Clinical Biostatistics
Time to event data
Martin Bland
Professor of Health Statistics
University of York
http://martinbland.co.uk/

Survival, failure time, or time-to-event data:

> time from some event to death,
> time to metastasis or to local recurrence of a tumour,
> time to readmission to hospital,
> age at which breast-feeding ceased,
> time from infertility treatment to conception,
$>$ time to healing of a wound.

The terminal event, death, conception, etc., is the endpoint.

Often we do not know the exact survival times of all cases.
Some will still be surviving when we want to analyse the data.

When cases have entered the study at different times, some of the recent entrants may be surviving, but only have been observed for a short time. Their observed survival time may be less than those cases admitted early in the study and who have since died.
When we know some of the observations exactly, and only that others are greater than some value, we say that the data are censored or withdrawn from follow-up.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recruitment, time to event, time to censoring:

Some censored times may be shorter than some times to events.

We overcome this difficulty by the construction of a life table.

Example

VenUS I: a randomised trial of two types of bandage for treating venous leg ulcers.
Treatments:
four layer bandage (4LB), elastic compression, short-stretch bandage (SSB), inelastic compression.
Outcome:
time to healing (days).

VenUS I: SSB group, time to healing (days)

VenUS I: SSB group, time to healing (days)

```
189 H 232 H 364 H 483 H 671 H
189 H 235 H 369 C 493 C 672 C
191 H 241 H 369 C 504 C 691 C
195 H 242 C 370 C 517 H 742 C
195 H 242 H 377 C 525 H 746 C
199 H 244 H 378 C 549 H 790 C
201 H 273 C 391 C 579 H 791 C
202 C 284 H 392 H 585 C 858 C
210 H 286 H 398 H 602 H 869 C
212 H 309 C 399 H 612 C 886 C
212 H 322 H 413 H 648 H 924 C
214 H 332 H 417 C 651 C 955 C
216 H 334 C 428 C 654 C
218 H 336 H 461 H 658 C
224 H 343 H 465 H 667 C
H = Healed C = Censored
```

VenUS I: SSB group, time to healing (days), tabulated

t	C	H															
7	0	1	31	1	0	58	0	2	94	0	1	126	0	1	189	0	3
8	1	0	34	0	1	59	0	2	97	0	1	127	0	1	191	0	1
10	0	1	35	0	2	60	0	1	99	0	1	134	0	1	195	0	2
12	0	1	36	0	2	62	0	1	101	0	1	135	0	1	199	0	1
13	0	1	41	0	3	63	0	6	104	0	1	142	1	0	201	0	1
14	0	1	42	0	4	68	1	1	106	0	1	146	0	1	202	1	0
15	0	1	43	0	1	70	0	2	112	0	2	147	0	1	210	0	1
20	0	2	45	0	2	73	1	2	113	0	1	148	0	1	212	0	2
21	0	4	47	0	1	77	0	1	114	0	1	151	0	1	214	0	1
22	0	1	48	1	1	81	1	0	115	0	1	154	1	1	216	0	1
24	0	2	49	0	2	85	0	1	117	0	2	158	0	1	218	0	1
25	0	2	50	0	4	86	0	2	118	0	1	174	0	1	224	0	1
26	0	1	53	1	1	90	2	1	119	0	1	179	0	1	232	0	1
28	0	5	56	0	3	91	0	1	124	0	1	182	0	1	235	0	1
30	1	1	57	1	0	92	0	1	125	0	1	183	0	1	241	0	1

VenUS I: SSB group, time to healing (days), tabulated

t	C	H										
242	1	1	378	1	0	549	0	1	790	1	0	
244	0	1	391	1	0	579	0	1	791	1	0	
273	1	0	392	0	1	585	1	0	858	1	0	
284	0	1	398	0	1	602	0	1	869	1	0	
286	0	1	399	0	1	612	1	0	886	1	0	
309	1	0	413	0	1	648	0	1	924	1	0	
322	0	1	417	1	0	651	1	0	955	1	0	
332	0	1	428	1	0	654	1	0				
334	1	0	461	0	1	658	1	0				
336	0	1	465	0	1	667	1	0				
343	0	1	483	0	1	671	0	1				
364	0	1	493	1	0	672	1	0				
369	2	0	504	1	0	691	1	0				
370	1	0	517	0	1	742	1	0				
377	1	0	525	0	1	746	1	0				

