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Significance tests 
An example: the sign test 
In the evaluation of a course on evidence based health care for nurses, before and after 
the course the nurses were asked to complete a multiple choice test.  This produces a 
knowledge score between –18 and +18.  The knowledge scores and the change 
following the course are shown in Table 1.  Most nurses’ knowledge score was higher 
after the course than before it, though not all were.  Is there enough evidence for us to 
conclude that overall the knowledge of nurses in this population increases following 
the course?   

These 10 nurses are a sample from the population of all nurses who might attend the 
course.  More specifically, they are a sample of the population of nurses with whom 
they have a common background, e.g. are working in a  similar professional 
environment, health system, etc.  Would the other members of this population 
increase their knowledge after attending the course?  Is there good evidence that the 
knowledge score increases following the course?   

When we look at Table 1, what might convince us that knowledge increases is that 
most of the difference are in the same direction.  Only one nurse out of ten had a 
negative increase in score (i.e. a reduction).  But would we be convinced if two out of 
ten differences were negative?  Three out of ten would certainly make us cautious.  
After all, we might expect five out of ten to be negative if the course had no effect 
whatsoever.  So how many negatives would we allow and still feel able to conclude 
that there was evidence that knowledge increased following the course? 

A significance test is a method for answering this question.  We ask: if there were 
really no difference in the population which our nurses represent, would we be likely 
to have observed the data we have?   

To carry out the test of significance we suppose that, in the population, there would be 
no difference between knowledge before and after the course.  The hypothesis of ‘no 
difference’ or ‘no effect’ in the population is called the null hypothesis.  We compare 
this with the alternative hypothesis of a difference in knowledge measured before and 
after the course.  We find how likely it is that we could get data as extreme as those 
observed if the null hypothesis were true.  We do this by asking: if we were to repeat 
this course over and over again, what proportion of repetitions would give us 
something as far or further from what we would expect as are the data we have 
actually observed?  We call this proportion of studies which might show such extreme 
data among the endless repetitions the probability of obtaining such extreme data.   

If this probability is large the data are consistent with the null hypothesis; if it is small 
the data are unlikely to have arisen if the null hypothesis were true and the evidence is 
in favour of the alternative hypothesis. 

There are many ways in which we could do this, but for this illustration we shall use a 
very simple significance test, the sign test.  This uses the direction of the difference 
only.  In our sample, we have one negative and nine positives. 
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Table 1.  Knowledge scores (–18 to +18) of 10 nurses attending a course on evidence-
based health care 
 ---------------------------------------------- 
 Pre-course  Post-course   Increase   Direction 
   score        score      in score   of change 
 ---------------------------------------------- 
    3          8           5             +      
    6          8           2             +      
    4          8           4             +      
    0          4           4             +      
   -1          1           2             +      
    1          7           6             +      
    1          6           5             +      
   -3          0           3             +      
    3          0          -3             -      
    2          4           2             +      

 

Table 2.  Probabilities for the number of heads in ten tosses of a coin, or for the 
number of negative differences out of ten if positive and negative differences are 
equally likely (Binomial distribution, n = 10, p = 0.5). 
-------------------------------------- 
Number of heads or         Probability  
negative differences 
-------------------------------------- 
     0                      0.0009766  
     1                      0.0097656  
     2                      0.0439453  
     3                      0.1171875  
     4                      0.2050781  
     5                      0.2460938  
     6                      0.2050781  
     7                      0.1171875  
     8                      0.0439453  
     9                      0.0097656  
    10                      0.0009766  
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Figure 1.  Distribution of the number of heads in ten tosses of a coin, or for the 
number of negative differences out of ten if positive and negative differences are 
equally likely (Binomial distribution, n = 10, p = 0.5) 
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Consider the differences between the knowledge score before and after the course for 
each nurse.  If the null hypothesis were true, then differences in knowledge score 
would be just as likely to be positive as negative; they would be random.  The 
probability of a difference being negative would be equal to the probability of it 
becoming positive.  If we ignore for the moment those whose knowledge stays the 
same, the proportion of nurses whose difference is negative should be equal to the 
proportion whose difference is positive and so would be one half, 0.5.   

Then the number of negatives would behave in exactly the same way as the number of 
heads which would show if we were to toss a coin 10 times.  This is quite easy to 
investigate mathematically.  Table 2 shows a list of the probabilities for zero, one, 
two, three, . . ., and ten heads showing in ten tosses of a coin.   Figure 1 shows a 
graphical representation of the probabilities in Table 2.  Because the only possible 
values are the whole numbers 0, 1, 2, etc., the probabilities are shown by vertical lines 
at those points. 

