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Correlation 
Example: Muscle strength and height in 42 alcoholics

A scatter diagram:

How close is the relationship?

Correlation: measures closeness to a linear relationship.
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Correlation coefficient
Subtract means from observations and multiply.

Sum of products about the means.

Like the sum of squares about the means used for 
measuring variability.
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Correlation coefficient
Subtract means from observations and multiply.

Products in top right and bottom left quadrants positive.
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Correlation coefficient
Subtract means from observations and multiply.

Products in top right and bottom left quadrants positive.

Products in top left and bottom right quadrants negative.
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Correlation coefficient
Subtract means from observations and multiply.

Sum of products positive.

Correlation positive.
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Correlation coefficient
Example: Muscle strength and age in 42 alcoholics
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Correlation coefficient
Example: Muscle strength and age in 42 alcoholics

Sum of products negative.

Correlation negative.
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Correlation coefficient
Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by r.

Maximum value = 1.00.

Minimum value = –1.00.

Also known as:

� Pearson’s correlation coefficient,

� product moment correlation coefficient.
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Correlation coefficient
Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by r.

Maximum value = 1.00.

Minimum value = –1.00.
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Correlation coefficient
Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by r.

Maximum value = 1.00.

Minimum value = –1.00.

r = 0.42.

Positive correlation of 
fairly low strength
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Correlation coefficient
Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by r.

Maximum value = 1.00.

Minimum value = –1.00.

r = –0.42.

Negative correlation of 
fairly low strength.
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Correlation coefficient
Positive when large values of one variable are associated 
with large values of the other.
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r = 0.9

Correlation coefficient
Positive when large values of one variable are associated 
with large values of the other.
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r = 0.5

Correlation coefficient
Negative when large values of one variable are associated 
with small values of the other.
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Correlation coefficient
Negative when large values of one variable are associated 
with small values of the other.
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r = -0.95

Correlation coefficient
r = +1.00 when large values of one variable are associated 
with large values of the other and the points lie on a straight 
line.
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r = 1.0

Correlation coefficient
r = –1.00 when large values of one variable are associated 
with small values of the other and the points lie on a straight 
line.
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Correlation coefficient
r will not equal –1.00 or +1.00 when there is a perfect 
relationship unless the points lie on a straight line.
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r = 0.92

Correlation coefficient
r = 0.00 when there is no linear relationship.
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Correlation coefficient
It is possible for r to be equal to 0.00 when there is a 
relationship which is not linear.
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Correlation coefficient
We can test the null hypothesis that the correlation 
coefficient in the population is zero.
Simple t test, tabulated.

Assume: one of the variables is from a Normal distribution.
Large deviations from assumption � P very unreliable.

r = 0.42, P = 0.006.

Easy to do, simple 
tables.

Computer programs
almost always print 
this.100
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Correlation coefficient
We can find a confidence interval for the correlation 
coefficient in the population.
Fisher’s z transformation.

Assume: both of the variables are from a Normal distribution.
Large deviations from assumption � CI very unreliable.

r = 0.42, approximate 
95% confidence 
interval: 0.13  to  0.64

Tricky, approximate.

Computer programs
rarely print this.100
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