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Department of Health Sciences 
M.Sc. Module: Systematic Reviews 

Meta-analysis: dealing with heterogeneity 
Dealing with heterogeneity 
We have already discussed the meaning and detection of heterogeneity in the previous lecture, 
‘Meta-analysis: methods for quantitative data synthesis’.  In this lecture we look at how to 
deal with it when we have it.  There are a number of possibilities. 

First, we could decide not to pool the study estimates at all.  Instead, we would carry out a 
narrative review.  We do not get any numerical estimate.   

Second, we could ignore the heterogeneity and analyse the data as described in the previous 
lecture.  We would use what is called a fixed effect model, assuming that the underlying 
effects are the same for all studies.  As we shall see, this can result in a confidence interval 
which is too narrow, a pooled estimate which is difficult to interpret, and which may be 
biased. 

Third, we could explore the heterogeneity and try to explain it and remove it.  We may be 
able to find a variable or variables which explains this heterogeneity and so give our meta-
analysis estimate depending on this variable. 

Fourth, we could allow for the heterogeneity in our analysis and produce a much wider 
confidence interval, using what is called a random effects model. 

We shall look at all these options below. 

Measuring heterogeneity 
First, we ask how much heterogeneity is there?  The chi-squared test provides a test of 
significance for heterogeneity, but it does not measure it.  An index of heterogeneity can be 
defined as I 2  (Higgins and Thompson 2002), where 
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and X 2 is the chi-squared heterogeneity statistic with df degrees of freedom.  If I 2 is negative 
we set it to zero. 

The value which we expect chi-squared to have if there is no heterogeneity is equal to its 
degrees of freedom.  Hence I 2 is the percentage of the chi-squared statistic which is not 
explained by the variation within the studies.  It represents the percentage of the total 
variation which is due to variation between studies. 

I 2 without the 100 is essentially an intraclass correlation coefficient. 

For interpreting I 2, Higgins et al. (2003) suggest: 

� I 2 = 0% � no heterogeneity, 

� I 2 = 25% � low heterogeneity, 

� I 2 = 50% � moderate heterogeneity, 

� I 2 = 75% � high heterogeneity. 

These are arbitrary, except for 0%.  I 2 can never reach 100% and values above 90% are very 
rare. 
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Investigating sources of heterogeneity 
Heterogeneity comes about because the effects in the populations which the studies represent 
are not the same.  We can look for possible explanations of this in variations in study 
characteristics.  For example, there may be subsets of studies within which there is little 
heterogeneity.  These may be defined by different subsets of subjects, such as hospital and 
community subjects, or variations in treatments, such as different antibiotics being compared 
to none, or different study designs, cohort or case-control studies, or cross-over or parallel 
groups trials.  These subsets should be pre-specified, if possible, so as to avoid bias. 

Figure 1 shows a meta-analysis for trials of corticosteroids for the treatment of severe sepsis 
and septic shock.  The authors found moderate and highly significant heterogeneity, I 2 = 
57.7%, P = 0.003.  They split the trials according to type of treatment and found that long 
courses of low dose corticosteroids produced no evidence of heterogeneity (I 2 = 0%, P = 0.4) 
and good evidence for an effect on outcome, whereas another group of trials with short 
courses of high dose corticosteroids produced evidence of heterogeneity (I 2 = 63.0%, P = 
0.008) and no consistent evidence of any effect on outcome, despite one trial reporting a 
substantial effect. 

