Clinical Biostatistics Analyses for qualitative data

Martin Bland Professor of Health Statistics University of York http://martinbland.co.uk/

Analyses for qualitative data

Also called nominal, categorical.

Only two categories: dichotomous, attribute, quantal, binary.

Methods:

- Chi-squared test for association
- Fisher's exact test
- > Risk ratio, relative risk, rate ratio
- Odds ratio
- Number needed to treat

Contingency tables

Cross tabulation of two categorical variables:

Acceptance of HIV to	est groupe	ed by marita	al statu
Ad Marital status	Accepted	Rejected	Total
Married	71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788

Meadows J, Jenkinson S, Catalan J. (1994) Who chooses to have the HIV antibody test in the antenatal clinic? *Midwifery* **10**, 44-48.

Contingency tables

Cross tabulation of two categorical variables:

Acceptance	of 1	HIV t	est	group	ed	by	marital	status
Marital	statı	Aus	Accel Acc	epted	of R	ні еје	IV test ected	Total

Married	71	415	486
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788

This kind of cross-tabulation of frequencies is also called a **contingency table** or **cross classification**.

Called 4 by 2 table or 4×2 table.

In general, $r \times c$ table.

Cross tabulation of two o	categorical	variables:	
Acceptance of HIV to	est groupe	d by marita	al status
A	cceptance	of HIV test	:
Marital status	Accepted	Rejected	Total
Married	71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788
Want to test the null hyp or association between t	othesis tha the two var	it there is no iables.	relationship

If the sample is small, we must use Fisher's exact test.

Acceptance of HIV test grouped by marital status

A Marital status	Acceptance Accepted	of HIV test Rejected	Total
Married	71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788

Null hypothesis: no association between the two variables.

Alternative hypothesis: an association of some type.

The chi-squared test for association

cceptance of HIV	test grouped	l by marita	al status
	Acceptance c	f HIV test	=
Marital status	Accepted	Rejected	Total
Married	82.6		486
Living w. partne	r		222
Single			50
Div./wid./sep.			30
Total	134	654	788

Proportion who accepted = 134/788

Out of 486 married, expect $486 \times 134/788 = 82.6$ to accept if the null hypothesis were true.

The chi-squared test for association						
Acceptance of HIV	test groupe	d by marit	al status			
Marital status	Acceptance Accepted	of HIV tes Rejected	t Total			
Married Living w. partne Single Div./wid./sep.	82.6 r	403.4	486 222 50 30			
Total	134	654	788			
Proportion who refused = 654/788						
Out of 486 married, expect $486 \times 654/788 = 403.4$ to refuse if the null hypothesis were true.						
Note that 82.6 + 403.4	= 486.					

he chi-squared te	est for ass	ociation	
Acceptance of HIV	test groupe	d by marit	al stat
1	Acceptance	of HIV tes	t
Marital status	Accepted	Rejected	Total
Married	82.6	403.4	486
Living w. partne:	r 37.8	184.2	222
Single			50
Div./wid./sep.			30
Total	134	654	788
It of 222 living with p accept if the null hyp	artner, expe othesis wer	ct 222 × 13 e true.	4/788 =
It of 222 living with p refuse if the null hype	artner, expe othesis were	ect 222 × 65 e true.	4/788 =
ote that 37.8 + 184.2	= 222.		

The chi-squared test for association

Acceptance of HIV test grouped by marital status

Acceptance	of	hin	test	
------------	----	-----	------	--

Marital status	Accepted	Rejected	Total
Married	82.6	403.4	486
Living w. partner	37.8	184.2	222
Single	8.5	41.5	50
Div./wid./sep.	5.1	24.9	30
Total	134	654	788

Note that 82.6 + 37.8 + 8.5 + 5.1 = 134,

403.4 + 184.2 + 41.5 + 24.9 = 654.