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 37710052501274610

The Kaplan Meier Survival Curve

t	C	H	n	d	s	p	
0	0	0	192	0	192	$192 / 192$	
7	0	1	192	1	191	$191 / 192$	$\mathrm{n}=$ number remaining
8	1	0	191	0	191	$191 / 191$	$\mathrm{~d}=$ number of events
10	0	1	190	1	189	$189 / 190$	$\mathrm{~S}=$ number surviving
12	0	1	189	1	188	$188 / 189$	$\mathrm{~s}=$ num
13	0	1	188	1	187	$187 / 188$	$\mathrm{p}=$ proportion
14	0	1	187	1	186	$186 / 187$	
15	0	1	186	1	185	$185 / 186$	$\mathrm{p}=\mathrm{s} / \mathrm{n}$
20	0	2	185	2	183	$183 / 185$	
21	0	4	183	4	179	$179 / 183$	
22	0	1	179	1	178	$178 / 179$	
24	0	2	178	2	176	$176 / 178$	
25	0	2	176	2	174	$174 / 176$	
26	0	1	174	1	173	$173 / 174$	
28	0	5	173	5	168	$168 / 173$	
30	1	1	168	1	168	$167 / 168$	

The Kaplan Meier Survival Curve

t	C	H	n	d	s	p
0	0	0	192	0	192	$192 / 192=1.0000000$
7	0	1	192	1	191	$191 / 192=0.9947644$
8	1	0	191	0	191	$191 / 191=1.0000000$
10	0	1	190	1	189	$189 / 190=0.9947368$
12	0	1	189	1	188	$188 / 189=0.9947090$
13	0	1	188	1	187	$187 / 188=0.9946809$
14	0	1	187	1	186	$186 / 187=0.9946524$
15	0	1	186	1	185	$185 / 186=0.9946237$
20	0	2	185	2	183	$183 / 185=0.9891892$
21	0	4	183	4	179	$179 / 183=0.9781421$
22	0	1	179	1	178	$178 / 179=0.9944134$
24	0	2	178	2	176	$176 / 178=0.9887640$
25	0	2	176	2	174	$174 / 176=0.9886364$
26	0	1	174	1	173	$173 / 174=0.9942529$
28	0	5	173	5	168	$168 / 173=0.9710983$
30	1	1	168	1	168	$167 / 168=0.9940476$

The Kaplan Meier Survival Curve

t	C	H	n	d	s	p	P	Proportion
0	0	0	192	0	192	1.0000000	1.0000000	Surviving to
7	0	1	192	1	191	0.9947644	0.9947644	time $\mathrm{x}:$
8	1	0	191	0	191	1.0000000	0.9947644	
10	0	1	190	1	189	0.9947368	0.9895288	$\mathrm{P}_{\mathrm{x}}=\mathrm{p}_{\mathrm{x}} \mathrm{P}_{\mathrm{x}-1}$
12	0	1	189	1	188	0.9947090	0.9842932	
13	0	1	188	1	187	0.9946809	0.9790577	
14	0	1	187	1	186	0.9946524	0.9738221	
15	0	1	186	1	185	0.9946237	0.9685865	
20	0	2	185	2	183	0.9891892	0.9581153	
21	0	4	183	4	179	0.9781421	0.9371729	
22	0	1	179	1	178	0.9944134	0.9319373	
24	0	2	178	2	176	0.9887640	0.9214661	
25	0	2	176	2	174	0.9886364	0.9109949	
26	0	1	174	1	173	0.9942529	0.9057593	
28	0	5	173	5	168	0.9710983	0.8795813	
30	1	1	168	1	168	0.9940476	0.8743457	
.	

The Kaplan Meier Survival Curve

We usually present this graphically.

The Kaplan Meier Survival Curve

\qquad
\qquad
\qquad
\qquad
\qquad
There is a step at each event. Steps get bigger at the number followed up gets smaller.

The Kaplan Meier Survival Curve

\qquad
\qquad
\qquad
\qquad
\qquad
We often add ticks to indicate the censored observations.

The Kaplan Meier Survival Curve

We can add the number remaining at risk along the bottom of the graph.

