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A journey back through time . . . 

When I began my career in medical statistics, back in 1972, little was heard of power 
calculations.  In major journals, sample size often appeared to be whatever came to 
hand.  For example, in that month, September 1972, the Lancet contained 31 research 
reports which used individual subject data, excluding case reports and animal studies.  
The median sample size was 33 (quartiles 12 and 85).  In the British Medical Journal 
in September 1972, there were 30 reports of the same type, with median sample size 
37 (quartiles 12 and 158).  None of these publications reported any explanation of the 
choice of sample size, other than it being what was available.  Indeed, statistical 
considerations were almost entirely lacking from the methods sections of these 
papers.  One of the few that mentioned them at all (Bottiger and Carlson 1972) merely 
noted that ‘Statistical analyses were performed using methods described by Snedecor 
(1956)’, this being a standard statistical textbook.   

Compare the research papers of September 1972 to those in the same journals in 
September 2007, 35 years later.  In the Lancet, there were 14 such research reports, 
with median sample size 3116 (quartiles 1246 and 5584), two orders of magnitude 
greater than in 1972.  In September 2007, the BMJ carried 12 such research reports, 
with median sample size 3104 (quartiles 236 and 23351).     

The patterns in the two journals are strikingly similar.  The difference in the number 
of reports is not because of the number of issues; in both years, September was a five 
issue month.   

Problems with small sample sizes   

In the past there were problems arising from what might appear to be very small 
sample sizes.  Studies were typically analysed statistically using significance tests, 
and differences were often not significant.  What does “not significant” mean?  It 
means that we have failed to demonstrate that there is evidence against the null 
hypothesis, for example that there is no evidence for a difference between two types 
of patient or patients treated with different treatments.  This was often misinterpreted 
as meaning that there is no difference.  Potentially valuable treatments were being 
rejected and potentially harmful ones were not being replaced.  I recall Richard Peto 
presenting a (never published) study of expert opinion on three approaches to the 
treatment of myocardial infarction, as expressed in leading articles in the New 
England Journal of Medicine and the Lancet, and contrasting this with the exactly 
opposite conclusions which he had drawn from a systematic review and fledgling 
meta-analysis of all published randomised trials in these areas.   

If there is no difference between two populations, the chance of a significant 
difference between two samples from them is 0.05, whatever the sample size.  If there 
is a real difference, the  chance of a significant difference is small if the samples are 
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small.  We call this probability the power.  Hence with small samples differences 
which are significant are more likely to be spurious than with large samples. 

Power calculations 

Acknowledgement of the problems with small samples led to changes.  One of these 
was the pre-calculation of sample size so as to try to ensure a study which would 
answer its question.  The method which has been almost universally adopted is the  
power calculation, a method which reflected the significance level approach to 
analysis.   

The idea of statistical power is deceptively simple.  We are going to do a study where 
we will evaluate the evidence using a significance test.  We decide how big a 
difference we want the study to detect, how big a difference it would be worth 
knowing about.  We then choose a sample size so that, if this were the actual 
difference in the population, a large proportion of possible samples would produce a 
statistically significant difference.   

For example, consider a case control study.  We will have a group of cases of a 
disease and a group of controls.  We have a risk factor, e.g. a gene allele, which is 
found in about 10% of controls.  Is it more common in cases?  To estimate the sample 
size, we say how big a different we want to detect.  Suppose the risk factor is twice as 
common, 20%.  In some possible samples the difference will be greater than this, in 
some it will be less.  \the sample size calculation tells us that we need 266 in each 
group to have power 90% of getting a significant difference at the 5% significance 
level. 

