect for this variable, we have good 
evidence of an effect.  

If we do not get a significant effect for this variable, we do 
not have good evidence of an effect, whatever happens 
with other variables.

Primary outcome variable and primary analysis
Often, we specify not only the primary outcome variable in 
advance but also the primary analysis, the particular 
analysis which we intend to carry out.  

Example: in an asthma trial we might specify the primary 
outcome variable as being mean peak expiratory flow over 
a one week diary adjusted for mean peak expiratory flow 
measured at recruitment to the trial. 

Any other variables and analyses are secondary.  

If there is no significant effect for the primary variable these
should be treated with great caution. 

One- and two-sided tests of significance
In the knowledge score example, the alternative hypothesis 
was that there was a difference in one or other direction.  

This is called a two sided or two tailed test, because we 
used the probabilities of extreme values in both directions.

One sided or one tailed test: 

Alternative hypothesis: in the population, the knowledge 
score before the course is less than the knowledge score 
after. 

Null hypothesis: in the population, the knowledge score 
before the course is greater than or equal to the knowledge 
score after. 

P = 0.01, and of course, a higher significance level than the 
two sided test.
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One- and two-sided tests of significance
One sided null hypothesis: the knowledge score before course 
is greater than or equal to the knowledge score after course. 

One sided alternative hypothesis: the knowledge score before 
course is less than the knowledge score after course. 
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One- and two-sided tests of significance
Two sided null hypothesis: the knowledge score before course 
is equal to the knowledge score after course. 

Two sided alternative hypothesis: the knowledge score before 
course is not equal to the knowledge score after course.

One sided
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Two sided
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One- and two-sided tests of significance
One sided or one tailed test: 

One sided null hypothesis: the knowledge score before 
course is greater than or equal to the knowledge score 
after course. 

One sided alternative hypothesis: the knowledge score 
before course is less than the knowledge score after 
course. 

This implies that a decrease in knowledge in the after 
direction would have the same interpretation as no change.

Seldom true in health research.

Tests should be two sided unless there is a good reason 
not to do this.
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One- and two-sided tests of significance
Example of valid one sided hypothesis: 

Study of occupational health.  

Follow up a cohort of people employed in an industry and 
compare their incidence of cancers to the incidence in the 
general population.  

The general population will include people who could not 
work in the industry because of their health.  

For example, people with chromosomal abnormalities 
might have impairments which prevent them from working 
in many jobs and may also be at increased risk of cancers.

One- and two-sided tests of significance
Example of valid one sided hypothesis: 

If we were to observe fewer cancers in our industry cohort 
than in the population a whole, we would not be surprised.  

We would not ascribe this to the protective effects of 
working in the industry.  

It could be the selective effect of comparing employed 
people to the whole population.  

One- and two-sided tests of significance
Example of valid one sided hypothesis: 

We would therefore test the null hypothesis that cancer 
was no more frequent among people in the industry than it 
was in the general population. 

I.e. that the cancer rate in the industry was equal to or less 
than that in the general population.  

The alternative hypothesis would be that the cancer rate in 
the industry was greater than that in the general population.  

We would have a one-sided test.
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Pitfalls of significance tests
You should never, ever, conclude that there is no 
difference or relationship because it is not significant.

You should not rely on significance tests alone if you can 
give confidence intervals.  Particularly useful when the test 
is not significant.

You should give exact P values where possible, not P<0.05 
or P=NS, though only one significant figure is necessary.

You should avoid multiple testing. Be clear what the main 
hypothesis and outcome variable are.