The Kaplan Meier Survival Curve

\qquad
\qquad
\qquad
\qquad
\qquad
We can add a 95% confidence interval for the survival estimate. This is called the Greenwood interval.

The Kaplan Meier Survival Curve

We can compare the two arms of the trial.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Kaplan Meier Survival Curve

We can compare levels of a prognostic variable.

The Kaplan Meier Survival Curve

We can invert the graph and plot the proportion healed, called the failure function (opposite of survival).

The Kaplan Meier Survival Curve

Assumptions

The risk of an event is the same for censored subjects as for non-censored subjects.

This means:

1. those lost to followup are not different from those followedup to the analysis date,
2. no change in risk from start of recruitment to end.

The Kaplan Meier Survival Curve

Assumptions

The risk of an event is the same for censored subjects as for non-censored subjects.

This means:

1. those lost to followup are not different from those followedup to the analysis date,
2. no change in risk from start of recruitment to end.

The Kaplan Meier Survival Curve

Kaplan, E. L. and Meier, P. (1958) Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, 53, 457-81.
is the mostly highly cited statistical paper to date.

Ryan TP and Woodall WH (2004) The most-cited statistical papers. Journal of Applied Statistics, in press.

The logrank test

Greenwood standard errors and confidence intervals for the survival probabilities can be found, useful for estimates such as five year survival rate.
Not a good method for comparing survival curves. They do not include all the data and the comparison would depend on the time chosen.
Eventually, the curves will meet if we follow everyone to the event (e.g. death).

The logrank test

Survival curves can be compared by several significance tests, of which the best known is the logrank test.
This is a non-parametric test which makes use of the full survival data without making any assumption about the shape of the survival curve.

The logrank test

	SSB			4LB			Consider only times at which there is an event
Time	n_{1}	C_{1}	d_{1}	n_{2}	C_{2}	d_{2}	
0	192	0	0	195	1	0	
7	192	0	1	194	0	3	or a censoring.
8	191	1	0	191	0	0	
10	190	0	1	191	0	0	$\mathrm{n}_{1}, \mathrm{n}_{2}=$ numbers at risk
11	189	0	0	191	1	0	
12	189	0	1	190	0	0	$\mathrm{c}_{1}, \mathrm{c}_{2}=$ numbers of
13	188	0	1	190	0	1	censorings
14	187	0	1	189	0	3	
15	186	0	1	186	0	1	$\mathrm{d}_{1}, \mathrm{~d}_{2}=$ numbers of
17	185	0	0	185	0	1	events
20	185	0	2	184	0	2	
21	183	0	4	182	1	4	
.	-	

The logrank test

Time	SSB			4LB			proportion with events$q_{d}=\left(d_{1}+d_{2}\right) /\left(n_{1}+n_{2}\right)$
	n_{1}	C_{1}	d_{1}	n_{2}	C_{2}	d_{2}	
0	192	0	0	195	1	0	$0 /(192+195)$
7	192	0	1	194	0	3	4/(192+194)
8	191	1	0	191	0	0	$0 /(191+191)$
10	190	0	1	191	0	0	1/(190+191)
11	189	0	0	191	1	0	$0 /(189+191)$
12	189	0	1	190	0	0	1/(189+190)
13	188	0	1	190	0	1	$2 /(188+190)$
14	187	0	1	189	0	3	4/(187+189)
15	186	0	1	186	0	1	$2 /(186+186)$
17	185	0	0	185	0	1	1/(185+185)
20	185	0	2	184	0	2	4/(187+184)
21	183	0	4	182	1	4	8/(183+182)
-	-	-	-	.	-	.	.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The logrank test

	SSB			4LB			expected events in group 1
Time	n_{1}	c_{1}	d_{1}	n_{2}		d_{2}	$e_{1}=n_{1} \times q_{d}$
0	192	0	0	195	1	0	$192 \times 0 /(192+195)$
7	192	0	1	194	0	3	$192 \times 4 /(192+194)$
8	191	1	0	191	0	0	$191 \times 0 /(191+191)$
10	190	0	1	191	0	0	$190 \times 1 /(190+191)$
11	189	0	0	191	1	0	$189 \times 0 /(189+191)$
12	189	0	1	190	0	0	$189 \times 1 /(189+190)$
13	188	0	1	190	0	1	$188 \times 2 /(188+190)$
14	187	0	1	189	0	3	$187 \times 4 /(187+189)$
15	186	0	1	186	0	1	$186 \times 2 /(186+186)$
17	185	0	0	185	0	1	$185 \times 1 /(185+185)$
20	185	0	2	184	0	2	$185 \times 4 /(187+184)$
21	183	0	4	182	1	4	$183 \times 8 /(183+182)$

Sum e_{1} to get expected events in group $1, \mathrm{SSB},=160.57$.

