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Survival, failure time, or time-to-event 
data:
� time from some event to death,

� time to metastasis or to local recurrence of a 
tumour,

� time to readmission to hospital,

� age at which breast-feeding ceased, 

� time from infertility treatment to conception,

� time to healing of a wound.

The terminal event, death, conception, etc., is the 
endpoint.

Often we do not know the exact survival times of all 
cases.

Some will still be surviving when we want to analyse the 
data.

When cases have entered the study at different times, 
some of the recent entrants may be surviving, but only 
have been observed for a short time.  Their observed 
survival time may be less than those cases admitted early 
in the study and who have since died.

When we know some of the observations exactly, and 
only that others are greater than some value, we say that 
the data are censored or withdrawn from follow-up.  
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Recruitment, time to event, time to censoring:

Some censored times may be shorter than some times to 
events.

We overcome this difficulty by the construction of a life table.
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Example

VenUS I: a randomised trial of two types of bandage for 
treating venous leg ulcers.

Treatments:

four layer bandage (4LB), elastic compression,
short-stretch bandage (SSB), inelastic compression.

Outcome: 

time to healing (days).

VenUS I: SSB group, time to healing (days)
7 H   24 H   36 H   49 H   59 H   73 H  104 H  134 H
8 C   25 H   36 H   49 H   60 H   77 H  106 H  135 H

10 H   25 H   41 H   50 H   62 H   81 C  112 H  142 C
12 H   26 H   41 H   50 H   63 H   85 H  112 H  146 H
13 H   28 H   41 H   50 H   63 H   86 H  113 H  147 H
14 H   28 H   42 H   50 H   63 H   86 H  114 H  148 H
15 H   28 H   42 H   53 C   63 H   90 C  115 H  151 H
20 H   28 H   42 H   53 H   63 H   90 C  117 H  154 C
20 H   28 H   42 H   56 H   63 H   90 H  117 H  154 H
21 H   30 C   43 H   56 H   68 C   91 H  118 H  158 H
21 H   30 H   45 H   56 H   68 H   92 H  119 H  174 H
21 H   31 C   45 H   57 C   70 H   94 H  124 H  179 H
21 H   34 H   47 H   58 H   70 H   97 H  125 H  182 H
22 H   35 H   48 C   58 H   73 C   99 H  126 H  183 H
24 H   35 H   48 H   59 H   73 H  101 H  127 H  189 H
.  .   .  .   .  .   .  .   .  .   .  .   .  .   .  . 

H = Healed   C = Censored
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VenUS I: SSB group, time to healing (days)
189 H  232 H  364 H  483 H  671 H
189 H  235 H  369 C  493 C  672 C
191 H  241 H  369 C  504 C  691 C
195 H  242 C  370 C  517 H  742 C
195 H  242 H  377 C  525 H  746 C
199 H  244 H  378 C  549 H  790 C
201 H  273 C  391 C  579 H  791 C
202 C  284 H  392 H  585 C  858 C
210 H  286 H  398 H  602 H  869 C
212 H  309 C  399 H  612 C  886 C
212 H  322 H  413 H  648 H  924 C
214 H  332 H  417 C  651 C  955 C
216 H  334 C  428 C  654 C  
218 H  336 H  461 H  658 C  
224 H  343 H  465 H  667 C  

H = Healed   C = Censored

VenUS I: SSB group, time to healing (days), tabulated
t  C H   t  C H   t  C H   t  C H   t  C H   t  C H 

7 0 1   31 1 0   58 0 2   94 0 1  126 0 1  189 0 3
8 1 0   34 0 1   59 0 2   97 0 1  127 0 1  191 0 1

10 0 1   35 0 2   60 0 1   99 0 1  134 0 1  195 0 2
12 0 1   36 0 2   62 0 1  101 0 1  135 0 1  199 0 1
13 0 1   41 0 3   63 0 6  104 0 1  142 1 0  201 0 1
14 0 1   42 0 4   68 1 1  106 0 1  146 0 1  202 1 0
15 0 1   43 0 1   70 0 2  112 0 2  147 0 1  210 0 1
20 0 2   45 0 2   73 1 2  113 0 1  148 0 1  212 0 2
21 0 4   47 0 1   77 0 1  114 0 1  151 0 1  214 0 1
22 0 1   48 1 1   81 1 0  115 0 1  154 1 1  216 0 1
24 0 2   49 0 2   85 0 1  117 0 2  158 0 1  218 0 1
25 0 2   50 0 4   86 0 2  118 0 1  174 0 1  224 0 1
26 0 1   53 1 1   90 2 1  119 0 1  179 0 1  232 0 1
28 0 5   56 0 3   91 0 1  124 0 1  182 0 1  235 0 1
30 1 1   57 1 0   92 0 1  125 0 1  183 0 1  241 0 1

