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Clincial Biostatistics 

Regression 
Regression analyses 
Regression is the rather strange name given to a set of methods for predicting one 
variable from another.  The data shown in Table 1 and come from a student project 
aimed at estimating body mass index (BMI) using only a tape measure.  In the full 
data, analysed later, we have abdominal circumference, mid upper arm circumference, 
and sex as possible predictors.  We shall start with the female subjects only and will 
look at abdominal circumference.   

BMI, also known as Quetelet’s index, is a measure of fatness defined for adults as 
weight in Kg divided by abdominal circumference in metres squared.  Can we predict 
BMI from abdominal circumference?  Figure 1 shows a scatter plot of BMI against 
abdominal circumference and there is clearly a strong relationship between them.  We 
could try to draw a line on the scatter diagram which would represent the relationship 
between them and enable us to predict one from the other.  We could draw many lines 
which might do this, as shown in Figure 2, but which line should we choose?  The 
method which we use to do this is simple linear regression.  This is a method to 
predict the mean value of one variable from the observed value of another.  In our 
example we shall estimate the mean BMI for women of any given abdominal 
circumference measurement.   

We do not treat the two variables, BMI and abdominal circumference, as being of 
equal importance, as we did for correlation coefficients.  We are predicting BMI from 
abdominal circumference and BMI is the outcome, dependent, y, or left hand side 
variable.  Abdominal circumference is the predictor, explanatory, independent, x, 
or right hand side variable.  Several different terms are used.  We predict the 
outcome variable from the observed value of the predictor variable. 

The relationship we estimate is called linear, because it makes a straight line on the 
graph.  A linear relationship takes the following form:  

  BMI = intercept + slope × abdominal circumference 

the intercept and slope are numbers which we estimate from the data.  
Mathematically, this is the equation of a straight line.  The intercept is the value of 
the outcome variable, BMI, when the predictor, abdominal circumference, is zero.  
The slope is the increase in the outcome variable associated with an increase of one 
unit in the when the predictor.   
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Table 1.  Weight and abdominal circumference in 86 women (data of Malcolm 
Savage) 
Abdominal          Abdominal          Abdominal 
 circum-   BMI      circum-   BMI      circum-   BMI 
 ference (Kg/ht2)   ference (Kg/ht2)    ference (Kg/ht2) 
  (cm)               (cm)               (cm) 
  51.9    16.30      64.2    19.44      73.1    20.25 
  53.1    19.70      64.4    19.31      73.2    21.07 
  54.3    16.96      64.4    18.15      73.2    24.57 
  57.4    11.99      64.7    20.55      74.0    20.60 
  57.6    14.04      64.8    15.70      74.1    16.86 
  57.8    15.16      65.0    18.73      74.4    22.58 
  58.2    16.31      65.2    18.52      74.7    21.42 
  58.2    16.17      65.6    21.08      74.8    23.11 
  59.0    20.08      66.2    17.58      74.8    24.11 
  59.2    14.81      66.8    18.51      79.3    19.71 
  59.5    18.02      66.9    18.75      79.7    23.14 
  59.8    18.43      67.0    19.68      80.0    19.48 
  59.8    15.50      67.5    18.06      80.3    23.28 
  60.2    17.64      67.8    21.12      80.4    22.59 
  60.2    17.54      67.8    20.60      82.2    28.78 
  60.4    14.18      68.0    19.40      82.2    25.89 
  60.6    17.41      68.2    22.11      83.2    25.08 
  60.7    19.44      68.6    19.23      83.9    27.41 
  61.2    21.63      69.2    19.49      85.2    22.86 
  61.2    15.55      69.2    20.12      87.8    32.04 
  61.4    18.37      69.2    24.06      88.3    25.56 
  62.4    17.69      69.4    19.97      90.6    28.24 
  62.5    17.64      70.2    19.52      93.2    28.74 
  63.2    18.70      70.3    23.77     100.0    31.04 
  63.2    20.36      70.9    18.90     106.7    30.98 
  63.2    18.04      71.0    20.89     108.7    40.44 
  63.2    18.04      71.0    17.85 
  63.4    17.22      71.2    21.02 
  63.8    18.47      72.2    19.87 
  64.2    17.09      72.8    23.51 
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Figure 1.  Scatter plot of BMI against abdominal circumference 
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Figure 2.  Scatter plot of BMI against abdominal circumference with possible lines to 
represent the relationship 
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Figure 3.  Differences between the observed and predicted values of the outcome 
variable 
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Figure 4.  The least squares regression line for BMI and abdominal circumference 
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To find a line which gives the best prediction, we need some criterion for best.  The 
one we use is to choose the line which makes the distance from the points to the line 
in the y direction a minimum.  These are the differences between the observed BMI 
and the BMI predicted by the line.  These are shown in Figure 3.  If the line goes 
through the cloud of points, some of these differences will be positive and some 
negative.  There are many lines which will make the sum zero, so we cannot just 
minimise the sum of the differences.  As we did when estimating variation using the 
variance and standard deviations (Week 1) we square the differences to get rid of the 
minus signs.  We choose the line which will minimise the sum of the squares of these 
differences.  We call this the principle of least squares and call the estimates that we 
obtain the least squares line or equation.  We also call this estimation by ordinary 
least squares or OLS.   

