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Meta-analysis: methods for quantitative data synthesis 
What is a meta-analysis? 
Meta-analysis is a statistical technique, or set of statistical techniques, for 
summarising the results of several studies into a single estimate.  Many systematic 
reviews include a meta-analysis, but not all.  Meta-analysis takes data from several 
different studies and produces a single estimate of the effect, usually of a treatment or 
risk factor.  We improve the precision of an estimate by making use of all available 
data.   

The Greek root ‘meta’ means ‘with’, ‘along’, ‘after’, or ‘later’, so here we have an 
analysis after the original analysis has been done.  Boring pedants think that 
‘metanalysis’ would have been a better word, and more euphonious, but we boring 
pedants can’t have everything. 

For us to do a meta-analysis, we must have more than one study which has estimated 
the effect of an intervention or of a risk factor.  The participants, interventions or risk 
factors, and settings in which the studies were carried out need to be sufficiently 
similar for us to say that there is something in common for us to investigate.  We 
would not do a meta-analysis of two studies, one of which was in adults and the other 
in children, for example.  We must make a judgement that the studies do not differ in 
ways which are likely to affect the outcome substantially.  We need outcome variables 
in the different studies which we can somehow get in to a common format, so that 
they can be combined.  Finally, the necessary data must be available.  If we have only 
published papers, we need to get estimates of both the effect and its standard error, for 
example.  We discuss this further below.  

A meta-analysis consists of three main parts: 

• a pooled estimate and confidence interval for the treatment effect after 
combining all the studies,  

• a test for whether the treatment or risk factor effect is statistically significant 
or not (i.e. does the effect differ from no effect more than would be expected 
by chance?), 

• a test for heterogeneity of the effect on outcome between the included studies 
(i.e. does the effect vary across the studies more than would be expected by 
chance?).  
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Figure 1.  Meta-analysis of the association between migraine and ischaemic stroke 
(Etminan et al., 2005) 

 

 
 

Figure 2.  Graphical representation of a meta-analysis of metoclopramide compared 
with placebo in reducing pain from acute migraine (Colman et al., 2004) 

 

 



3 

For example, Figure 1 shows a graphical representation of the results of a meta-
analysis of the association between migraine and ischaemic stroke.  In this graph, 
which is called a forest plot, the red circles represent the logarithms of the relative 
risks for the individual studies and the vertical lines their confidence intervals.  It is 
called a forest plot because the lines are thought to resemble trees in a forest.  There 
are three pooled or meta-analysis estimates: one for all the studies combined, at the 
extreme right of the picture, and one each for the case-control and the cohort studies, 
shown as blue or turquoise dots.  The pooled estimates have much narrower 
confidence intervals than any of the individual studies and are therefore much more 
precise estimates than any one study can give.  In this case the study difference is 
shown as the log of the relative risk.  The value for no difference in stroke incidence 
between migraine sufferers and non-sufferers is therefore zero, which is well outside 
the confidence interval for the pooled estimates, showing good evidence that migraine 
is a risk factor for stroke.  

Figure 1 is a rather old-fashioned forest plot.  The studies are arranged horizontally, 
with the outcome variable on the vertical axis in the conventional way for statistical 
graphs.  This makes it difficult to put in the study labels, which are too big to go in the 
usual way and have been slanted to make them legible.  The studies with wide 
confidence intervals are much more visible than those with narrow intervals and look 
the most important, which is quite wrong.  The three meta-analysis estimates look 
quite unimportant by comparison.  These are distinguished by colour, but otherwise 
look like the other studies.  The colour choice is not very good for a colour blind 
reader and would disappear when printed on a monochromatic printer. 