VenUS I: SSB group, time to healing (days), tabulated
t  C H   t  C H   t  C H   t  C H

242 1 1  378 1 0  549 0 1  790 1 0
244 0 1  391 1 0  579 0 1  791 1 0
273 1 0  392 0 1  585 1 0  858 1 0
284 0 1  398 0 1  602 0 1  869 1 0
286 0 1  399 0 1  612 1 0  886 1 0
309 1 0  413 0 1  648 0 1  924 1 0
322 0 1  417 1 0  651 1 0  955 1 0
332 0 1  428 1 0  654 1 0  
334 1 0  461 0 1  658 1 0  
336 0 1  465 0 1  667 1 0  
343 0 1  483 0 1  671 0 1  
364 0 1  493 1 0  672 1 0  
369 2 0  504 1 0  691 1 0  
370 1 0  517 0 1  742 1 0  
377 1 0  525 0 1  746 1 0  
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The Kaplan Meier Survival Curve
t  C H   n   d  s      p

0 0 0  192  0 192  192/192
7 0 1  192  1 191  191/192
8 1 0  191  0 191  191/191

10 0 1  190  1 189  189/190
12 0 1  189  1 188  188/189
13 0 1  188  1 187  187/188
14 0 1  187  1 186  186/187
15 0 1  186  1 185  185/186
20 0 2  185  2 183  183/185
21 0 4  183  4 179  179/183
22 0 1  179  1 178  178/179
24 0 2  178  2 176  176/178
25 0 2  176  2 174  174/176
26 0 1  174  1 173  173/174
28 0 5  173  5 168  168/173
30 1 1  168  1 168  167/168
.  . .   .   .  .      .

n = number remaining

d = number of events

s = number surviving

p = proportion
surviving

p = s/n

The Kaplan Meier Survival Curve
t  C H   n   d  s      p

0 0 0  192  0 192  192/192 = 1.0000000
7 0 1  192  1 191  191/192 = 0.9947644
8 1 0  191  0 191  191/191 = 1.0000000

10 0 1  190  1 189  189/190 = 0.9947368
12 0 1  189  1 188  188/189 = 0.9947090
13 0 1  188  1 187  187/188 = 0.9946809
14 0 1  187  1 186  186/187 = 0.9946524
15 0 1  186  1 185  185/186 = 0.9946237
20 0 2  185  2 183  183/185 = 0.9891892
21 0 4  183  4 179  179/183 = 0.9781421
22 0 1  179  1 178  178/179 = 0.9944134
24 0 2  178  2 176  176/178 = 0.9887640
25 0 2  176  2 174  174/176 = 0.9886364
26 0 1  174  1 173  173/174 = 0.9942529
28 0 5  173  5 168  168/173 = 0.9710983
30 1 1  168  1 168  167/168 = 0.9940476
.  . .   .   .  .      .

The Kaplan Meier Survival Curve
t  C H   n   d  s      p          P

0 0 0  192  0 192  1.0000000  1.0000000
7 0 1  192  1 191  0.9947644  0.9947644
8 1 0  191  0 191  1.0000000  0.9947644

10 0 1  190  1 189  0.9947368  0.9895288
12 0 1  189  1 188  0.9947090  0.9842932
13 0 1  188  1 187  0.9946809  0.9790577
14 0 1  187  1 186  0.9946524  0.9738221
15 0 1  186  1 185  0.9946237  0.9685865
20 0 2  185  2 183  0.9891892  0.9581153
21 0 4  183  4 179  0.9781421  0.9371729
22 0 1  179  1 178  0.9944134  0.9319373
24 0 2  178  2 176  0.9887640  0.9214661
25 0 2  176  2 174  0.9886364  0.9109949
26 0 1  174  1 173  0.9942529  0.9057593
28 0 5  173  5 168  0.9710983  0.8795813
30 1 1  168  1 168 0.9940476 0.8743457
.  . .   .   .  .      .          .