Observed and expected frequencies have the same row and column totals.

he chi-squared tes	t for ass	ociation	al statu
Ac	ceptance	of HIV test	E
Marital status	Accepted	Rejected	Total
Married	82.6	403.4	486
Living w. partner	37.8	184.2	222
Single	8.5	41.5	50
Div./wid./sep.	5.1	24.9	30
Total	134	654	788
xpected frequency if nu	II hypothes	sis true =	
row to	otal × colur	nn total	
	grand tota	al	

Acceptance c	٥f	hiv	test	grouped	by	marital	status
--------------	----	-----	------	---------	----	---------	--------

Marital status	Accej Ac	ptance cepted	of H: Reje	IV test ected	Total
Married	71	82.6	415	403.4	486
Living w. partner	41	37.8	181	184.2	222
Single	15	8.5	35	41.5	50
Div./wid./sep.	7	5.1	23	24.9	30
Total		134	6!	 54	788

Compare the observed and expected frequencies.

Add (observed – expected)²/expected for all cells = 9.15.

If null hypothesis true and samples are large enough, this is an observation from a chi squared distribution, often written χ^2 .

Degrees	Probabi:	lity that	the tabul	ated value
of		is exce	eded	
freedom	10% 0.10	5% 0.05	<u>1% 0.01</u>	0.1% 0.001
1	2.71	3.84	6.63	10.83
2	4.61	5.99	9.21	13.82
3	6.25	7.81	11.34	16.27
4	7.78	9.49	13.28	18.47
5	9.24	11.07	15.09	20.52
6	10.64	12.59	16.81	22.46
7	12.02	14.07	18.48	24.32
8	13.36	15.51	20.09	26.13
9	14.68	16.92	21.67	27.88
10	15.99	18.31	23.21	29.59
•	•	•	•	•
•	•	•	•	•

The chi-squared tes	st f	or ass	ocia	tion		
Acceptance of HIV to	est	groupe	d by	marita	l status	•
Ac	ccej	ptance	of H	IV test		
Marital status	Aco	cepted	Reje	ected	Total	
Married	71	82.6	415	403.4	486	
Living w. partner	41	37.8	181	184.2	222	
Single	15	8.5	35	41.5	50	
Div./wid./sep.	7	5.1	23	24.9	30	
Total	:	134	6	54	788	
For a contingency table,	the	e degree	es of	freedom	n are give	en by:
(number of rows –	1) ×	(numb	er of	column	s – 1).	

We have $(4 - 1) \times (2 - 1) = 3$ degrees of freedom.

 $\chi^2 = 9.15, 3 \text{ d.f.}$

Degrees	Probabi	lity that	the tabul	ated value
of		is exce	eded	
freedom	10% 0.10	<u>5% 0.05</u>	<u>1% 0.01</u>	0.1% 0.001
1	2.71	3.84	6.63	10.83
2	4.61	5.99	9.21	13.82
3	6.25	7.81	11.34	16.27
4	7.78	9.49	13.28	18.47
5	9.24	11.07	15.09	20.52
6	10.64	12.59	16.81	22.46
7	12.02	14.07	18.48	24.32
8	13.36	15.51	20.09	26.13
9	14.68	16.92	21.67	27.88
10	15.99	18.31	23.21	29.59
•	•		•	
	•		•	•

cceptance of HIV to	est	groupe	ed by	marita	l stat
A	ccej	ptance	of H	IV test	
Marital status	Aco	cepted	Reje	ected	Total
Married	71	82.6	415	403.4	486
Living w. partner	41	37.8	181	184.2	222
Single	15	8.5	35	41.5	50
Div./wid./sep.	7	5.1	23	24.9	30
Total		134	6	54	788

For a contingency table, the degrees of freedom are given by:

(number of rows -1) × (number of columns -1).

We have $(4 - 1) \times (2 - 1) = 3$ degrees of freedom.

 χ^2 = 9.15, 3 d.f., P<0.05. Using a computer, P = 0.027 = 0.03.

The chi-squared test for association

The chi-squared statistic is not an index of the strength of the association.