The logrank test

	SSB			4LB			expected events in group 2
Time	n_{1}	c_{1}	d_{1}	n_{2}		d_{2}	$\mathrm{e}_{2}=\mathrm{n}_{2} \times \mathrm{q}_{\mathrm{d}}$
0	192	0	0	195	1	0	$195 \times 0 /(192+195)$
7	192	0	1	194	0	3	$194 \times 4 /(192+194)$
8	191	1	0	191	0	0	$191 \times 0 /(191+191)$
10	190	0	1	191	0	0	$191 \times 1 /(190+191)$
11	189	0	0	191	1	0	$191 \times 0 /(189+191)$
12	189	0	1	190	0	0	$190 \times 1 /(189+190)$
13	188	0	1	190	0	1	$190 \times 2 /(188+190)$
14	187	0	1	189	0	3	$189 \times 4 /(187+189)$
15	186	0	1	186	0	1	$186 \times 2 /(186+186)$
17	185	0	0	185	0	1	$185 \times 1 /(185+185)$
20	185	0	2	184	0	2	$184 \times 4 /(187+184)$
21	183	0	4	182	1	4	$182 \times 8 /(183+182)$
		.			.		

Sum e_{2} to get expected events in group 2, 4LB, $=143.43$.

The logrank test

	\|	Events	Events
Arm	I		
observed	expected		

Apply the usual observed minus expected squared over expected formula:

$$
\sum \frac{(O-E)^{2}}{E}=\frac{(147-160.57)^{2}}{160.57}+\frac{(157-143.43)^{2}}{143.43}=2.46
$$

This is from a chi-squared distribution with degrees of freedom $=$ number of groups minus $1=2-1=1, P=0.1$.

$$
2
$$

Sum
\qquad

The logrank test

Can have more than two groups:

Area		Events observed	Events expected
<4 sq cm	I	176	122.24
$4-8 \mathrm{sq} \mathrm{cm}$	1	65	70.45
$8+\mathrm{sq} \mathrm{cm}$	1	63	111.32
Total	I	304	304.00
$\begin{aligned} \text { chi2 (2) } & =46.84 \\ P & <0.0001\end{aligned}$			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The logrank test

Assumptions

As for Kaplan-Meier.

1. the risk of an event is the same for censored subjects as for non-censored subjects,
2. survival is the same for early and late recruitment.

Test of significance only.
Misses complex differences where risk is higher in one group at beginning and higher in the other group at the end, e.g. the curves cross. \qquad
\qquad

Cox regression

Also known as proportional hazards regression.
Sometimes we want to fit a regression type model to survival data.

We often have no suitable mathematical model of the way survival is related to time, i.e. the survival curve.
Solution: Cox regression using the proportional hazards model.
The hazard at a given time is the rate at which events (e.g. healing) happen. Hence the proportion of those people surviving who experience an event in a small time interval is the hazard at that time multiplied by the time in the interval.
The hazard depends on time in an unknown and usually complex way.

Cox regression

Assume that anything which affects the hazard does so by the same ratio at all times. Thus, something which doubles the risk of an endpoint on day one will also double the risk of an endpoint on day two, day three and so on. This is the proportional hazards model.
We define the hazard ratio for subjects with any chosen values for the predictor variables to be the hazard for those subjects divided by the hazard for subjects with all the predictor variables equal to zero.
Although the hazard depends on time we will assume that the hazard ratio does not. It depends only on the predictor variables, not on time.
The hazard ratio is the relative risk of an endpoint occurring at any given time.