There are many computer programs which will estimate the least squares equation and 
for the data of Table 1 this is  

  BMI = –4.15 + 0.35 × abdominal circumference 

This line is shown in Figure 4.  The estimate of the slope, 0.35, is also known as the 
regression coefficient.  Unlike the correlation coefficient, this is not a dimensionless 
number, but has dimensions and units depending on those of the variables.  The 
regression coefficient is the increase in BMI per unit increase in abdominal 
circumference, so is in kilogrammes per square metre per centimetre, BMI being in 
Kg/m2 and abdominal circumference in cm.  If we change the units in which we 
measure, we will change the regression coefficient.  For example, it we measured 
abdominal circumference in metres, the regression coefficient would be 35 Kg/m2/m.  
The intercept is in the same units as the outcome variable, here Kg/m2.   

In this example, the intercept is negative, which means that when abdominal 
circumference is zero the BMI is negative.  This is impossible, of course, but so is 
zero abdominal circumference.  We should be wary of attributing any meaning to an 
intercept which is outside the range of the data.  It is just a convenience for drawing 
the best line within the range of data that we have. 

Confidence intervals and P values in regression 
We can find confidence intervals and P values for the coefficients subject to 
assumptions.  These are that deviations from line should have a Normal distribution 
with uniform variance.  (In addition, as usual, the observations should be 
independent.)   

For the BMI data, the estimated slope = 0.35 Kg/m2/cm, with 95% CI = 0.31 to 0.40 
Kg/m2/cm, P<0.001.  The P value tests the null hypothesis that in the population from 
which these women come, the slope is zero.  The estimated intercept = –4.15 Kg/m2, 
95% CI = –7.11 to –1.18 Kg/m2.  Computer programs usually print a test of the null 
hypothesis that the intercept is zero, but this is not much use.  The P value for the 
slope is exactly the same as that for the correlation coefficient.   
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Figure 5.  Histogram and Normal plot for residuals for the BMI and abdominal 
circumference data 
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Figure 6.  Scatter plot of residual BMI against abdominal circumference and against 
the regression estimate 

Table 2.  24 hour energy expenditure (MJ) in groups of lean and obese women 
(Prentice et al., 1986, cited by Altman, 1991) 

------------------------------ 
       Lean      Obese 
------------------------------ 
       6.13      8.79    
       7.05      9.19   
       7.48      9.21   
       7.48      9.68   
       7.53      9.69   
       7.58      9.97  
       7.90     11.51  

      8.08     11.85  
      8.09     12.79  
      8.11   
      8.40   
     10.15   
     10.88   
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Testing the assumptions of regression  
For our confidence intervals and P values to be valid, the data must conform to the 
assumptions that deviations from line should have a Normal distribution with uniform 
variance.  The observations must be independent, as usual.  Finally, our model of the 
data is that the line is straight, not curved, and we can check how well the data match 
this.   

We can check the assumptions about the deviations quite easily using techniques 
similar to those used for t tests.  First we calculate the differences between  the 
observed value of the outcome variable and the value predicted by the regression, the 
regression estimate.  We call these the deviations from the regression line, the 
residuals about the line, or just residuals.  These should have a Normal distribution 
and uniform variance, that is, their variability should be unrelated to the value of the 
predictor. 

We can check both of these assumptions graphically.  Figure 5 shows a histogram and 
a Normal plot for the residuals for the BMI data.  The distribution is a fairly good fit 
to the Normal.  We can assess the uniformity of the variance by simple inspection of 
the scatter diagram in Figure 4.  There is nothing to suggest that variability increases 
as abdominal circumference increases, for example.  It appears quite uniform.  A 
better plot is of residual against the predictor variable, as shown in Figure 6.  Again, 
there is no relationship between variability and the predictor variable.  Figure 6 also 
shows a plot of the residual against the regression estimate, the value predicted by the 
regression.  Some books prefer this version of the plot.  As you can see, the actual plot 
is identical, only the horizontal scale is changed.  The plot of residual against 
predictor should show no relationship between mean residual and predictor if the 
relationship is actually a straight line.  If there is such a relationship, usually that the 
residuals are higher or lower at the extremes of the plot than they are in the middle, 
this suggests that a straight line is not a good way to look at the data.  A curve might 
be better.   

Dichotomous predictor variables 
Table 2 shows 24 hour energy expenditure (MJ) in groups of lean and obese women.  
In week 4, we analysed these data using the two sample t method.  We can also do 
this by regression.  We define a variable = 1 if the woman is obese, = 0 if she is lean. 

If we carry out regression: 

 energy = 8.07 + 2.23 × obese 

 slope: 95% CI = 1.05 to 3.42 MJ, P=0.0008. 

Compare this with the two sample t method: 

 Difference (obese – lean) = 10.298 – 8.066 = 2.232. 

95% CI = 1.05 to 3.42 MJ, P=0.0008. 

The two methods give identical results.  They are shown graphically in Figure 7. 

The assumptions of two sample t method are that  

1. energy expenditure follows a Normal distribution in each population, 

2. variances are the same in each population. 