We may try to relate the size of the effect to characteristics of the studies and their subjects, 
such as average age, proportion of females, intended dose of drug, or baseline risk.  For 
example, Figure 2 shows the percentage reduction in risk of ischaemic heart disease (and 95% 
confidence intervals) associated with 0.6 mmol/l serum cholesterol reduction in 10 
prospective studies of men (Thompson 1994).  The heterogeneity is obvious in the forest plot 
as many of the confidence intervals do not overlap.  It is highly significant, X 2 = 127, d.f. = 9, 
P<0.001.  Although the I 2 statistic had not been invented at the time, it is easy to calculate, 
giving I 2 = 92.9%.  These studies can be broken down into 26 sub-studies with fairly narrow 
age ranges and the percentage reduction in risk of ischaemic heart disease plotted against 
mean age at experiencing a coronary event (Figure 3).  This shows a clear relationship, the 
effect of cholesterol reduction being much greater at younger ages.  We can carry out a 
regression analysis, fitting a relationship between % reduction in mortality and age.  We do 
this weighted for the precision of the estimate, as for the ordinary weighted average.  Such a 
regression analysis is called meta-regression.  (This term upsets boring pedants even more 
than does ‘meta-analysis’.  ‘Meta-analytic regression’ would be better, but it is too late!)  If 
we then look at the differences between the observed effect for each study and the effect 
predicted by the regression, rather than the weighted average, we can test the heterogeneity 
after adjustment for age.  There was still moderate heterogeneity, X 2 = 45, d.f. = 23, P = 
0.005, I 2 =  48.8%.  The heterogeneity can be seen clearly in the scatter plot, as there are 
confidence intervals for studies with very similar ages which do not overlap.  This must be 
due to other differences between these groups.  The situation has clearly improved, however.  
The conclusion of the analysis was that a decrease in cholesterol concentration of 0.6 mmol/l 
was associated with a decrease in risk of ischaemic heart disease of 54% at age 40, 39% at age 
50, 27% at age 60, 20% at age 70, and 19% at age 80.   
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Figure 1.  Corticosteroids for severe sepsis and septic shock: effect on all cause mortality 
(Annane et al., 2004)  
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Figure 2.  Percentage reduction in risk of ischaemic heart disease (and 95% confidence 
intervals) associated with 0.6 mmol/l serum cholesterol reduction in 10 prospective studies of 
men (Thompson 1994) 

 
Figure 3.  Percentage reduction in risk of ischaemic heart disease (and 95% confidence 
intervals) associated with 0.6 mmol/l serum cholesterol reduction, according to age at 
experiencing a coronary event (Thompson 1994) 
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Figure 4.  Odds ratios of ischaemic heart disease (and 95% confidence intervals) according to 
the average extent of serum cholesterol reduction achieved in each of 28 trials (Thompson 
1994)  

 
Overall summary of results is indicated by sloping line. Results of the nine smallest trials 
have been combined.  

 

Figure 5.  Galbraith plot for log odds ratio of death for corticosteroids in patients with severe 
sepsis and septic shock (Annane et al., 2004), trials of treatments with low doses and long 
duration.  
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Figure 4 shows another example, explaining why some studies of cholesterol  lowering 
interventions produced no reduction in the risk of ischaemic heart disease and others did.  
Those trials where the intervention produced little reduction in serum cholesterol produced no 
discernable effect, whereas interventions which were successful in lowering cholesterol were 
also successful in reducing heart disease risk. 

The Galbraith plot 
The Galbraith plot is an alternative to a forest plot as a graphical representation of the study 
data.  On the horizontal axis we plot 1/standard error of the study effect estimate.  The 
horizontal axis will be zero if standard error is infinite, a study of zero size.  This cannot 
happen, so there should never be a point actually at zero.  On the vertical axis we plot the 
study effect estimate divided by its standard error.  This is the test statistic for the individual 
study.  For 95% of studies, we expect this to be within 2 units of the true or population effect, 
because we expect 95% of studies to have effect estimates within two standard errors of the 
population effect.  If the horizontal axis variable were zero, the standard error would be 
infinite and so the vertical axis, which is effect divided by standard error, would be zero also. 

For example, Figure 5 shows a Galbraith plot for the log odds ratio of death for 
corticosteroids in patients with severe sepsis and septic shock for the group of trials of 
treatments with low doses and long duration.  These were the trials in which there was no 
significant heterogeneity.  We can add a line representing the pooled effect.  This is a straight 
line going through the point (zero, zero), i.e. of the form  

effect/se = (pooled effect) × 1/se 

I.e. the slope of the line is equal to the pooled effect.  The 95% limits will be 2 units above 
and below this line and we can add these to the plot, too.  We expect 95% of points to be 
between these limits if there is no heterogeneity.  This is true for the low dose, long duration 
trials. 

Figure 6 shows the Galbraith plot for all the corticosteroid trials, where there was significant 
heterogeneity.  The pooled effect is smaller so the line is less steep.  We have two points 
outside the 95% limits and one on the line.  This is what we would expect given the presence 
of significant heterogeneity.  We can investigate them to see how these trials differ from the 
others. 