If we double the frequencies, this will double chi-squared, but the strength of the association is unchanged.

The chi-squared test for association

The test statistic follows the Chi-squared Distribution provided the expected values are large enough.

This is a large sample test.

The smaller the expected values become, the more dubious will be the test.

The conventional criterion for the test to be valid is this: the chi-squared test is valid if at least 80% of the expected frequencies exceed 5 and all the expected frequencies exceed 1.

Also known as the Pearson chi-squared test.

Fisher's exact test

Also called the Fisher-Irwin exact test.

Works for any sample size.

Used to be used only for small samples in 2 by 2 tables, because of computing problems.

Calculate the probability of every possible table with the given row and column totals.

Sum the probabilities for all the tables as or less probable than the observed.

Fisher's exact test

Acceptance of HIV tes	t grouped	by marital	. status			
Ac	ceptance	of HIV test				
Marital status	Accepted	Rejected	Total			
Married	71	415	486			
Living w. partner	41	181	222			
Single	15	35	50			
Div./wid./sep.	7	23	30			
 Total	134	654	788			
$\chi^2 = 9.15, 3 \text{ d.f.}, P = 0.02$	7.					
Fishers' exact test: P = 0.029.						

Wound	healing	by type of ban	dage			
Bandage	Healed	Did not heal	Total			
Elastic	35	30	65			
Inelastic	19	48	67			
Total	54	78	132			
		(Callam	et al., 1992)			
ner's exact te	st: P = 0.0	0049.				
Shi squared test: chi squared -8.87 P -0.0020						

Callam MJ, Harper DR, Dale JJ, Brown D, Gibson B, Prescott RJ, Ruckley CV. (1992) Lothian Forth Valley leg ulcer healing trial—part 1: elastic versus nonelastic bandaging in the treatment of chronic leg ulceration. *Phlebology* 7: 136-41.

Y	ates' correc	tion						
	Wound	healing by	type of h	andage				
	Bandage	Healed D	id not hea	l Total				
	Elastic	35	30	65				
	Inelastic	19	48	67				
	Total	54	78 (Call	132 am et al., 1992)				
Fi	sher's exact te	est: P = 0.00	49.					
С	hi-squared tes	t: chi-square	ed = 8.87, P	= 0.0029.				
A: Fi	As expected frequencies get smaller, chi-squared and Fisher's exact disagree.							
Fi	sher's produce	es the 'corre	cť P value.					
С	hi-squared pro	duces a P v	alue which	is too small.				

Wound	healing	by type of ban	dage	
Bandage	Healed	Did not heal	Total	
Elastic	35	30	65	
Inelastic	19	48	67	
Total	54	78 (Callam	132 1 et al.,	1

67 132 et al., 1992)

Chi-squared test: chi-squared = 8.87, P = 0.0029.

Yates introduced a modified chi-squared test for a 2 by 2 table which adjusts for this.

Also called the **continuity correction**.

Fisher's exact test: P = 0.0049.

Yates' correct	ction		
Wound	healing	by type of ban	dage
Bandage	Healed	Did not heal	Total
Elastic	35	30	65
Inelastic	19	48	67
Total	54	78	132
		(Callam	et al., 1992)
Fisher's exact te	est: P = 0.0	0049.	
Chi-squared tes	t: chi-squa	ared = 8.87, P =	0.0029.
Chi-squared wit ch	h Yates' c ii-squared	orrection: = 7.84, P = 0.0	051.
Yates' correctio exact test.	n now obs	olete as we can	always do the

Type of maternity unit	1	Number tha	of ante at women	natal v receiv	isits ed	Total
		0-4	5-9 1	0-14	15+	
Traditional model	n	10	82	167	72	331
	%	37.0	30.8	40.7	46.2	38.5
New model	n	17	184	243	84	528
	%	63.0	69.2	59.3	53.8	61.5
Total	n	27	266	410	156	859
	%	100.0	100.0	100.0	100.0	100.0

Hundley V, Penney G, Fitzmaurice A, van Teijlinen E, Graham E. (2002) A comparison of data obtained from service providers and service users to assess the quality of maternity care. *Midwifery* **18**, p 126-135.