The assumptions of regression are that 
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1. differences between observed and predicted energy expenditure follow a 
Normal distribution, 

2. variances of differences are the same in whatever the value of the predictor. 

These are the same.  The energy expenditure predicted for a group by the regression is 
equal to the mean of the group and if the differences from the group mean follow a 
Normal distribution, then so do the residuals about the regression line, which goes 
through the two means.  If variances are the same for the two values of the predictor, 
then they are the same in the two groups. 

Multiple regression 
In this section I expand the idea of regression to describe using more than one 
predictor variable.   

I illustrated simple linear regression using the prediction of body mass index (BMI) 
from abdominal circumference in a population of adult women.  Figure 8 shows 
scatter diagrams of BMI against abdominal circumference and of BMI against mid 
upper arm circumference.  This time both men and women are included in the sample.  
The regression equations predicting BMI from abdominal circumference and from 
mid upper arm circumference are: 

BMI   =     –1.35        +       0.31×abdomen  
95% CI          –3.49 to 0.78         0.28 to 0.33 
                                                         P<0.001 

BMI   =     –4.59        +       1.09×arm  
95% CI          –7.12 to –2.07         0.98 to 1.20 
                                                         P<0.001 

Both abdominal and arm circumference are highly significant predictors of BMI.  
Could we get an even better prediction if we used both of them?  Multiple regression 
enables us to do this.  We can fit a regression equation with more than one predictor: 

BMI   =     –5.94        +       0.18×abdomen        +        0.59×arm 
95% CI          –8.10 to –3.77       0.14 to 0.22                  0.45 to 0.74 
                                                        P<0.001                        P<0.001 

This multiple regression equation predicts BMI better than either of the simple linear 
regressions.  We can tell this because the standard deviation of the residuals, what is 
left after the regression, is 2.01 Kg/m2 for the regression on abdomen and arm 
together, whereas it is 2.31 and 2.36 Kg/m2 for the separate regressions on abdomen 
and on arm respectively.   

The regression equation was found by an extension of the least squares method 
described for simple linear regression.  We find the coefficients which make the sum 
of the squared differences between the observed BMI and that predicted by the 
regression a minimum.  This is called ordinary least squares regression or OLS 
regression. 
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Figure 7.  Equivalence of regression and two sample t method for comparing the 
mean energy expenditure in two groups of women 
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Figure 8.  BMI against abdominal circumference and arm circumference in 202 adults 
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Figure 9.  Abdominal circumference against mid upper arm circumference in 202 
adults 
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Although both variables are highly significant, the coefficient of each has changed.  
Both coefficients have got closer to zero, going from 0.305 to 0.178 for abdomen and 
from 1.089 to 0.582 for arm circumference.  The reason for this is that abdominal and 
arm circumferences are themselves related, as Figure 9 shows.  The correlation is r = 
0.77, P<0.001.  Abdominal and arm circumferences each explains some of the 
relationship between BMI and the other.  When we have only one of them in the 
regression, it will include some of the relationship of BMI with the other.  When both 
are in the regression, each appears to have a relationship which is less strong than it 
really is.   

Each predictor also reduces the significance of the other because they are related to 
one another as well as to BMI.  We cannot see this from the P values, because they 
are so small, but the t statistics on which they are based are 20.64 and 19.97 for the 
two separate regressions and 8.80 and 8.09 for the multiple regression.  Larger t 
statistics produce smaller P values.  It is quite possible for one of the variables to 
become not significant as a result of this, or even for both of them to do so.  We 
usually drop variables which are not significant out of the regression equation, one at 
the time, the variable with the highest P value first, and then repeat the regression. 

There is another possible predictor variable in the data, sex.  Figure 10 shows BMI for 
men and women.  This difference is not significant using regression of BMI on sex, or 
an equivalent two sample t test, P = 0.5.  If we include sex in the regression, as 
described for the energy expenditure data, using the variable ‘male’ = 1 if male and = 
0 if female, we get  

BMI   =     –6.44      +      0.18×abdomen      +      0.64×arm      –      1.39×male 
95% CI            –8.49 to –4.39    0.14 to 0.22                  0.50 to 0.78       –1.94 to –0.84 
                                                 P<0.001                             P<0.001               P<0.001 

This time the coefficients, confidence intervals and, although you can’t tell, the P 
values, for abdomen and arm are hardly changed.  This is because neither is closely 
related to sex, the new variable in the regression.  Male has become significant.  This 
is because including abdominal and arm circumference as predictors removes so 
much of the variation in BMI that the relationship with sex becomes significant.  
Mean BMI is lower for men than women of the same abdominal and arm 
circumference by 1.39 units.  When we have continuous and categorical predictor 
variables together, regression is also called analysis of covariance or ancova, for 
historical reasons.  