Proportion 
surviving to 
time x: 

Px = pxPx–1
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The Kaplan Meier Survival Curve

We usually present this graphically.
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The Kaplan Meier Survival Curve

There is a step at each event.  Steps get bigger at the 
number followed up gets smaller.
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The Kaplan Meier Survival Curve

We often add ticks to indicate the censored observations.
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The Kaplan Meier Survival Curve

We can add the number remaining at risk along the bottom 
of the graph.
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The Kaplan Meier Survival Curve

We can add a 95% confidence interval for the survival 
estimate.  This is called the Greenwood interval.
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The Kaplan Meier Survival Curve

We can compare the two arms of the trial.
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The Kaplan Meier Survival Curve

We can compare levels of a prognostic variable.
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The Kaplan Meier Survival Curve

We can invert the graph and plot the proportion healed, 
called the failure function (opposite of survival).
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The Kaplan Meier Survival Curve

Assumptions

The risk of an event is the same for censored subjects as for
non-censored subjects.

This means:

1. those lost to follow-
up are not different 
from those followed-
up to the analysis 
date,

2. no change in risk 
from start of 
recruitment to end.
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The Kaplan Meier Survival Curve

Assumptions

The risk of an event is the same for censored subjects as for
non-censored subjects.

This means:

1. those lost to follow-
up are not different 
from those followed-
up to the analysis 
date,

2. no change in risk 
from start of 
recruitment to end.
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Kaplan, E. L. and Meier, P. (1958) Nonparametric Estimation
from Incomplete Observations, Journal of the American
Statistical Association, 53, 457-81.

is the mostly highly cited statistical paper to date.

Ryan TP and Woodall WH (2004) The most-cited statistical papers. Journal of 
Applied Statistics, in press. 

The logrank test
Greenwood standard errors and confidence intervals for the 
survival probabilities can be found, useful for estimates such 
as five year survival rate.

Not a good method for comparing survival curves.  They do 
not include all the data and the comparison would depend on 
the time chosen.

Eventually, the curves
will meet if we follow
everyone to the event
(e.g. death).
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The logrank test
Survival curves can be compared by several significance 
tests, of which the best known is the logrank test.  

This is a non-parametric test which makes use of the full 
survival data without making any assumption about the  
shape of the survival curve.

The logrank test
SSB   4LB

Time  n1 c1  d1  n2 c2 d2
0  192  0  0  195  1  0
7  192  0  1  194  0  3
8  191  1  0  191  0  0

10  190  0  1  191  0  0
11  189  0  0  191  1  0
12  189  0  1  190  0  0
13  188  0  1  190  0  1
14  187  0  1  189  0  3
15  186  0  1  186  0  1
17  185  0  0  185  0  1
20  185  0  2  184  0  2
21  183  0  4  182  1  4
.    .   .  .   .   .  . 
.    .   .  .   .   .  . 

Consider only times at 
which there is an event 
or a censoring.

n1, n2 = numbers at risk

c1, c2 = numbers of
censorings

d1, d2 = numbers of 
events

The logrank test
SSB   4LB proportion with events

Time  n1 c1  d1  n2 c2 d2 qd = (d1 + d2)/(n1 + n2)

0  192  0  0  195  1  0   0/(192+195)
7  192  0  1  194  0  3   4/(192+194)
8  191  1  0  191  0  0   0/(191+191)

10  190  0  1  191  0  0   1/(190+191)
11  189  0  0  191  1  0   0/(189+191)
12  189  0  1  190  0  0   1/(189+190)
13  188  0  1  190  0  1   2/(188+190)
14  187  0  1  189  0  3   4/(187+189)
15  186  0  1  186  0  1   2/(186+186)
17  185  0  0  185  0  1   1/(185+185)
20  185  0  2  184  0  2   4/(187+184) 
21  183  0  4  182  1  4   8/(183+182)
.    .   .  .   .   .  .        .
.    .   .  .   .   .  .        .
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The logrank test
SSB   4LB expected events in group 1

Time  n1 c1  d1  n2 c2 d2 e1 = n1×qd
0  192  0  0  195  1  0   192 × 0/(192+195) 
7  192  0  1  194  0  3   192 × 4/(192+194)
8  191  1  0  191  0  0   191 × 0/(191+191)