We could reanalyse taking dosage and duration separately, as shown in Figure 7.  The trials 
which stand out as producing heterogeneity are clearly seen to be not the trials of low dose 
long course treatments. 

Is a Galbraith plot preferable to a forest plot?  Thompson (1994) wrote “Conventional meta-
analysis diagrams . . . are not very useful for investigating heterogeneity.  A better diagram 
for this purpose was proposed by Galbraith . . .”.  Is this really true?  Figure 8 shows the 
Galbraith plot for the corticosteroid trials with the trials identified and the forest plot with a 
vertical line drawn through the pooled estimate.  Trials outside the Galbraith limits will be 
trials where the 95% confidence interval does not contain the pooled estimate.  We can spot 
them from the forest plot.   
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Figure 6.  Galbraith plot for log odds ratio of death for corticosteroids in patients with severe 
sepsis and septic shock (Annane et al., 2004), all trials.  

-4

-2

0

2

D
iff

er
en

ce
/s

ta
nd

ar
d 

er
ro

r

0 2 4 6 8 10 12
1/standard error

Pooled effect 95% limits

 
Figure 7.  Galbraith plot for log odds ratio of death for corticosteroids in patients with severe 
sepsis and septic shock (Annane et al., 2004), all trials.  
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Figure 8.  Galbraith and forest plots for corticosteroids in patients with severe sepsis and 
septic shock, all trials, with trials identified and a vertical line through the pooled estimate. 
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Figure 9. : Effect of breast feeding in infancy on blood pressure in later life (Owen et al., 
2003) 
 

 
(In parenthesis: age in years at which blood pressure measured.  0.5 represents 6 months.) 
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Random effects models 
We cannot always explain heterogeneity.  For example, (Owen et al., 2003) carried out a 
review of the effect of breast feeding in infancy on blood pressure in later life (Figure 9).  
Although there is clear heterogeneity, the authors were unable to explain it.  The obvious 
candidate explanatory variable, the age at which the blood pressure was measured, was unable 
to explain the heterogeneity.  Under these circumstances, we have to accept the existence of 
the heterogeneity and say that the greater uncertainty which this adds to our estimate should 
be reflected in the method of estimation and calculation of the confidence interval.  We do 
this using a random effects model, where we regard each study as estimating a different 
effect.  The study effects for all the studies which could be done form a population, of which 
the studies actually carried out are a sample.  The mean of this population will be our best 
measure of the overall effect.  We estimate both the variability between subjects within the 
studies and the variation between studies.  The usual method of analysis assumes that all the 
studies are estimating the same effect and only random variation between research subjects 
leads the observed study effects to vary.  We call this the fixed effects model.  We assume 
that the effect to be estimated is the same in all studies and use only the sampling variation 
within the studies. 

The two models can be compared as follows: 

Fixed effects model 

We assume that the effect to be 
estimated is the same in all studies. 

 
 
We use only the sampling variation 
within the studies. 
 

If the effect is the same in all studies, a 
fixed effects model is more powerful 
and easier.   
 

No assumption about 
representativeness 
 
 
 

Random effects model 

We assume that the effect is the not 
same in all studies.  The studies are a 
sample of possible of studies where the 
treatment effect varies.   

We use the sampling variation within 
the studies and the sampling variation 
between studies. 

If the effect is the same in all studies, 
less powerful because P values are 
larger and confidence intervals are 
wider.  

The studies are a sample from a 
population of possible of studies where 
the effect varies.  They must be a 
representative or random sample.  
Very strong assumption. 
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Fixed effects model 

Variance of effect in study = standard 
error squared. 

Weight = 1/variance 

            = 1/SE2  
 
 

 
 
 

When heterogeneity exists we get: 

• a pooled estimate which may give 
too much weight to large studies, 

• a confidence interval which is too 
narrow, 

• a P-value which is too small. 

 

When heterogeneity does not exist: 

• a pooled estimate which is correct, 

• a confidence interval which is 
correct, 

• a P-value which is correct. 

Random effects model 

Variance of effect in study = standard 
error squared plus inter-study variance 

Weight = 1/variance. 

                                1 
          = --------------------------------- 
              SE2 + inter-study variance 

Inter-study variance has degrees of 
freedom given by number of studies 
minus one.  Typically small. 