The technical name for this distribution is the Binomial distribution with parameters n 
= 10 and p = 0.5.  The Binomial distribution is a family of distributions, like the 
Normal (week 2).  It has two parameters, the number of coins, n, and the probability 
that a coin would produce a head, p.  It need not be the flip of a coin, we could use 
anything where the chance of an individual test being a success is the same, such as 
rolling a die and counting a six as a success.  The probability of a success does not 
need to be a half. 

If there were any subjects in Table 1 who had the same scores before and after the 
course, and hence had difference equal to zero, we would omit them from the 
calculation of the probabilities.  They provide no information about the direction of 
any difference between the treatments.  For the coin analogy, they correspond to the 
coin falling on its edge.  With a coin, we would toss it again.  For the sign test we can 
rarely do that, so we omit them.  In this test, n is the number of subjects for whom 
there is a difference, one way or the other. 

If the null hypothesis were true and negative and positive differences were equally 
likely, we might expect half of the differences to be negative.  Indeed, we would 
expect it in the sense that the average number of negative differences under many 
repetitions of the course would be five.  The number of negative differences is 
actually observed is one.  What is the probability of getting a value as far from what 
we expect as is that observed?  The possible numbers of negatives which would be as 
far from five (or even further) than is the observed value one are zero, one,  nine, and 
ten (see Figure 2).  To find the probability of one of these occurring, we add the 
probabilities of each one: 

  -ves  Probability 
     0      0.0009766  
     1      0.0097656  
     9      0.0097656  
    10      0.0009766  
----------------------- 
  Total     0.0214844 
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Figure 2  Extreme values for the differences in a sign test with one negative difference 
out of 10. 

 

Table 3.  Errors in significance tests 

 

 Null hypothesis  
true 

Alternative  
hypothesis true 

Test not significant No error Type II error, 
beta error 

Test significant Type I error, 
alpha error 

No error 
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Figure 3.  Probabilities for one-tailed and two-tailed sign tests for the nurse data. 
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The total is 0.02.  Hence the probability of getting as extreme a value as that 
observed, in either direction, is 0.02.  If the null hypothesis were true we would have a 
sample which is so extreme that the probability of it arising by chance is 0.02, two in 
a hundred.  Thus, we would have observed an unlikely event if the null hypothesis 
were true.  The data are not consistent with null hypothesis, so we can conclude that 
there is evidence in favour of a difference between the treatment periods.   

The number of negative changes is called the test statistic, something calculated from 
the data which can be used to test the null hypothesis. 

General principles of significance tests 
The sign test is an example of a test of significance.  There are many of these, but they 
all follow the same general pattern: 

1. Set up the null hypothesis and its alternative. 

2. Check any assumptions of the test. 

3. Find the value of the test statistic. 

4. Refer the test statistic to a known distribution which it would follow if the null 
hypothesis were true. 

5. Find the probability of a value of the test statistic arising which is as or more 
extreme than that observed, if the null hypothesis were true. 

6. Conclude that the data are consistent or inconsistent with the null hypothesis. 

How does the sign test follow this pattern?  First, we set up the null hypothesis and its 
alternative.  The null hypothesis was: 

‘In this population of nurses, there is no difference between scores before and 
after the course’ OR ‘In this population of nurses, the probability of a 
difference in  knowledge score in one direction is equal to the probability of a 
difference in knowledge score in the other direction’.   

There are often several ways in which we can formulate the null hypothesis for a test.  
Note that the null hypothesis is about the population of nurses, including nurses who 
have not taken the course.  It is not about the sample, the ten nurses who actually took 
the course.  This is often not made explicit when null hypotheses are stated, but it 
should be. 

The alternative hypothesis was: 

‘In this population of nurses, there is a difference between treatments’ OR ‘In 
this population of nurses, the probability of a difference in knowledge score in 
one direction is not equal to the probability of a difference in knowledge score 
in the other direction’. 

Second, we check any assumptions of the test.  Most significance tests require us to 
make some assumptions about the sample and the data.  We should always check 
these as best we can.  For the sign test, the only assumption is that the observations 
are independent, i.e. knowing about one observation would tell us nothing about 
another.  This true here, as the observations are on ten different people.  It would not 
be true, for example, if we had taken each question in the 18 question scale and 
looked at whether the subject’s answer had improved from before the course to after, 
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then analysed the data as 180 observations.  The observations on the same subject 
would clearly not be independent. 

Third, we find the value of the test statistic.  We call anything calculated from the data 
a statistic.  A test statistic is something calculated from the data which can be used to 
test the null hypothesis.  For the sign test, the test statistic is the number of negative 
changes.  In our example it was equal to one. 