T1	- I+ !		4 4	£	A construction of
i ne	cni-sc	luared	test	TOR	trena

Number of antenata	al visi	ts by typ	e of ma	ternity	unit
Type of maternity	Numbe:	r of ante	natal v	isits	
unit	tl	hat women	receiv	ed	Total
	0-4	5-9 1	0-14	15+	
Traditional model	n 10	82	167	72	331
	% 37. €	30.8	40.7	46.2	38.5
New model	n 17	184	243	84	528
	% 63.0	69.2	59.3	53.8	61.5
Total	n 27	266	410	156	859
	% 100.0	0 100.0	100.0	100.0	100.0
Chi-squared = 11.36, 3 d.f., P = 0.01.					
Does not take the ordering of the categories into account.					
Trend: chi-squared =	9.33, d	.f. = 1, P =	= 0.002 .		
About trend: chi-squa	ared = 2	.03, 2 d.f.	, P = 0.4		

Risk ratio							
Wound	healing by	type of ban	dage				
Bandage	Healed D	id not heal	Total				
Elastic	35 53.8%	30 46.2%	65 100%				
Inelastic	19 28.4% 	48 71.6%	67 100%				
Total	54	78	132				
Want an estimate	Want an estimate of the size of the treatment effect.						

 $\begin{array}{l} \mbox{Difference between proportions: } 0.538-0.284=0.254\\ \mbox{ or } 53.8\%-28.4\%=25.4\mbox{ percentage points.} \end{array}$

Proportion who heal is called the $\ensuremath{\textit{risk}}$ of healing for that population.

Risk ratio = 53.8/28.4 = 1.89.

Also called relative risk, rate ratio, RR.

Risk ratio

Wound	healing by type of ban	dage
Bandage	Healed Did not heal	Total
Elastic Inelastic	35 53.8% 30 46.2% 19 28.4% 48 71.6%	65 100% 67 100%

Total 54 78 132

Risk ratio = 53.8/28.4 = 1.89.

Because risk ratio is a ratio, it has a very awkward distribution.

If we take the log of the rate ratio, we have something which is found by adding and subtracting log frequencies.

The distribution becomes approximately Normal.

Provided frequencies are not small, simple standard error.

RISK ratio	h 1 h -		. d
Wound Bandage	Healed D)id not heal	Total
Elastic Inelastic	35 53.8% 19 28.4%	30 46.2% 48 71.6%	65 100% 67 100%
Total	54	78	132
Risk ratio, RR =	53.8/28.4 =	1.89.	
og _e (RR) = 0.641	2.		
SE for log _e (RR) =	= 0.2256.		
95% CI for log _e (F = 0.6412 = 0.1990	RR) - 1.96×0.22 to 1.0834.	256 to 0.6412	+ 1.96×0
95% CI for BB =	exn(0 1990)) to exp(1.08	34) = 1.22

к	IS	κ	ra	t	O

Wound healing by type of bandage

Bandage	Healed I	id not heal	Total
Elastic Inelastic	35 53.8% 19 28.4%	30 46.2% 48 71.6%	65 100% 67 100%
 Total	 54	78	132

 $\log_{e}(RR) = 0.6412, 95\% \text{ CI} = 0.1990 \text{ to } 1.0834.$

Risk ratio, RR = 53.8/28.4 = 1.89, 95% CI = 1.22 to 2.95.

RR is not in the middle of its confidence interval.

The interval is symmetrical on the log scale, not the natural scale.

Odds

	Healed	Did not heal	Total
Elastic	35 53.8%	30 46.2%	65 100%

Risk of healing = 35/65 = 0.538

Odds of healing = 35/30 = 1.17

Risk = number experiencing event divided by number who could.

Odds = number experiencing event divided by number who did not experience event.