Cox regression

In statistics, it is convenient to work with differences rather than ratios, so we take the logarithm of the ratio. This gives us the difference between the log hazard for the given levels of the predictor variables minus the log hazard for the baseline, the hazard when all the predictor variables are zero.
We then set up a regression-like equation, where the log hazard ratio is predicted by the sum of each predictor variable multiplied by a coefficient.
This is Cox's proportional hazards model.
Unlike multiple regression, there is no constant term in this model, its place being taken by the baseline hazard.

Cox regression

In particular, we can estimate the hazard ratio for any given predictor variable.
This is the hazard ratio for the given level of the predictor variable, all the other predictors being at the baseline level.
\qquad
\qquad \square

Cox regression

Example: area of ulcer, a continuous measurement.
Coefficient (log hazard ratio) -0.0276
Standard error $=0.0064$
Significance: $z=-4.31, \mathrm{P}<0.001$
95% confidence interval $=-0.0402$ to -0.0151
Hazard ratio $=0.973$
95% confidence interval $=0.961$ to 0.985 .
These are found by antilog of the estimates on the log scale.
This is the hazard ratio per sq cm increase in baseline ulcer area.

Bigger ulcers have lower risk, i.e. less chance of healing.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cox regression

Hazard ratio $=0.973,<1.00$. Bigger ulcers have lower risk, i.e. less chance of healing.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cox regression

Example: treatment arm.
Hazard ratio $=1.196$
$z=-1.56, P=0.119$
95% confidence interval $=0.955$ to 1.498 .
In this analysis SSB is the baseline treatment, so the risk of healing in the 4LB arm is between 0.955 and 1.498 times that in the SSB arm.
Compare logrank test: chi2(1) $=2.46, \mathrm{P}=0.117$.
The logrank test does not give quite the same P value as Cox regression.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cox regression

Example: treatment arm.
We can improve the estimate by including prognostic variables in the regression. Area is an obvious one:

	Haz. Ratio	z	$P>\|z\|$	95\% Conf. Interval	
area	0.972	-4.35	0.000	0.960	0.985
arm	1.269	2.07	0.038	1.013	1.590

Compare one factor hazard ratio $=1.196, \mathrm{P}=0.119$, 95% confidence interval $=0.955$ to 1.498 .

The adjustment changes the estimate rather than narrrowing the confidence interval. Not like multiple regression.

Cox regression

Cox regression is described as semi-parametric: it is nonparametric for the shape of the survival curve, which requires no model, and parametric for the predicting variables, fitting an ordinary linear model.
The model is fitted by an iterative maximum likelihood method, like logistic regression.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cox regression

Cox, D. R. (1972), Regression Models and Life Tables, Journal of the Royal Statistical Society, Series B, 34, 187220.
is the second mostly highly cited statistical paper to date. \qquad
\qquad
\qquad

Ryan TP and Woodall WH (2004) The most-cited statistical papers. Journal of Applied Statistics, in press.

Cox regression

Comparing models

We can compare nested models using a likelihood ratio chi squared statistic.
E.g. area only, LR chi2(1) $=36.84$
area + arm, $L R \operatorname{chi} 2(2)=41.13$
Difference $=41.13-36.84=4.29$ with $2-1=1$ degree of freedom, $\mathrm{P}=0.038$.

This enables us to test terms with more than one parameter.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cox regression

Assumptions:

1. as for Kaplan Meier, the risk of an event is the same for censored subjects as for non-censored subjects,
2. the proportional hazards model applies,
3. there are sufficient data for the maximum likelihood fitting and large sample z tests and confidence intervals - rule of thumb at least 10 events per variable, preferably 20. \qquad
\qquad
\qquad
\qquad

Cox regression

Checking the proportional hazards assumptions

There are several ways to do this.
We can look at the Kaplan Meier plots to see whether they look OK, e.g. do not cross.

Not very easy to see other than gross departures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cox regression

Checking the proportional hazards assumptions

There are several ways to do this.
We can look at the Kaplan Meier plots to see whether they look OK, e.g. do not cross.

Not very easy to see other than gross departures.

Cox regression

Checking the proportional hazards assumptions

There are several ways to do this.
We can look at the Kaplan Meier plots to see whether they look OK, e.g. do not cross.

Not very easy to see other than gross departures.

There are better plots, called log cumulative hazard plots, which we shall omit.