Fourth, we refer the test statistic to a known distribution which it would follow if the 
null hypothesis were true.  For the sign test, the known distribution is that followed by 
tossing a coin ten times, the Binomial distribution with n = 12 and p = 0.5. 

Fifth, we find the probability of a value of the test statistic arising which is as or more 
extreme than that observed, if the null hypothesis were true.  In our sign test, this was 
equal to 0.02. 

Sixth, we conclude that the data are consistent or inconsistent with the null 
hypothesis.  In the sign test example, the probability of seeing these data was quite 
small and we were able to conclude that the data were inconsistent with null 
hypothesis. 

There are many different significance tests designed to answer different questions for 
different types of date, but all of them follow this pattern. 

Significant and not significant 
If the data are not consistent with the null hypothesis, the difference is said to be 
statistically significant.  If the data are consistent with the null hypothesis, the 
difference is said to be not statistically significant.  We can think of the significance 
test probability as an index of the strength of evidence against the null hypothesis.  
The probability of such an extreme value of the test statistic occurring if the null 
hypothesis were true is often called the P value.   

The P value is not the probability that the null hypothesis is true.  The null hypothesis 
is either true or it is not; it is not random and has no probability.  The P value is the 
probability that, if the null hypothesis were true, we would get data as far from 
expectation as those we observed. 

We said that a probability of 0.02 was small enough for us to conclude that the data 
were not consistent with the null hypothesis.  How small is small?  A probability of 
0.02, as in the example above, is fairly small and we have a quite unlikely event.  But 
what about 0.06, 0.1, or 0.2?  Would we treat these as sufficiently small for us to 
conclude that there was good evidence for a difference?  Or should we look for a 
smaller probability, 0.01 or 0.001? 

Suppose we take a probability of 0.01 or less as constituting reasonable evidence 
against the null hypothesis.  If the null hypothesis is true, we shall make a wrong 
decision one in a hundred times.  Deciding against a true null hypothesis is called an 
error of the first kind, type I error, or � (alpha) error.  Sometimes there will be a 
difference in the population, but our sample will not produce a small enough 
probability for us to conclude that there is evidence for a difference in the population.  
We get an error of the second kind, type II error, or � (beta) error if we decide in 
favour of a null hypothesis which is in fact false.  Table 3 shows these errors. 

The smaller we demand the probability be before we decide against the null 
hypothesis, the larger the observed difference must be, and so the more likely we are 
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to miss real differences.  By reducing the risk of an error of the first kind we increase 
the risk of an error of the second kind.  The smaller we demand the probability be 
before we decide against the null hypothesis, the larger the observed difference must 
be, and so the more likely we are to miss real differences.  By reducing the risk of an 
error of the first kind we increase the risk of an error of the second kind. 

The conventional compromise is to say that differences are significant if the 
probability is less than 0.05.  This is a reasonable guideline, but should not be taken as 
some kind of absolute demarcation.  For some purposes, we might want to take a 
smaller probability as the critical one, usually 0.01.  For example, in a major clinical 
trial we might think it is very important to avoid a type I error because after we have 
done the trial the preferred treatment will be adopted and it would be ethically 
impossible to replicate the trial.  For other purposes, we might want to take a larger 
probability as the critical one, usually 0.1.  For example, if we are screening possible 
new drugs for biological activity, we might want to avoid type II errors, because 
potentially active compounds will receive more rigorous testing but those producing 
no significant biological activity will not be investigated further. 

If we decide that the difference is significant, the probability is sometimes referred to 
as the significance level.  As a rough and ready guide, we can think of P values as 
indicating the strength of evidence like this: 

P value    Evidence for a difference or relationship  
Greater than 0.1:    Little or no evidence 
Between 0.05 and 0.1:  Weak evidence 
Between 0.01 and 0.05: Evidence  
Less than 0.01:  Strong evidence 
Less than 0.001:   Very strong evidence 

If a difference is statistically significant, then may well be real, but it is not 
necessarily important.  For example, the UK Prospective Diabetes Study Group 
compared atenolol and captopril in reducing the risk of complications in type 2 
diabetes. 1148 hypertensive diabetic patients were randomised.  The authors reported 
that ‘Captopril and atenolol were equally effective in reducing blood pressure to a 
mean of 144/83 mm Hg and 143/81 mm Hg respectively’ (UKPDS 1998).  The 
difference in diastolic pressure was statistically significant, P = 0.02.  It is 
(statistically) significant, and real, but not (clinically) important. 