Testing the assumptions of multiple regression 
We have to make the same assumptions for multiple linear regression as for simple 
linear regression.  For our confidence intervals and P values to be valid, the data must 
conform to the assumptions that deviations from line should have a Normal 
distribution with uniform variance.  The observations must be independent.  Finally, 
our model of the data is that the relationship with each of our predictors is adequately 
represented by a straight line rather than a curve.   
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Figure 10.  BMI by sex in 202 adults 
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Figure 11.  Residual BMI after regression on abdominal and arm circumference and 
sex, for 202 adults 
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Figure 12.  Residual BMI after regression on abdominal and arm circumference and 
sex against the regression estimate, for 202 adults 
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We can check these assumptions in the same way as we did for simple linear 
regression.  First we calculate the residuals, the differences between the observed 
value of the outcome variable and the value predicted by the regression.  These should 
have a Normal distribution and uniform variance, that is their variability should be 
unrelated to the value of the predictors.  We can use a histogram and a Normal plot to 
check the assumptions of a Normal distribution (Figure 11).  For these data, there is a 
small departure from a Normal distribution, because the tails are longer than they 
should be.  This is seen both in the histogram and by the way the Normal plot departs 
from the straight line at either end.  There is little skewness, however, and regression 
is fairly robust to departures from a Normal distribution.  It is difficult to transform to 
remove long tails on either side of the distribution.  If we plot the residual against the 
predicted value, the regression estimate, we can see whether there is an increase in 
variability with increasing magnitude.  Figure 12 shows that there is no such 
relationship in this example.   

When there are departures from the Normal distribution or uniform variance, we can 
try to improve matters by a suitable transformation of the outcome variable (Week 5).  
These problems usually go together and a transformation which removes one usually 
removes the other as well.  I give an example for the asthma trial below. 

Regression lines which are not straight 
We can fit a curve rather than a straight line quite easily.  All we need to do is to add 
another term to the regression.  For example, we can see whether the relationship 
between BMI and abdominal circumference is better described by a curve.  We do 
this by adding a variable equal to the square of abdominal circumference: 

BMI =       16.03      –      0.16 × abdomen      +      0.0030 × abdomen2 
95% CI           4.59 to 27.47     –0.45 to 0.14                   0.0011 to 0.0049 
                                                        P=0.3                               P=0.003 

The abdomen variable is no longer significant, because the abdomen and the abdomen 
squared are very highly correlated, which makes the coefficients difficult to interpret.  
We can improve things by subtracting a number close to the mean abdominal 
circumference.  This makes the slope for abdomen easier to interpret.  In this case, the 
mean abdominal circumference is 72.35 cm, so I have subtracted 72 from before 
squaring: 

BMI =       0.59      +      0.27 × abdomen      +      0.0030 × (abdomen – 72)2 
95% CI           –1.85 to 3.03     0.24 to 0.31                   0.0011 to 0.0049 
                                                        P<0.001                          P=0.003 

The coefficient for the squared term is unchanged, but the linear term is changed.  We 
have evidence that the squared term is a predictor of BMI and we could better 
represent the data by a curve.  This is shown in Figure 13.   

Using multiple regression for adjustment 
You will often see the words ‘adjusted for’ in reports of studies.  This almost always 
means that some sort of regression analysis has been done, and if we are talking about 
the difference between two means this will be multiple linear regression.   
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Figure 13.  BMI and abdominal circumference, showing the simple linear regression 
line and the quadratic curved line 
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Figure 14.  Mean of one-week diary peak expiratory flow six months after training by 
an asthma specialist nurse or usual care (data of Levy et al., 2000) 
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Figure 15.  Mean PEF after 6 months against baseline PEF for intervention and 
control asthmatic patients, with fitted analysis of covariance lines (data of Levy et al., 
2000) 
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In clinical trials, regression is often used to adjust for prognostic variables and 
baseline measurements.  For example, Levy et al. (2000) carried out a trial of 
education by a specialist asthma nurse for patients who had been taken to an accident 
and emergency department due to acute asthma.  Patients were randomised to have 
two one-hour training sessions with the nurse or to usual care.  The measurements 
were one week peak expiratory flow and symptom diaries made before treatment and 
after three and six months.  We summarised the 21 PEF measurement (three daily) to 
give the outcome variables mean and standard deviation of PEF over the week.  We 
also analysed mean symptom score.  The primary outcome variable was mean PEF, 
shown in Figure 14.  There is no obvious difference between the two groups and the 
mean PEF was 342 litre/min in the nurse intervention group and 338 litre/min in the 
control group.  The 95% CI for the difference, intervention – control, was –48 to 63 
litre/min, P=0.8, by the two-sample t method.   

However, although this was the primary outcome variable, it was not the primary 
analysis.  We have the mean diary PEF measured at baseline, before the intervention, 
and the two mean PEFS are strongly related.  We can use this to reduce the variability 
by carrying out multiple regression with PEF at six months as the outcome variable 
and treatment group and baseline PEF as predictors.  If we control for the baseline 
PEF in this way, we might get a better estimate of the treatment effect because we 
will remove a lot of variation between people.   

We get: 

PEF@6m =      18.3    +    0.99 × PEF@base    +     20.1 × intervention 
95% CI    –10.5 to 47.2   0.91 to 1.06                  0.4 to 39.7 
                                           P<0.001                       P=0.046 

Figure 15 shows the regression equation (or analysis of covariance, as the term is 
often used in this context) as two parallel lines, one for each treatment group.  The 
vertical distance between the lines is the coefficient for the intervention, 20.1 
litre/min.  By including the baseline PEF we have reduced the variability and enabled 
the treatment difference to become apparent. 