Risk: for every person treated, 0.538 people heal, for every 100 people treated, 53.8 people heal.

Odds: for every person who does not heal, 1.17 people heal, for every 100 people who do not heal, 117 people heal.

Odds ratio

Wound healing by type of bandage				
Bandage	Healed	Did not heal	Total	
Elastic	35	30	65	
Inelastic	19	48	67	
Total	54	78	132	

Odds of healing given elastic bandages: 35/30 = 1.17.

Odds of healing given inelastic bandages: 19/48 = 0.40.

Odds ratio = (35/30)/(19/48) = 1.17/0.40 = 2.95.

For every person who does not heal, 2.95 times as many will heal with elastic bandages as will heal with inelastic bandages.

Odds ratio

Wound	healing	by type of bar	ndage
Bandage	Healed	Did not heal	Total
Elastic Inelastic	35 19	30 48	65 67
Total	54	78	132

Odds ratio, OR = (35/30)/(19/48) = 2.95.

Like RR, OR has an awkward distribution. We use the \log odds ratio.

The distribution becomes approximately Normal.

Provided frequencies are not small, simple standard error.

Odds ratio					
Wound	healing	by type of ban	dage		
Bandage	Healed	Did not heal	Total		
Elastic Inelastic	35 19	30 48	65 67		
Total	54	78	132		
Odds ratio, OR	= (35/30)/((19/48) = 2.95.			
$\log_{e}(OR) = 1.08$	$\log_{e}(OR) = 1.0809.$				
SE log _e (OR) = 0	SE $log_e(OR) = 0.3679$				
95% CI for log _e (OR) = 1.0809 - 1.96 × 0.3679 to 1.0809 + 1.96 × 0.3679 = 0.3598 to 1.8020.					
95% CI for OR = exp(0.3598) to exp(1.8020) = 1.43 to 6.06.					

Odds ratio

Wound healing by type of bandage			
Bandage	Healed	Did not heal	Total
Elastic Inelastic	35 19	30 48	65 67
Total	54	78	132

 $\log_{e}(OR) = 1.0809, 95\% \text{ CI} = 0.3598 \text{ to } 1.8020.$

Odds ratio, OR = 2.95, 95% CI = 1.43 to 6.06.

OR is not in the middle of its confidence interval.

The interval is symmetrical on the log scale, not the natural scale.

Odds ratio				
Wound	healing	by type of ba	ndage	
Bandage	Healed	Did not heal	Total	
Elastic Inelastic	35 19	30 48	65 67	
Total	54	78	132	
Odds ratio for he	ealing: OF	R = (35/30)/(19/4	48) = 2.95.	
Doesn't matter v	vhich way	round we do it.		
Odds ratio for treatment: OR = (35/19)/(30/48) = 2.95.				
Both OR = (35×48)/(30 ×19).				
Ratio of cross products.				

Odds ratio				
Wound	d healing by ty	ype of bar	ndage	
Bandage	Did not heal	Healed	Total	
Elastic Inelastic	30 48	35 19	65 67	
 Total	78	54	132	
Switching the rows or columns inverts the odds ratio.				
Odds ratio for not healing given elastic bandage:				

OR = (30/35)/(48/19) = 0.339 = 1/2.95.

There are only two possible odds ratios.

On the log scale, equal and opposite.

 $\log_{\rm e}(2.95) = 1.082, \, \log_{\rm e}(0.339) = -1.082.$

Odd ratios in case control studies

Case-control study: take a group of subjects with a characteristic, the cases, and compare them to another group without the characteristic, the controls.

stroke pa percentag	tients (cases jes (data of M) and arkus et
Smoked	Never smoked	Total
n %	n %	n %
71 70.3	30 29.7	101 100.0
36 26.3	101 73.7	137 100.0
107 45.0	131 55.0	238 100.0
	stroke pa percentag Smoked n % 71 70.3 36 26.3 107 45.0	stroke patients (cases percentages (data of M Smoked Never smoked n % n % 71 70.3 30 29.7 36 26.3 101 73.7 107 45.0 131 55.0

Markus HS, Barley J, Lunt R, Bland JM, Jeffery S, Carter ND, Brown MM. (1995) Angiotensin-converting enzyme gene deletion polymorphism: a new risk factor for lacunar stroke but not carotid atheroma. *Stroke* 26, 1329-33.