10  190  0  1  191  0  0   190 × 1/(190+191)
11  189  0  0  191  1  0   189 × 0/(189+191)
12  189  0  1  190  0  0   189 × 1/(189+190)
13  188  0  1  190  0  1   188 × 2/(188+190)
14  187  0  1  189  0  3   187 × 4/(187+189)
15  186  0  1  186  0  1   186 × 2/(186+186)
17  185  0  0  185  0  1   185 × 1/(185+185)
20  185  0  2  184  0  2   185 × 4/(187+184) 
21  183  0  4  182  1  4   183 × 8/(183+182)
.    .   .  .   .   .  .        .
.    .   .  .   .   .  .        .

Sum e1 to get expected events in group 1, SSB, = 160.57.

The logrank test
SSB   4LB expected events in group 2

Time  n1 c1  d1  n2 c2 d2 e2 = n2×qd
0  192  0  0  195  1  0   195 × 0/(192+195) 
7  192  0  1  194  0  3   194 × 4/(192+194)
8  191  1  0  191  0  0   191 × 0/(191+191)

10  190  0  1  191  0  0   191 × 1/(190+191)
11  189  0  0  191  1  0   191 × 0/(189+191)
12  189  0  1  190  0  0   190 × 1/(189+190)
13  188  0  1  190  0  1   190 × 2/(188+190)
14  187  0  1  189  0  3   189 × 4/(187+189)
15  186  0  1  186  0  1   186 × 2/(186+186)
17  185  0  0  185  0  1   185 × 1/(185+185)
20  185  0  2  184  0  2   184 × 4/(187+184) 
21  183  0  4  182  1  4   182 × 8/(183+182)
.    .   .  .   .   .  .        .
.    .   .  .   .   .  .        .

Sum e2 to get expected events in group 2, 4LB, = 143.43.

The logrank test
|   Events         Events

Arm   |  observed       expected
------+-------------------------
4LB   |       157         143.43
SSB   |       147         160.57
------+-------------------------
Total |       304         304.00

Apply the usual observed minus expected squared over 
expected formula:

This is from a chi-squared distribution with degrees of freedom 
= number of groups minus 1 = 2–1 = 1, P=0.1.
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The logrank test
Can have more than two groups:

|   Events         Events
Area       |  observed       expected
-----------+-------------------------
<4 sq cm   |       176         122.24
4–8 sq cm  |        65          70.45
8+ sq cm   |        63         111.32
-----------+-------------------------
Total      |       304         304.00

chi2(2) = 46.84
P < 0.0001

Three groups, 2 df.

The logrank test
Assumptions

As for Kaplan-Meier.

1. the risk of an event is the same for censored subjects as for 
non-censored subjects,

2. survival is the same for early and late recruitment.

Test of significance only.

Misses complex differences where risk is higher in one group 
at beginning and higher in the other group at the end, e.g. the
curves cross.

Cox regression
Also known as proportional hazards regression.

Sometimes we want to fit a regression type model to survival 
data.  

We often have no suitable mathematical model of the way 
survival is related to time, i.e.  the survival curve.

Solution: Cox regression using the proportional hazards model.

The hazard at a given time is the rate at which events (e.g. 
healing) happen.  Hence the proportion of those people 
surviving who experience an event in a small time interval is 
the hazard at that time multiplied by the time in the interval.

The hazard depends on time in an unknown and usually 
complex way.
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Cox regression
Assume that anything which affects the hazard does so by the 
same ratio at all times.  Thus, something which doubles the risk
of an endpoint on day one will also double the risk of an 
endpoint on day two, day three and so on. This is the 
proportional hazards model.

We define the hazard ratio for subjects with any chosen values 
for the predictor variables to be the hazard for those subjects 
divided by the hazard for subjects with all the predictor 
variables equal to zero.  

Although the hazard depends on time we will assume that the 
hazard ratio does not.  It depends only on the predictor 
variables, not on time.

The hazard ratio is the relative risk of an endpoint occurring at 
any given time.

Cox regression
In statistics, it is convenient to work with differences rather 
than ratios, so we take the logarithm of the ratio.  This gives 
us the difference between the log hazard for the given levels 
of the predictor variables minus the log hazard for the 
baseline, the hazard when all the predictor variables are 
zero.