There are clear advantages to using adjustment.  In clinical trials, multiple regression 
including baseline measurements reduces the variability between subjects and so 
increase the power of the study.  It makes it much easier to detect real effects and 
produces narrower confidence intervals.  It also removes any effects of chance 
imbalances in the predicting variables. 

Is adjustment cheating?  If we cannot demonstrate an effect without adjustment (as in 
the asthma nurse trial) is it valid to show one after adjustment?  Adjustment can be 
cheating if we keep adjusting by more and more variables until we have a significant 
difference.  This is not the right way to proceed.  We should be able to say in advance 
which variables we might want to adjust for because they are strong predictors of our 
outcome variable.  Baseline measurements almost always come into this category, as 
should any stratification or minimisation variables used in the design.  If they were 
not related to the outcome variable, there would be no need to stratify for them.  
Another variable which we might expect to adjust for is centre in multi-centre trials, 
because there may be quite a lot of variation between centres in their patient 
populations and in their clinical practices.  We might also want to adjust for known 
important predictors.  If we had no baseline measurements of PEF, we would want to 
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adjust for height and age, two known good predictors of PEF.  We should state before 
we collect the data what we wish to adjust for and stick to it. 

In the PEF analysis, we could have used the differences between the baseline and six 
month measurements rather than analysis of covariance.  This is not as good because 
there is often measurement error in both our baseline and our outcome measurements.  
When we calculate the difference between them, we get two lots of error.  If we do 
regression, we only have the error in the outcome variable.  If the baseline variable 
has a lot of measurement error or there is only a small correlation between the 
baseline and outcome variables, using the difference can actually make things worse 
than just using the outcome variable.  Using analysis of covariance, if the correlation 
is small the baseline variable has little effect rather than being detrimental. 

Transformations in multiple regression 
In the asthma nurse study, a secondary outcome measure was the standard deviation 
of the diary PEFs.  This is because large fluctuations in PEF are a bad thing and we 
would like to produce less variation, both over the day and from day to day.  Figure 
16 shows SD at six months against SD at baseline by treatment group.  Figure 17 
shows the distribution of the residuals after regression of SD at six months on baseline 
SD and treatment.  Clearly the residuals have a skew distribution and the standard 
deviation of the outcome variable increases as the baseline SD increases.  We could 
try a log transformation.  This gives us a much more uniform variability on the scatter 
diagram (Figure 18) and the distribution of the residuals looks a bit closer to the 
Normal.  The multiple regression equation is  

logSD@6m    =    2.78    +    0.017 × SD@base    – 0.42 × intervene 
95% CI           2.48 to 3.08   0.010 to 0.024        –0.65 to –0.20 
                                                 P<0.001                     P<0.001 

We estimate that the mean log SD is reduced by –0.42 by the intervention, whatever 
the baseline SD.  Because we have used a log transformation, we can back transform 
just as we did for the difference between two means (Week 5).  The antilog is  
exp(–0.42) = 0.66.  We interpret this as that the mean standard deviation of diary PEF 
is reduced by a factor of 0.66 by the intervention by the specialist asthma nurse.  We 
can antilog the confidence interval, too, giving 0.52 to 0.82 as the confidence interval 
for the ratio of nurse SD to control SD. 

Factors with more than two levels 
We can use any categorical variable as a predictor.  We do not have to restrict 
ourselves to those with only one level, such as intervention or control, but can also 
use categorical variables with more than two categories.  For example, Table 3 shows 
some data from a study of six patients with prostate cancer being treated to reduce the 
size of their tumours.  Can we estimate the relationship between tumour size and 
portal vein transit time?  Figure 19 shows a scatter diagram.  We might be tempted to 
calculate a regression line of transit time on tumour size, or correlation coefficient  
between them, but this could be highly misleading.  The observations are not 
independent, because the measurements on the same person will be more like one 
another than they are like those on another person.  Also, we are interested in whether 
reduced tumour size is associated with reduced blood flow, not whether people with 
larger tumour have greater blood flow.  We would like to look at the relationship 
between tumour size and blood flow within the same subject. 
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Figure 16.  Standard deviation of diary PEF after six months, by baseline standard 
deviation and treatment group 
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Figure 17.  Residual standard deviation of diary PEF after six months after regression 
on baseline SD and treatment group 
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Figure 18.  Log transformed standard deviation of diary PEF after six months, by 
baseline standard deviation and treatment group 
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Figure 19.  Serial measurements of tumour size by CT scan and portal vein blood flow 
(transit time in sec) for six patients, each symbol representing a different patient 

 

Table 3.  Serial measurements of tumour size by CT scan and portal vein blood flow 
(transit time in sec) for six patients (data of Oliver Byass) 
     Subject 1             Subject 2             Subject 3      
 Time    CT     PV     Time    CT     PV     Time    CT     PV  
-------------------   -------------------   ------------------- 
   0     10      *       1   12.1      9       1   14.7     13  
   1      8      *       2   10.4     25       2   14.8     13  
   2    7.8     13       3    9.4      *       3   14.5      *  
   3    6.5     11       4    7.2      *       4   14.5     16  
   4    5.5     18       5      8     18       5   14.1      *  
   5    4.8     18       6    8.2      *       6   13.6   13.5  
   6      5     18        
       