When heterogeneity exists we get: 

• possibly a different pooled estimate 
with a different interpretation, 

• a wider confidence interval, 
 

• a larger P-value. 

 

When heterogeneity does not exist: 

• a pooled estimate which is correct, 

• a confidence interval which is too 
wide,  

• a P-value which is too large. 

 

Using a random effects model affects not only the confidence interval but also the 
estimate itself.  Figure 10 show two Cochrane meta-analyses of the same trials, using 
fixed and random effects models.  The data are shown in Table 1.  There is a lot of 
heterogeneity (I 2 = 74%, P = 0.002) and the random effects method would be 
preferred.  The fixed effect model shows a marginally significant effect in favour of 
control, whereas the random effects model produces a non-significant effect in favour 
of active treatment.  The fixed effect model would be misleading here. 

On the other hand, if there is no heterogeneity, although the estimate will be the same 
the confidence interval will be wider and the random effects method may be 
misleading. 
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Table 1.  Raw data for a meta-analysis of oral rehydration in cholera, reduced 
osmolarity versus standard, duration of diarrhea 

                Intervention                    Control 
Study     n1    mean1    s1           n2     mean2    s2  
------------------------------------------------------------------ 
  1.        82     44.4     13.3         78     42.7    13.5  
  2.        34     49.9     18.7         29     57.1    17.9  
  3.        33     37.2       9.9         30     46.9    11.9  
  4.      147     46.0     18.2       153     43.0    18.6  
  5.        19     21.44     1.32       16     19.97    1.99 
  6.        19     33.89   16.4         20     38.47  17.4  
  7.        26     82.9     27.5         32     78.6    24.5  

Heterogeneity: chi-squared =  20.97 (d.f. = 6), P = 0.002 

      I 2 = 71.4% 

 

Fixed or random effects? 
There is no universally accepted method for choosing whether to use a random effects 
or a fixed effects model.  I think that this would be a reasonable approach. 

1.  Irrespective of the numerical data, decide whether the assumption of a fixed 
effects model is plausible.  Could the studies all be estimating the same effect?  This 
depends on whether there is clinical heterogeneity.  If not, consider a random effects 
model.   

2.  If a fixed effects assumption is plausible, are the data compatible with it?  We can 
do this using both graphical methods, such as forest or Galbraith plots, and analytical 
methods, such as a heterogeneity test and I 2 statistic.  If the assumption looks 
compatible with the data, use a fixed effects model, otherwise consider a random 
effects model. 

3.  If we consider a random effects model, we ask whether these studies represent a 
population where the average effect is interesting.  Do we want to pool them at all?  If 
yes, we can use a random effects model to do this.  If they do not, we can do a 
narrative review. 

Martin Bland 
19 February 2009 
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Figure 10.  Meta-analyses with fixed effects model analysis and random effects model 
analysis, showing the effect on the estimate 

Fixed effect: 

Weighted Mean diff.
-20 -10 0 10 20

Study  % Weight
 Weighted Mean diff.
 (95% CI)

 1.70 (-2.45,5.85) 1   6.1
 -7.20 (-16.25,1.85) 2   1.3
 -9.70 (-15.14,-4.26) 3   3.6
 3.00 (-1.16,7.16) 4   6.1
 1.47 (0.33,2.61) 5  81.3
 -4.58 (-15.19,6.03) 6   0.9
 4.30 (-9.26,17.86) 7   0.6

 1.02 (-0.01,2.05) Overall (95% CI)

 
              Favours treatment                        Favours control                 P = 0.05 

 

Random effect: 

Weighted Mean diff.
-20 -10 0 10 20

Study  % Weight
 Weighted Mean diff.
 (95% CI)

 1.70 (-2.45,5.85) 1  18.7
 -7.20 (-16.25,1.85) 2   9.4
 -9.70 (-15.14,-4.26) 3  15.7
 3.00 (-1.16,7.16) 4  18.6
 1.47 (0.33,2.61) 5  24.7
 -4.58 (-15.19,6.03) 6   7.6
 4.30 (-9.26,17.86) 7   5.3

 -1.08 (-4.58,2.41) Overall (95% CI)

 
              Favours treatment                        Favours control                 P = 0.5 
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