If a difference is not statistically significant, it could still be real.  We may simply 
have too small a sample to show that a difference exists.  Furthermore, the difference 
may still be important.  ‘Not significant’ does not imply that there is no effect.  It 
means that we have failed to demonstrate the existence of one.   

Presenting P values 
Computers print out the exact P values for most test statistics.  For example, using 
Stata 8.0 to do the sign test for the nurses data we get P=0.0215.  This is the same as 
the 0.0214844 calculated above, but rounded to 4 decimal places.  Before computers 
with powerful and easy to use statistical programs were readily available, many P 
values had to be found by referring the test statistic to a printed table.  These often 
gave only a few P values, such as 0.25, 0.10, 0.05, 0.01, and the best the statistical 
analyst could do was to say that the P value for the data lay between two of these.  
Thus it was customary to quote P values as, for example, ‘0.05>P>0.01’, which is 
how our sign test might have been quoted.  This was often abbreviated to ‘P<0.05’.  
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Old habits persist and researchers will often take the computer generated ‘P=0.0215’ 
and replace it in the paper by ‘P<0.05’.  Even worse, ‘P=0.3294’ might be reported as 
‘not significant’, ‘ns’, or ‘P>0.05’.  This wastes valuable information.  ‘P=0.06’ and 
‘P=0.6’ can both get reported as ‘P=NS’, but 0.06 is only just above the conventional 
cut-off of 0.05 and indicates that there is some evidence for an effect, albeit rather 
weak evidence.  A P value equal to 0.6, which is ten times bigger, indicates that there 
is very little evidence indeed.  It is much better and more informative to quote the 
calculated P value. 

We do not, however, need to reproduce all the figures printed.  ‘P=0.0215’ is given to 
four decimal places, meaning that there are four figures after the decimal point, ‘0’. 
‘2’, ‘1’, and ‘5’.  It is also given to three significant figures. The first ‘significant 
figure’ is the first figure in the number which is not a zero, ‘2’ in ‘0.0215’.  The 
figures following the first non-zero figure are also called significant figures.  So in 
‘0.0215’ the significant figures are ‘2’, ‘1’, and ‘5’.  For another example, 
‘0.0071056’ is given to 7 decimal places and five significant figures.  The ‘0’ between 
‘1’ and ‘5’ is a significant figure, it is the leading zeros before the ‘7’ which are not 
significant figures.  (The term ‘significant figures’ is  nothing to do with statistical 
significance.)  Personally, I would quote ‘P=0.0071056’ to one significant figure, as 
P=0.007, as figures after the first do not add much, but the first figure can be quite 
informative.   

Sometimes the computer prints ‘0.0000’ or ‘0.000’.  The programmer has set the 
format for the printed probability to four or three decimal places.  This is done for 
several reasons.  First. it is easier to read than printing the full accuracy to which the 
calculation was done.  Second, if the P value is very small, it might be printed out in 
the standard format for very small numbers, which looks like ‘1.543256E–07’, 
meaning ‘0.0000001543256’.  Third, almost all P values are approximations and the 
figures at the right hand end do not mean anything.  The P value ‘0.0000’ may be 
correct, in that the probability is less than 0.00005 and so equal to 0.0000 to four 
decimal places.  This is the case for ‘0.0000001543256’.  However, the probability 
can never be exactly zero, so we usually quote this as P<0.0001. 

Significance tests and confidence intervals 
Significance tests and confidence intervals often involve similar calculations and have 
a close relationship.  Where a null hypothesis is about some population value, such as 
the difference between two means or two proportions, we can use the confidence 
interval as a test of significance.  If the 95% confidence interval does not include the 
null hypothesis value, the difference is significant. 

For example, in the trials of bandages for leg ulcers described in week 2, the 
differences between the percentages healed, elastic bandages minus inelastic 
bandages, their confidence intervals, and the P values obtained by significance tests 
were: 

Trial   Estimate  95% confidence interval P value 
Northeast et al.   13.3         –5.7 to +32.3     0.2 
Callam et al.     25.5         +9.3 to +41.7    0.003 
Gould et al.     20.0      –10.2 to +50.2      0.2. 

For the difference between two proportions, the null hypothesis value is zero.  This is 
contained within the confidence intervals for the first and third trials and the 
difference is not significant in either of these trials.  Zero is not contained within the 
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confidence interval for the second trial and the difference is significant for this trial.  
If the 95% confidence interval contains zero, the difference is not significant at the 
0.05 level (1 – 0.95 = 0.05).  If the 95% confidence interval does not contain zero, 
then the difference is significant. 
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