For another example, consider a prospective study.  We will have a group of subjects 
for whom we will determine the presence of allele.  We guess that the risk of 
developing the condition is about 2% in allele negatives and 2.5% in allele positives.  
(For example, see the paper on diabetes genes, Zeggini et al. 2008.)  We guess that 
the risk of developing the condition is about 2% in allele negatives and 2.5% in allele 
positives.  We estimate that about 10% of people will have the allele.  The sample size 
calculation tells us that we need 10,067 subjects in the allele positive group to have 
power 90% of getting a significant difference at the 5% significance level.  We need 
100,670 subjects altogether!  (Zeggini et al., 2008, had 90,000.)   

Problems with power calculations: knowledge of the research area 

There are problems with power calculations, however, even for simple studies.  To do 
them, we require some knowledge of the research area.  For example, if wish to 
compare two means, we need an idea of the variability of the quantity being 
measured, such as its standard deviation; if we wish to compare two proportions, we 
need an estimate of the proportion in the control group.  We might reasonably expect 
researchers to have this knowledge, but it is surprising how often they do not.  We 
might suggest that they look at their existing records to find some data, or to look at 
published papers where the same variable has been used.  I was once told that no-one 
had ever made the measurement, in which case, I thought, we are not ready to use it as 
the outcome measure in a clinical trial.  Often we are reduced to saying that we could 
hope to detect a difference of some specified fraction of a standard deviation.  Cohen 
(1992) has dignified this by the name ‘effect size’, but the name is often a cloak for 
ignorance.   
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Problems with power calculations: how big a difference do we want to able to 
detect? 

If we know enough about our research area to quote expected standard deviations, 
proportions, or median survival times, we then come to a more intractable problem: 
the guesswork as to effect sought.  ‘How big a difference do you want to able to 
detect?’ is a question which often provokes from the inexperienced researcher the 
answer ‘Any difference at all’.  But this they cannot have, no sample is so large that it 
has a good chance of detecting the smallest conceivable difference.  One 
recommended approach is to choose a difference which would be large enough to 
change treatment policy.  In the VenUS III trial of ultrasound aimed to shorten 
healing time in venous leg ulcers, we said ‘. . . overall we have estimated that 50% of 
ulcers in the standard care group will heal within 22 weeks.  We estimate that 
clinicians and patients would, however, value a reduction in healing time of seven 
weeks (a 32% reduction in healing time, from 22 to 15 weeks) and have based our 
sample size calculation on this premise. To detect a difference in median healing time 
of 7 weeks (from 22 weeks to 15 weeks), we require 306 patients in total.’ (VenUS III 
trial protocol).  This was based on asking some clinicians and patients what would be 
sufficient return to justify the extra time involved in ultrasound treatment.  This is 
unusual, however, and more often the difference sought is the researchers’ own idea.  
An alternative is to say how big a difference the researchers think that the treatment 
will produce.  Researchers are often wildly optimistic and funding committees often 
shake their heads over the unlikeliness of treatment changes of reducing mortality by 
50% or more.  Statisticians might respond to the lack of a soundly based treatment 
difference to go for by giving a range of sample size and the differences which each 
might detect, for the researchers to ponder at leisure, but this only puts off the 
decision.  Researchers might use this to follow an even less satisfactory path, which is 
to decide how many participants they can recruit, find the difference which can be 
detected with this sample, then claim that difference as the one they want to find.  
Researchers who do this seldom describe the process in their grant applications. 

Problems with power calculations: multiple outcomes  

In a clinical trial, we usually have more than one outcome variable of interest.  If we 
analyse the trial using significance tests, we may carry out a large number of tests 
comparing the treatment groups for all these variables.  Should we do a power 
calculation for each of them?  If we test several variables, even if the treatments are 
identical the chance that at least one test will be significant is much higher than the 
nominal 0.05.  To avoid this multiple testing problem, we usually identify a primary 
outcome variable.  So we need to identify this for the power calculation to design the 
study.  As Chan et al (2004, 2004b) found, researchers often change the primary 
outcome variable after the study has begun, which we might suspect to have been 
done after they have seen the results of the preliminary analysis, and their original 
choice may not be reported at all.  This would make the P values invalid and over-
optimistic. 