     Subject 4             Subject 5             Subject 6      
 Time    CT     PV     Time    CT     PV     Time    CT     PV  
-------------------   -------------------   ------------------- 
   1      5     19       1    3.6      9       1    7.8      7  
   2    3.9     15       2    2.6     10       2    6.6     10  
   3    4.8     17       3    2.6      8       3    5.5      *  
   4    2.4     18       4    3.2      9       4    4.5      *  
                         5    3.5      9       5    3.8     10  
 
CT =  tumour size (cm) by CT scan, PV = portal vein transit time 
* = missing data 
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Figure 20.  Serial measurements of tumour size by CT scan and portal vein blood flow 
(transit time in sec) for six patients, showing the analysis of covariance model 

 

Table 4.  Results of a factorial clinical trial of antidepressant drug counselling and 
information leaflets to improve adherence to drug treatment: patients reporting 
continuing treatment at 12 weeks (Peveler et al., 1999) 

Drug counselling Leaflet 

Yes No 

Total 

Yes 32/53 (60%) 22/53 (42%) 54/105 (51%) 

No 34/52 (65%) 20/55 (36%) 54/108 (50%) 

Total  66/105 (63%) 42/108 (39%)  
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Figure 21.  Interaction between abdominal and arm circumference in their effects on 
BMI 
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We can do this by multiple regression or analysis of covariance (which are the same 
thing).  Essentially, we fit a model which has parallel lines relating transit time and 
tumour size for each subject separately.  To do this, we need to fit subject as a 
predictor.  We cannot just put the variable subject number into a regression equation 
as if it were an interval variable, because there is no sense in which Subject 2 is 
greater than Subject 1.  We do not want to assume that our categories are related in 
this way.  Instead, we define dummy variables or indicator variables which enable 
us to estimate a different mean for each category.  We do this by defining a set of 
variables, each of which is 0 or 1.  For the example, we need five dummy variables:  

sub1 = 1 if Subject 1, 0 otherwise, 
sub2 = 1 if Subject 2, 0 otherwise, 
sub3 = 1 if Subject 3, 0 otherwise, 
sub4 = 1 if Subject 4, 0 otherwise, 
sub5 = 1 if Subject 5, 0 otherwise. 

If all of these variables are zero, then we have Subject 6.  We need five dummy 
variables to represent a categorical variable with six categories.  Subject 6 is called 
the reference category.   

We then do regression on our continuous predictor variable and all the dummy 
variables: 

PV = 22.5 – 1.17×CT + 6.7×sub1 + 8.2×sub2 – 0.6×sub3 – 9.9×sub4 – 6.4×sub5 
                       P=0.05      P=0.06       P=0.1         P=0.8        P=0.001       P=0.01 

We should ignore the individual tests for the coefficients, because they do not mean 
much.  What we want to know is whether there is any evidence that subject as a whole 
has an effect.  (It would be very surprising if it didn’t, because they are six different 
people.)  To do this, we get a combined F test for the factor, which is beyond the 
scope of this course.  Here the test statistic is F = 6.83 with 1 and 5 degrees of 
freedom, P = 0.001.  The fitted lines are shown in Figure 20. 

Most statistical computer programs will calculate the dummy variables for you.  You 
need to specify in some way that the variable is categorical, using terms such as 
‘factor’ or ‘class variable’ for a categorical variable and ‘covariate’ or continuous’ for 
quantitative predictors.   

Dichotomous outcome variables and logistic regression 
There are other forms of regression which enable us to do similar things for other 
kinds of variables.  Logistic regression allows us to predict the proportion of subjects 
who will have some characteristic, such as a successful outcome on a treatment, when 
the outcome variable is a yes or no, dichotomous variable. 
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For our first example, Table 4 shows the results of a clinical trial of two interventions 
which it was hoped would improve adherence to antidepressant drug treatment in 
patients with depression (Peveler et al., 1999).  Two different interventions, 
antidepressant drug counselling and an information leaflet, were tested in the same 
trial.  The trial used a factorial design where subjects were allocated to one of four 
treatment combinations: 

1. counselling and leaflet 

2. counselling only 

3. leaflet only 

4. neither intervention 

The outcome variable was whether patients continued treatment up to 12 weeks.  The 
authors reported that  

‘66 (63%) patients continued with drugs to 12 weeks in the counselled 
group compared with 42 (39%) of those who did not receiving 
counselling (odds ratio 2.7, 95% confidence interval 1.6 to 4.8; number 
needed to treat=4). Treatment leaflets had no significant effect on 
adherence.’  (Peveler et al., 1999) 

How did they come to these conclusions?  We might think that we would take the 
total row of the table and use the method of estimating the odds ratio for a two by two 
table described in Week 6.  The problem with this is that if both variables have an 
effect then each will affect the estimate for the other.  We use logistic regression 
instead.   