We then set up a regression-like equation, where the log 
hazard ratio is predicted by the sum of each predictor 
variable multiplied by a coefficient.  

This is Cox's proportional hazards model. 

Unlike multiple regression, there is no constant term in this 
model, its place being taken by the baseline hazard.

Cox regression
In particular, we can estimate the hazard ratio for any given  
predictor variable.

This is the hazard ratio for the given level of the predictor 
variable, all the other predictors being at the baseline level.
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Cox regression
Example: area of ulcer, a continuous measurement.

Coefficient (log hazard ratio) –0.0276
Standard error = 0.0064
Significance: z = –4.31, P < 0.001
95% confidence interval = –0.0402 to –0.0151

Hazard ratio = 0.973
95% confidence interval = 0.961 to 0.985.
These are found by antilog of the estimates on the log scale.

This is the hazard ratio per sq cm increase in baseline ulcer 
area.

Bigger ulcers have lower risk, i.e. less chance of healing.

Cox regression
Hazard ratio = 0.973, < 1.00.  Bigger ulcers have lower risk, i.e. 
less chance of healing.
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Cox regression
Example: treatment arm.

Hazard ratio = 1.196   
z = –1.56, P = 0.119     
95% confidence interval = 0.955 to  1.498.

In this analysis SSB is the baseline treatment, so the risk of 
healing in the 4LB arm is between 0.955 and 1.498 times that 
in the SSB arm.

Compare logrank test: chi2(1) = 2.46, P = 0.117.

The logrank test does not give quite the same P value as Cox 
regression.
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Cox regression
Example: treatment arm.

We can improve the estimate by including prognostic variables 
in the regression.  Area is an obvious one:

----------------------------------------------------------------------------
| Haz. Ratio        z         P>|z|      95% Conf. Interval

------+--------------------------------------------------------------------
area |  0.972 –4.35 0.000         0.960    0.985
arm |  1.269 2.07 0.038         1.013    1.590

----------------------------------------------------------------------------

Compare one factor hazard ratio = 1.196, P = 0.119,      
95% confidence interval = 0.955 to 1.498.

The adjustment changes the estimate rather than narrrowing 
the confidence interval.  Not like multiple regression.

Cox regression
Cox regression is described as semi-parametric: it is non-
parametric for the shape of the survival curve, which requires 
no model, and parametric for the predicting variables, fitting 
an ordinary linear model.

The model is fitted by an iterative maximum likelihood 
method, like logistic regression.

Cox regression

Cox, D. R. (1972), Regression Models and Life Tables, 
Journal of the Royal Statistical Society, Series B, 34, 187-
220.

is the second mostly highly cited statistical paper to date.

Ryan TP and Woodall WH (2004) The most-cited statistical papers. Journal of 
Applied Statistics, in press.
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Cox regression
Comparing models

We can compare nested models using a likelihood ratio 
chi squared statistic.  

E.g. area only, LR chi2(1)     =  36.84

area + arm,  LR chi2(2)  =  41.13

Difference = 41.13 – 36.84 = 4.29 with 2 – 1 = 1 degree of 
freedom, P = 0.038.

This enables us to test terms with more than one 
parameter.

Cox regression
Assumptions:

1. as for Kaplan Meier, the risk of an event is the same for 
censored subjects as for non-censored subjects,

2. the proportional hazards model applies,

3. there are sufficient data for the maximum likelihood fitting 
and large sample z tests and confidence intervals — rule 
of thumb at least 10 events per variable, preferably 20.

Cox regression
Checking the proportional hazards assumptions

There are several ways to do this.  

We can look at the Kaplan Meier plots to see whether they look 
OK, e.g. do not cross.  

Not very easy to see other than gross departures.
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Cox regression
Checking the proportional hazards assumptions

There are several ways to do this.  

We can look at the Kaplan Meier plots to see whether they look 
OK, e.g. do not cross.  

Not very easy to see 
other than gross 
departures.
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Cox regression
Checking the proportional hazards assumptions

There are several ways to do this.  

We can look at the Kaplan Meier plots to see whether they look 
OK, e.g. do not cross.  

Not very easy to see 
other than gross 
departures.

There are better plots,
called log cumulative
hazard plots, which we 
shall omit.
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