00	bb	ratios	in case	control	studies
----	----	--------	---------	---------	---------

Patient	Smoked	Never smoked	Total
group	n %	n %	n %
Stroke patients	71 70.3	30 29.7	101 100.0
Healthy controls	36 26.3	101 73.7	137 100.0
Total	107 45.0	131 55.0	238 100.0

Because we started with stroke patients and controls, rather than smokers and non-smokers, we cannot estimate the proportion of smokers who have strokes.

We cannot calculate the risk of a stroke for a smoker or for a non-smoker.

We cannot divide one by the other to get the relative risk.

We can evaluate the odds ratio:

OR = (71×101)/(30×36) = 6.64.

Odd ratios in case control studies

Not many people in the population have had a stroke.

We don't know what the prevalence of past stroke is among the population being studied here, who were aged between 35 and 91years, but it is quite small.

Purely for illustration, we are going to suppose it is 0.7%

If we multiply the frequencies for the healthy controls by 100, the proportion of stroke patients will be 0.7%.

Odd ratios in case control studies

Artificial data:

Patient	Smo	ked	Neve	smok	ed Total	
group	5	e second	neve:	2 Dinon	n %	
group	••	0		0		
Stroke patients	71	70.3	30	29.7	101 100.0	
Healthy controls	3600	26.3	10100	73.7	13700 100.0	
Total	3671	45.0	10130	55.0	13801 100.0	
The row percentages are unchanged, and so is the odds ratio. It is still 6.64.						
OR = (71×10100)/(30×3600) = 6.64.						

We should now have the correct proportions of stroke cases among the smokers and among the non-smokers.

The relative risk should also be correct:

RR = (71/3671)/(30/10130) = 6.53

Odd ratios in cas	se co	ntro	l stud	ies			
Artificial data:							
Patient	Sme	oked	Neve	r smok	ed Tot	al	
group	n	8	n	8	n	8	
Stroke patients	71	70.3	30	29.7	101	100.0	
Healthy controls	3600	26.3	10100	73.7	13700	100.0	
Total	3671	45.0	10130	55.0	13801	100.0	
OR = (71×101	100)/(3	30×36	00) = 6	.64.			
RR = (71/367	RR = (71/3671)/(30/10130) = 6.53						
RR is very similar to	the O	R.					
When the frequencies in one category are much smaller than those in the other, OR and RR are much the same.							

Odd	ratios	in	case	contro	studies
ouu	14000		0400	00110101	otaaloo

Original real data:

Patient	Smoked	Never smoked	Total
group	n %	n %	n %
Stroke patients	71 70.3	30 29.7	101 100.0
Healthy controls	36 26.3	101 73.7	137 100.0
Total	107 45.0	131 55.0	238 100.0

OR = (71×10100)/(30×3600) = 6.64.

RR = (71/107)/(30/131) = 2.90

RR is very different from the OR.

In a case-control study, provided what defines a case is rare in the population, the odds ratio can be used as an estimate of the relative risk.

Wound healing by type of bandage

Bandage	Did not heal	Healed	Total	
Elastic Inelastic	30 48	35 19	65 67	
Total	78	 54	132	

Finding risks down the columns instead of across the rows produces more values for the risk ratio.

Risk ratio for elastic bandage given not healing: $RR = (30/78)/(35/54) = 0.593. \label{eq:RR}$

Risk ratio for inelastic bandage given not healing : RR = (48/78)/(19/54) = 1.749.

Altogether there are eight possible rate ratios.