Our outcome variable is dichotomous, continue treatment yes or no.  We want to 
predict the proportion who continue treatment from whether they were allocated to the 
two interventions, counselling and leaflet.  We would like a regression equation of the 
form: 

proportion = intercept + slope × counselling + slope × leaflet 

The problem is that proportions cannot be less than zero or greater than one.  How can 
we stop our equation predicting impossible proportions?  To do this, we find a scale 
for the outcome which is not constrained.  Odds has no upper limit, so it can be 
greater than one, but it must be greater than or equal to zero.  Log odds can take any 
value.  We therefore use the log odds of continuing treatment, rather than the 
proportion continuing treatment.  We call the log odds the logit or logistic 
transformation and the method used to fit the equation  

log odds = intercept + slope1 × counselling + slope2 × leaflet 

is called logistic regression.  The slope for counselling will be the increase in the log 
odds of continuing treatment when counselling is used compared to when counselling 
is not used.  It will be the log of the odds ratio for counselling, with both the estimate 
and its standard error adjusted for the presence or absence of the leaflet.  If we antilog, 
we get the adjusted odds ratio. 

The fitted logistic regression equation for the data of Table 4, predicting the log odds 
of continuing treatment, is:  

log odds = –0.559 + 0.980 × counselling + 0.216 × leaflet 



20 

This is calculated by a computer-intensive technique called maximum likelihood.  
This finds the values for the coefficients which would make the data observed the 
most likely outcome.  We can find 95% confidence intervals for the coefficients and P 
values testing the null hypothesis that the coefficient is zero.  These are seldom of 
interest for the intercept.  For counselling, the 95% CI is 0.426 to 1.53, P=0.001.  For 
the leaflet, we have 95% CI = –0.339 to 0.770, P=0.4. 

If we antilog this equation, we get an equation predicting the odds: 

odds = 0.57 × 2.66counselling × 1.24leaflet 

because when we antilog, things which are added become multiplied and two 
numbers which are multiplied become one number raised to the power of the other 
(see separate Note on Logarithms).  This is actually quite easy to interpret, although it 
doesn’t look it.  The variable for counselling is zero if the subject did not receive 
counselling, or one if the subject received counselling.  Any number raised to the 
power zero is equal to one and so 2.660 = 1.  Any number raised to the power one is 
just the number itself and so 2.661 = 2.66.  Hence if the subject has counselling, the 
odds of continuing treatment is multiplied by 2.66, so 2.66 is the odds ratio for 
counselling.  Similarly, the odds ratio for continuing treatment if given the leaflet is 
1.24.  The 95% confidence intervals for these odds ratios are 1.53 to 4.64 and 0.71 to 
2.16 respectively.   

The odds ratio for counselling is described as being adjusted for the presence or 
absence of the leaflet, and the odds ratio for the leaflet is described as being adjusted 
for counselling. 

Interactions 
The estimates produced in the previous section were made using all the observations.  
They were made assuming that the odds ratio for counselling was unaffected by the 
presence or absence of the leaflet and that the odds ratio for the leaflet was unaffected 
by the presence or absence of counselling.  We can ask whether the presence of the 
leaflet changes the effect of counselling by testing for an interaction between them.   

To do this we define an interaction variable.  We can define this to be equal to one if 
we have both counselling and leaflet, zero otherwise.  The counselling and leaflet 
variables are both 0 or 1.  If we multiply the counselling and leaflet variables together, 
we get the interaction variable: 

Interaction = counselling × leaflet. 

The interaction variable is zero if either counselling or leaflet is zero, so is one only 
when both are one.  We can add interaction to the logistic regression equation: 

log odds = intercept + slope1×counselling + slope2×leaflet + slope3×interaction 

If we fit coefficients to the data in Table 4, we get: 

log odds = –0.560 + 0.981×counselling + 0.217×leaflet – 0.002×interaction 
95% CI                0.203 to 1.78         –0.558 to 0.991      –1.111 to 1.107 
                               P=0.01                        P=0.6                       P=1.0 

Compare the model without the interaction: 

log odds = –0.559 + 0.980 × counselling + 0.216 × leaflet 
95% CI                        0.426 to 1.53         –0.339 to 0.770 
                                         P=0.001                     P=0.4 
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The estimates of the treatment effects are unchanged by adding this non-significant 
interaction but the confidence intervals are wider and P values bigger.  We do not 
need the interaction in this trial and should omit it. 

If we did decide to keep the interaction, the estimate of the effect of counselling 
would be modified by the presence or absence of the leaflet.  The interaction variable 
is equal to counselling multiplied by leaflet.  We could write the equation as  

log odds = –0.560 + 0.981×counselling + 0.217×leaflet – 0.002×counselling×leaflet 

The total effect of counselling is then 0.981 – 0.002×leaflet, i.e. it 0.981 if there is no 
leaflet and 0.981 – 0.002 = 0.979 if there is a leaflet. 

We can do the same thing for continuous outcome variables.  Above, the relationship 
between BMI and abdominal circumference was assumed to be the same for males 
and for females.  This may not be the case.  Men and women are different shapes and 
the slope of the line describing the relationship of BMI to abdominal circumference 
may differ between the sexes.  If this is the case, we say that there is an interaction 
between abdominal circumference and sex.  We can investigate this using multiple 
regression.   