If we test several variables, even if the treatments are identical the chance that at least 
one test will be significant is much higher than the nominal 0.05.  For example, 
suppose we have two independent variables.  Then the probability that at least one 
variable will be significant = 1 − (1 − 0.05)2 = 0.098.  The expected number of 
significant differences, the average number we would get over many studies when the 
null hypothesis is true, is 2×0.05 = 0.1.  For 10 independent variables, the probability 
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that at least one variable will be significant = 1 − (1 − 0.05)10 = 0.40 and the expected 
number of significant differences = 10×0.05 = 0.5.  For 1,000 independent variables, 
the probability that at least one variable will be significant =  
1 − (1 − 0.05)1000 = 1.00 and the expected number of significant differences = 
1000×0.05 = 50. 

We can use the Bonferroni correction.  We multiply the P value by the number of 
tests.  E.g. for 10 tests, we demand P < 0.005 rather than P < 0.05.  If any test has P = 
0.005, the difference overall is significant at the 0.05 level.  The disadvantage of this 
approach is that it is usually conservative, because the tests are not independent.  In 
other words, the corrected P values are too large. 

In the case control study example, we wanted to detect a difference between 10% and 
20%.  If we intend to do 1000 tests, for significance we would demand P < 0.00005 
rather than P < 0.05.  We need 266 in each group to have power 90% of getting a 
significant difference at the 5% significance level.  We need 723 in each group to 
have power 90% of getting a significant difference at the 0.005% significance level. 

Is the Bonferroni correction appropriate in a case control study?  We know the groups 
are different, so the composite null hypothesis doesn’t apply.   However, Bonferroni 
gives the probability of seeing this difference if all null hypotheses are true, so it is a 
reasonable approach. 

In their study of associations with diabetes, Zeggini et al. (2008) say that:  

“We detected at least six previously unknown loci with robust evidence 
for association, including the JAZF1 (P < 5.0×10–14), CDC123-CAMK1D 
(P < 1.2×10–10), TSPAN8-LGR5 (P < 1.1×10–9), THADA (P < 1.1×10–9), 
ADAMTS9 (P < 1.2×10–8) and NOTCH2 (P < 4.1×10–8) gene regions.” 
 . . .  

“We based our further analyses on 2,202,892 SNPs that met imputation 
and genotyping quality control criteria across all studies.” 

In fact 0.05/2202892 = 2.270×10–8, so at least one of these associations does not make 
it. 

Consequences of power calculations 

These calculations led to some shocks.  I remember a clinician asking me how many 
patients he would need for a trial aimed at reducing mortality following myocardial 
infarction by one quarter.  I estimated that to reduce mortality from 15% to 11.25% 
we would need 1715 in each group.  Why not round this up to 2000, I suggested, to 
allow for a few things going wrong?  I thought he was going to faint.  He thought this 
was impossible and went off to do a trial which was a tenth of the size, which duly 
reported a difference in the hoped-for direction, which was not significant. 

Other statisticians were more forceful than I was and Peto and Yusuf (1981) led the 
call for large, simple trials, the first being ISIS-1 (ISIS-1 Collaborative Group, 1986).  
This was spectacularly successful, as Peto et al. (1995) described.  It probably 
explains the hundred-fold increase in sample size reported in Figure 1.  No clinical 
researcher with aspirations to be in the top flight can now be happy unless a trial with 
a four-figure sample size is in progress. 
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Alternatives to power calculations 

Power calculations are not the only way to plan sample sizes.  There are confidence 
interval based methods as well.  These may have some advantages, see Bland (2008). 

Summing up 

�  We cannot ignore sample size. 

�  Small samples increase chance that significant 
    differences are false positive.  

�  Small samples increase chance that important 
    differences will be missed.  

�  We must think about sample size when planning a 
    study. 

�  Sample size calculations are not trivial. 
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