Figure 2 shows the results of a meta-analysis of metoclopramide compared with 
placebo in reducing pain from acute migraine.  This is a combination of three clinical 
trials.  This graph, which is also called a forest plot, has been rotated so that the 
outcome variable is shown along the horizontal axis and the studies are arranged 
vertically.  The squares represent the odds ratios for the three individual studies and 
the horizontal lines their confidence intervals.  This orientation makes it much easier 
to label the studies and also to include other information.  The size of the squares can 
represent the amount of information which the study contributes.  If they are not all 
the same size, their area may be proportional to the samples size, the standard error of 
the estimate, or the variance of the estimate.  This means that larger studies appear 
more important than smaller studies, as they are.  On the right hand side of Figure 1 
are the individual trial estimates and the combined meta-analysis estimate in 
numerical form.  On the left hand side are the raw data from the three studies.  The 
diamond or lozenge shape represents the common meta-analysis estimate, making it 
much easier to distinguish from the individual study estimates than in Figure 1.  The 
widest point is the estimate itself and the width of the diamond is the confidence 
interval.  The choice of the diamond is now widely accepted, but other point symbols 
may be used for the individual study estimates.   

The horizontal scale in Figure 2 is logarithmic, labelling the scale with the numerical 
odds ratio but rather than showing the logarithm itself.  We discuss this further below.  
A vertical line is shown at 1.0, the odds ratio for no effect, making it easy to see 
whether this is included in any of the confidence intervals. 

At the bottom of Figure 2 are two tests of significance.  The first is for heterogeneity, 
which we deal with below.  The second is for the overall effect, testing the null 
hypothesis that there is no difference between the two treatments.  In this case the 
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difference is significant.  Individually, only one of the three trials gave a significant 
improvement and pooling the data from all three enables us to draw a more secure 
conclusion about the existence of a treatment effect and its magnitude. 

Meta-analysis can be done whenever we have more than one study addressing the 
same issue.  The sort of subjects addressed in meta-analysis include: 

• interventions: usually randomised trials to give treatment effect, 

• epidemiological: usually case-control and cohort studies to give relative risk, 

• diagnostic: combined estimates of sensitivity, specificity, positive predictive 
value. 

In this lecture I shall concentrate on studies which compare two groups, but the 
principles are the same for other types of estimate. 

Using summary statistics 
Most meta-analysis is done using the summary statistics representing the effect and its 
standard error in each study.  We use the estimates of treatment effect for each trial 
and obtain the common estimate of the effect by averaging the individual study 
effects.  We do not use a simple average of the effect estimates, because this would 
treat all the studies as if they were of equal value.  Some studies have more 
information than others, e.g. are larger.  We weight the trials before we average them. 

To get a weighted average we must define weights which reflect the importance of 
the trial.  The usual weight is  

weight = 1/variance of trial estimate 
      1/standard error squared. 

We multiply each trial difference by its weight and add, then divide by sum of 
weights.  If we give the trials equal weight, setting all the weights equal to one, we get 
the ordinary average.   

If a study estimate has high variance, this means that the study estimate contains a low 
amount of information and the study receives low weight in the calculation of the 
common estimate.  If a study estimate has low variance, the study estimate contains a 
high amount of information and the study has high weight in the common estimate. 

We can summarise the general framework for pooling results of studies as follows: 

• the pooled estimate is a summary measure of the results of the included 
studies,  

• the pooled estimate is a weighted combination of the results from the 
individual studies,  

• usually, the weight given to each trial is the inverse of the variance of the 
summary measure from each of the individual studies,  

• therefore, more precise estimates from larger trials with more events are given 
more weight, 

• then find 95% confidence interval and P value for the pooled difference.  
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There are several different ways to produce the pooled estimate: 

•  inverse-variance weighting, as described above, 

•  Mantel-Haenszel method, 

•  Peto method,  

•  DerSimonian and Laird method. 

Slightly different solutions to the same problem. 

Heterogeneity 
Studies differ in terms of  

• Patients 

• Interventions 

• Outcome definitions 

• Design 

These produce clinical heterogeneity, meaning that the clinical question addressed 
by these studies is not the same for all of them.  We have to consider whether we 
should be trying to combine them, or whether they differ too much for this to be a 
sensible thing to do.  We detect clinical heterogeneity from the descriptions of the 
trial populations, treatments, and outcome measurements.. 