Number needed to treat

Wound healing by type of bandage

Bandage	Healed D	id not heal	Total
Elastic Inelastic	35 53.8% 19 28.4%	30 46.2% 48 71.6%	65 100% 67 100%
Total	54	78	132

Difference between proportions: 0.538 - 0.284 = 0.254or 53.8% - 28.4% = 25.4 percentage points.

How many people must we treat with elastic rather than inelastic bandages to heal or benefit one extra person?

Extra people healed per person treated = 0.254.

Number needed to treat to benefit = 1/0.254 = 3.9.

Small NNT is good!

Number needed to treat							
Wound	Wound healing by type of bandage						
Bandage	Healed D	id not heal	Total				
Elastic Inelastic	35 53.8% 19 28.4%	30 46.2% 48 71.6%	65 100% 67 100%				
Total	54	78	132				
Number needed	to treat to b	enefit = 1/0.2	54 = 3.9.				
For every 3.9 people treated with elastic bandages rather than inelastic we estimate that one extra person is healed.							
For 95% confidence interval, find the 95% CI for the difference and invert it.							
Difference: 95%	Difference: 95% CI = 0.093 to 0.417.						
NNT: 95% CI = 1/ 0.093 to 1/0.417 = 10.8 to 2.4.							

Number needed to treat

Wound	healing	by	type	of	bandage
Wound	healing	ьу	type	of	bandage

Bandage	Healed Di	id not heal	Total
Elastic Inelastic	35 53.8% 19 28.4%	30 46.2% 48 71.6%	65 100% 67 100%
Total	54	78	132

Number needed to treat = 1/0.254 = 3.9.

Difference: 95% CI = 0.093 to 0.417.

NNT: 95% CI = 1/ 0.093 to 1/0.417 = 10.8 to 2.4.

We turn this round to give 95% CI = 2.4 to 10.8.

This is straightforward when difference is significant and confidence interval for the difference does not include zero.

Number needed to treat

Wound healing by type of bandage

Bandage	Healed Did not heal	Total
Elastic	31 63.3% 18 36.7%	49 100%
Inelastic	26 50.0% 26 50.0%	52 100%

(Northeast et al., 1990)

Difference = 0.133, NNT = 1/0.133 = 7.5.

Difference: 95% CI = -0.059 to 0.324.

95% CI includes 0.0, difference not significant.

NNT: 95% CI = 1/(-0.059) to 1/0.324 = -16.9 to 3.1.

What does this mean?

Northeast ADR, Layer GT, Wilson NM, Browse NL, Burnand KG. (1990) Increased compression expedites venous ulcer healing. *Royal Society of Medicine Venous Forum*. London: Royal Society of Medicine.

Number need	ed to trea	at			
Wound healing by type of bandage					
Bandage	Healed I	id not heal	Total		
Elastic	31 63.3%	18 36.7%	49 100%		
Inelastic	26 50.0%	26 50.0%	52 100%		
(Northeast	et al., 19	90)			
NNT: 95% CI = 1	/(-0.059) te	0 1/0.324 = -	-16.9 to 3.1		

What does this mean?

Can NNT be negative?

Proportion healed on new treatment less than proportion healed on control treatment.

More harm than good. Number needed to treat to harm, NNTH or NNH.

Number needed to treat

Wound healing by type of bandage

Bandage	Healed	Did not heal	Total		
Elastic Inelastic	31 63.3 26 50.0	% 18 36.7% % 26 50.0%	49 100% 52 100%		
(Northeast <i>et al.</i> , 1990)					

, , . . . ,

NNT: 95% CI = 3.1 to -16.9 to 3.1.

What does this mean?

NNT cannot be between -1 and +1.

Difference = 0.0, NNT infinite, i.e. no matter how many patients we treat no extra person will heal or be harmed.

Number needed to treat

When the difference is not significant, the confidence interval goes off to infinity in either direction.

Paired data, e.g. cross-over trial

- Dichotomous data: McNemar's test, same as sign test, corresponding confidence interval for difference between two proportions.
- Ordered categories: sign test.
- > Categories not ordered: very rare in clinical evaluations.