We want our equation to be able to estimate different slopes for males and females.  
We create a new variable by multiplying the abdominal circumference by the variable 
‘male’, which = 1 for a male and = 0 for a female.  We can add this to the multiple 
regression on abdominal circumference, arm circumference, and sex: 

BMI = –6.44 + 0.18×abdomen + 0.64×arm – 1.39×male 
                                      P<0.001              P<0.001      P<0.001 

Adding the interaction term: 

BMI = –7.95 + 0.21×abdomen + 0.63×arm + 1.63×male – 0.04×male×abdomen 
                          P<0.001              P<0.001       P=0.4           P=0.1 

The coefficients for both abdomen and male are changed by this and male becomes 
not significant.  The interaction term is not significant, either.  However, we will 
consider what the coefficients mean before going on to complete our analysis of these 
data.  For a female subject, the variable male = 0 and so male×abdomen = 0.  The 
coefficient for abdominal circumference is therefore 0.21 Kg/m� per cm.  For a male 
subject, the variable male = 1 and so male×abdomen = abdomen.  The coefficient for 
abdominal circumference is therefore 0.21 – 0.04 = 0.17 Kg/m� per cm.  (When we 
did not include the interaction term, the coefficient was between these two values, 
0.18 Kg/m� per cm.)  Looking at this another way, the coefficient for abdominal 
circumference can be rewritten as 0.21 – 0.04×male.  If the interaction is not 
significant, we usually drop it from the model, as it makes things more complicated 
without adding to our predictive power.   

We can add other interactions to our model, between sex and arm circumference and 
between abdominal and arm circumference.  In each case, we do this my multiplying 
the two variables together.  The only one which is statistically significant is that 
between abdominal and arm circumference: 

BMI = 8.45 – 0.02×abdomen + 0.03×arm – 1.22×male + 0.0081× abdomen×arm 
                        P<0.8                 P<0.9          P<0.001            P=0.01 
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If the interaction is significant, both the main variables, abdominal and arm 
circumference, must have a significant effect on BMI, so we ignore the other P 
values.  The coefficient of abdominal circumference now depends on arm 
circumference, so it becomes –0.02 + 0.0081×arm circumference.  The interaction is 
illustrated in Figure 21, where we show the regression of BMI on abdominal 
circumference separately for subjects with mid upper arm circumference below and 
above the median.  The slope is steeper for subjects with larger arms.   

Sample size 
Multiple regression methods may not work well with small samples.  We should 
always have more observations than variables, otherwise they won’t work at all.  
However, they may be very unstable if we try to fit several predictors using small 
samples.  The following rules of thumb are based on simulation studies.  For multiple 
regression, we should have at least 10 observations per variable.  For logistic 
regression, we should have at least 10 observations with a ‘yes’ outcome and 10 
observations with a ‘no’ outcome per variable.  Otherwise, things may get very 
unstable. 

Types of regression 
Multiple regression and logistic regression are the types of regression most often seen 
in the medical literature.  There are many other types for different kinds of outcome 
variable.  Those which you may come across include: 

• Cox regression for survival analysis, Week 8, 

• ordered logistic regression for outcome variables which are qualitative 
with ordered categories, 

• multinomial regression for outcome variables which are qualitative with 
unordered categories, 

• Poisson regression for outcome variables which are counts, 

• negative binomial regression for outcome variables which are counts with 
extra sources of variability, 

Pitfalls in multiple regression 
The outcome variable in multiple linear regression should be a continuous, interval 
scale measurement.  Discrete quantitative variables may be used when there are a lot 
of possible values, as such variables may be treated as continuous.  We should use 
multiple regression when the outcome variable is dichotomous, categorical, or 
discrete with only a few possible values.  There are special methods of regression for 
such data, such as logistic regression for dichotomous variables, ordered logistic 
regression for ordered categories, multinomial regression for unordered categories, 
and Poisson regression and negative binomial regression for counts.   

We should not use regression for survival times where not all the times are known 
because the event has yet to happen.  We can use Cox regression for data of this type, 
described in Week 8. 

For continuous data, we should always check the assumptions of uniform variance 
and Normal distribution for the residuals.  Uniform variance is the more important 
assumption.  If these are not met, the fitted relationship may not be the best and 
significance tests and confidence intervals may not be valid. 
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We should beware of using regression where there is an inadequate number of 
observations.  We should always have more observations than variables.  If we have 
the same number of variables as observations, we can predict the values of the 
outcome variable in the sample exactly, whatever the model.  The regression tells us 
nothing useful about the population as a whole.  We also need sufficient observations 
to estimate the variability about the regression.  A useful rules of thumb for multiple 
regression is that we should have at least ten observations per predictor variable.  It is 
so easy to do logistic regression with lots of predictor variables that we are often 
tempted to use too many.  Logistic regression is a large sample method and we should 
make sure that we have enough data for fitting the coefficients.  Programs do not 
usually warn you when you do not.  They will produce estimates, confidence intervals 
and P values without any warning that they are unreliable. 

We should not use categorical predictor variables as if they were quantitative, we 
should use dummy variables instead.  For example, if we coded our six patients in 
Table 3 as patient = 1, 2, 3, 4, 5, and 6, we should not fit a regression model with 
patient as a variable, unless we use a program which calculates dummy variables for 
us. 

We must always beware of lack of independence among the observations, such as 
multiple observations on same subject.  We can allow for this using methods which 
take this data structure into account, such as robust standard errors. 
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