We may also have variation between studies in the true treatment effects or risk ratios, 
either in magnitude or direction.  If this is greater than the variation between 
individual subjects would lead us to expect, we call this statistical heterogeneity.  
We detect statistical heterogeneity on purely statistical grounds, using the study data. 

Statistical heterogeneity may be caused by clinical differences between studies, i.e. by 
clinical heterogeneity, by methodological differences, or by unknown characteristics 
of the studies or study populations.  Even if studies are clinically homogeneous there 
may be statistical heterogeneity.   

To identify statistical heterogeneity, we can test the null hypothesis that the studies all 
have the same treatment (or other) effect in the population.  The test looks at the 
differences between observed treatment effects for the trials and the pooled treatment 
effect estimate.  We square these differences, divide each by variance of the study 
effect, and then sum them.  This gives a chi-squared test with degrees of freedom = 
number of studies – 1.   

In the metoclopramide trials in Figure 2, the test for heterogeneity gives �2 = 4.91, df 
= 2, P=0.086.   

If there is significant heterogeneity, then we have evidence that there are differences 
between the studies.  It may therefore be invalid to pool the results and generate a 
single summary result.  We should try to describe the variation between the studies 
and investigate possible sources of heterogeneity.  We should not just ignore it, but try 
to account for the heterogeneity in some way.  If we can explain the heterogeneity, we 
may be able to produce a final estimate of the effect which adjusts for it.  If not, we 
can also carry out meta-analysis which allows for heterogeneity, called random 
effects analyses.  We shall discuss these methods in more detail in the next lecture. 
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If the heterogeneity not significant, we have little or no statistical evidence for 
differences between studies.  However, the test for heterogeneity has low power.  The 
number of studies is usually low and the test may fail to detect heterogeneity as 
statistically significant when it exists.  As with any significance test, we cannot 
interpret a not significant result as evidence of homogeneity.  To compensate for the 
low power of the test some authors accept a larger P value as being significant, often 
using P < 0.1 rather than P < 0.05. 

Types of outcome measure 
The choice of the measure of treatment or other effect depends on the type of outcome 
variable used in the study.  These might be: 

• dichotomous, such as dead/alive, success/failure, yes/no, we use a relative risk 
or risk ratio (RR), odds ratio (OR), absolute risk difference (ARD), 

• continuous, e.g. weight loss, blood pressure, we use the mean difference 
(MD), or standardised mean difference (SMD), 

• time-to-event or survival time, e.g. time to death, time to recurrence, time to 
healing, we use the hazard ratio, 

• ordinal (very rare), an outcome categorised with an ordering to the categories, 
e.g. mild/moderate/severe, score on a scale, we may dichotomise, treat as 
continuous, or use advanced methods specially developed for this type of data. 

Dichotomous outcome variables 
For a dichotomous outcome measure we present the treatment effect as a relative risk 
or risk ratio (RR), odds ratio (OR), or absolute risk difference (ARD).  Both relative 
risk and odds ratio are analysed and presented using logarithmic scales.  Why is this?  
For example, in a trial of two treatments for ulcer healing (Fletcher et al., 1997) two 
groups were compared  

 elastic bandage: 31 healed out of 49 patients 
 inelastic bandage: 26 healed out of 52 patients. 

The risk ratio can be presented in two ways: 

RR = (31/49)/(26/52) = 1.27 (elastic over inelastic) 

RR = (26/52)/(31/49) = 0.79 (inelastic over elastic) 

We want a scale where 1.27 and 0.79 are equivalent.  They should be equally far from 
1.0, the null hypothesis value.  We use the logarithm of the risk ratio:  

 log10(1.273) = 0.102, log10(0.790) = –0.102 

 log10(1) = 0 (null hypothesis value) 

If we invert a ratio, we change the sign of the logarithm.  For example,  
log10(1/2) = –0.301 and log10(2) = +0.301.  The no difference value for a ratio is 1.00, 
and the log of this is zero.  It is also easy to calculate standard errors and confidence 
intervals for the log of the ratio.   

Results are often shown on a logarithmic scale, i.e. one where the scale intervals are 
logarithms, but the numbers given are the actual ratios.  Figure 3 shows an example.  
The distance on the horizontal scale between 0.1 and 1 is the same as the distance 
between 1 and 10, because the ratio 1/0.1 is the same as the ratio 10/1. 
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Figure 3.  Interventions for the prevention of falls in older adults, pooled risk ratio of 
participants who fell at least once (Chang et al., 2004) 
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Figure 4.  Rates of Caesarean section in trials of nulliparous women receiving 
epidural analgesia or parenteral opioids Liu EHC and Sia ATH.  (2004)  

 

 
 

Figure 5.  Forest plots for risk ratio and odds ratio on the natural and logarithmic 
scales (data of Fletcher et al., 1997) 
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For both relative risk and odds ratio we find the standard error of the log ratio rather 
than the ratio.  The log ratio also tends to have a Normal distribution.  On the 
logarithmic scale, confidence intervals are symmetrical.  Figure 4 shows a forest plot 
using odds ratios rather than relative risks.  One small trial has such a large odds ratio 
with a very wide interval ands is off the scale, its presence merely indicated by an 
arrow.  If they had wanted to include this confidence interval the rest of the 
information would have squeezed into a very narrow area of the graph, making it 
difficult to read. 

Figure 5 shows forest plots on the natural and logarithmic scales for risk ratio and 
odds ratio for the venous ulcer trial data.  The confidence intervals are asymmetrical 
on the natural scales, symmetrical on the logarithmic scales. 

Continuous outcome variables 
There are two main measures of treatment or other effect for a continuous outcome 
variable, weighted mean difference and standardised mean difference. 

The weighted mean difference takes the difference in effect, measured in the units of 
the original variable, and weights them by the variance of the estimate.  It is in the 
same units as the observations, which makes it easy to interpret.  It is useful when the 
outcome is always the same measurement.  These are usually physical measurements.  
For example, Figure 6 shows the results of a meta-analysis where the outcome 
variable is blood pressure measured in mm Hg. 

The standardised mean difference is found by turning the individual study effect 
estimates into standard deviation units.  We divide the estimate by the standard 
deviation of the measurement, either using the common standard deviation within 
groups for the study, as found in a two-sample t test, or the standard deviation in the 
control group.  This is also called the effect size.  We also divide the standard error of 
the difference by this standard deviation.  We then find the weighted average as 
above.  This is useful when the outcome is not always the same measurement.  It is 
often used for psychological scales.  Figure 7 shows an example of the use of 
standardised mean difference, the outcome variables being various pain scales used to 
measure the outcome of trials of non-steroidal anti-inflammatory drugs. 

The data required for meta-analysis of a continuous outcome variable are, for each 
study, the difference between means and its standard error.  If these are not given in 
the paper, provided we have the mean, standard deviation, and sample size for each 
group, we then find the difference between means and its standard error in the usual 
way.  For standardised differences, we need either the standardised difference and its 
standard error or the standard deviation.  In the latter case we can divide the 
difference between means by the standard deviation.  Everything is then in the same 
units, i.e. standard deviation units. 
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Figure 6.  Example of weighted mean difference: blood pressure control by home 
monitoring (Cappuccio et al., 2004) 

 

 
Figure 7.  Example of standardised mean difference: pain scales used to measure the 
outcome of trials of non-steroidal anti-inflammatory drugs in osteoarthritic knee pain 
(Bjordal et al., 2004) 
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Unfortunately, the required data are not always available for all published studies.  
Studies sometimes report different measure of variation.  These might be: 

• standard errors  

• confidence intervals 

• reference ranges 

• interquartile ranges 

• range 

• significance test 

• P value 

• ‘Not significant’ or ‘P<0.05’. 

We need to extracting the information required from what is available.   

• standard errors — this is straightforward, as we know the formula for the 
standard error and so provided we have the sample sizes we can calculate  
standard deviation, 

• confidence intervals — this is also straightforward, as we can work back to the 
standard error, 

• reference ranges — again straightforward, as the reference range is four 
stanard deviations wide, 

• interquartile ranges — here we need an assumption about distribution; 
provided this is Normal we know how many standard deviations wide the IQR 
should be, but of course this is often not the case, 

• range — this is very difficult, as not only to we need to make an assumption 
about the distribution but the estimates are unstable and affected by outliers,  

• significance test — sometimes we can work back from a t value to the 
standard error, but not from some other tests, such as the Mann Whitney U 
test, 

• P value — if we have a t test we can work back to a t value hence to the 
standard error, but not for other tests, and we need the exact P value. 

• ‘Not significant’ or ‘P<0.05’ — this is hopeless. 
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Figure 8.  Example of time to event data: time to visual field loss or deterioration of 
optic disc, or both, among patients randomised to pressure lowering treatment v no 
treatment in ocular hypertension (Maier et al., 2005) 

 
 

Figure 10.  Survival curves for time to death and time to death or admission to 
hospital in the ExTraMATCH study (ExTraMATCH Collaborative 2004) 
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Figure 11.  Results of a meta-analysis of trials of exercise training in patients with 
chronic heart failure, time to death (ExTraMATCH Collaborative 2004) 
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Time to event outcome variables 
Time-to-event data arise whenever we have subjects followed over time until some 
event takes place.  Such data are often called survival data, because the early 
applications were often in time to death.  These techniques are also used for time to 
recurrence of disease, time to discharge from hospital, time to readmission to hospital, 
time to conception, time to fracture, etc.  The usual problem with such data is that not 
all subjects have an event, so we know only that they were observed to be event-free 
up to some point, but not beyond it.  Also, usually some of those observed not to have 
an event were observed for a shorter time than some of those who did have an event.  
A special body of statistical techniques, survival analysis, have been developed for 
such data. 

The main effect measure is the hazard ratio.  This is the standard outcome measure in 
survival analysis.  It is the ratio of the risk of having an event at any given time in one 
group divided by the risk of an event in the other.   

For example, Maier et al. (2005) analysed the time to visual field loss or deterioration 
of the optic disc, or both, in patients with ocular hypertension (Figure 9).  The patients 
were randomised to pressure lowering treatment or to no treatment.  A hazard ratio 
which is equal to one represents no difference between the groups.  The hazard ratio is 
active treatment divided by no treatment, so if the hazard ratio is less than one, this 
means that the risk of visual field loss is less for patients given pressure lowering 
treatment.  As for risk ratios and odds ratios, hazard ratios are analysed by taking the 
log and the results are shown on a logarithmic scale.   

Individual patient data meta-analysis 
In this kind of meta-analysis, we get the raw data from each study.  We may then 
combine them into a single data set and analyse them like a single, multicentre 
clinical trial.  Alternatively, we may use the individual data to extract the 
corresponding summary statistics from each study then proceed as we would using 
summary statistics from published reports. 

An example was the ExTraMATCH study (ExTraMATCH Collaborative 2004), a 
meta-analysis of trials of exercise training in patients with chronic heart failure.  Nine 
trials identified and principal investigators provided a minimum data set in electronic 
form.  Because in this study the trials were pooled to form one data set, individual 
study results are not given.  The outcome was time to death or time to death or 
admission to hospital.  Figure 10 shows the Kaplan Meier survival curves for the 
exercise and control groups, pooled across the studies.  The Kaplan Meier survival 
curve shows the estimated proportion of subjects who have not yet experienced the 
event at each time.   

Figure 11 shows more results from the ExTraMATCH study.  This looks like a forest 
plot as in Figures 1-9, But it is different.  It shows the estimated treatment effect for 
the subjects as they are grouped by different prognostic variables.  It is to show that 
the effects of treatments are not explained by differences in prognostic variables 
between the groups, highly unlikely in these randomised trials, and also to suggest 
where there might be interactions between treatment and prognostic variables.   

And finally . . . 
Meta-analysis is straightforward if the data are straightforward and all available. 



15 

It depends crucially on the data quality and the completeness of the study 
ascertainment. 

Martin Bland 

16 February 2006 
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