NYFZANYI AN

./ \)

; Qﬂ“ﬂ&ﬂ%ﬂ%ﬂ
NYZANYZANYZANYZANYZAN
ZAN\YZANYZANVZANYZANYZ
NYZANYZANYZANVZANYZAN

JANVIANVIANVIANVIANYYS
AUTOMATICALLY IMPROVING CONSTRAINT

MODELS IN SAVILE ROW THROUGH | Geoorsesn
ASSOCIATIVE-COMMUTATIVE COMMON

SUBEXPRESSION ELIMINATION n i

L/ \\L/

QﬂQ
74\Y%
Y2\
4\Y%
N\VSFAN

I
\
s
\
/

MOTIVATION — THE LONG-TERM GOAL

Automated Reformulation — Given a naive model, automatically improve it via a
sequence of reformulations

We can take inspiration from two main sources:
= Compilers

= Automating techniques used by expert modellers

Typically stronger reformulations can be done on problem instances

This paper describes an algorithm for an instance-level reformulation — AC-CSE

BAC KGRO UND- Model File Parameter File
SAVILE ROW

Deal with undefinedness

A system that takes modelling language SIS () ENEIEEDE
’ Unroll quantifiers, comprehensions
Essence . 5
Matrix dereference to element
Performs essential and optional functions Atomise matrices
to translate to solver input HiE Gl

Reformulation passes Apply filtered domains
General flattening

After every step:

Reformulation passes
Simplify

General flattening

Run Minion to filter

expressions,
Variable deletion

domains

Output to target

BACKGROUND:
IDENTICAL COMMON SUB-EXPRESSION ELIMINATION

The most basic Common Sub-Expression Elimination (CSE) extracts identical
expressions

xty <4, xt+y=z
where x,y in {0..5}, z in {0..10}
Extract x+y and replace with new auxiliary variable
x+y=aux, aux < 4, aux=z
This allows the constraint solver to see that z < 4
Without CSE, the solver can discover that z < 8 (via x < 4 and y < 4)

CSE connects together overlapping constraints via a new variable

ASSOCIATIVE-COMMUTATIVE COMMON
SUBEXPRESSION ELIMINATION

Associative-Commutative Common Subexpression Elimination (AC-CSE) uses the fact
that sum, product, conjunction, disjunction are associative and commutative

In practice treat sums, products, conjunctions and disjunctions as unordered sets

Extract common subsets from sets of expressions

ASSOCIATIVE-COMMUTATIVE CSE

We have already sorted associative-commutative expressions (normalisation)
" x+y+z matches z+x+y with Identical CSE

But we cannot yet match arbitrary overlaps

* A binary tree representation would allow matching prefixes (left-branching) or postfixes (right-
branching) in the sorted order... GNU C++ compiler does this

" ...but Savile Row represents AC operators using non-binary trees

ASSOCIATIVE-COMMUTATIVE CSE

Treat an AC expression as a set of terms
Find a subset common to two or more AC expressions

Extract the common subset everywhere and replace with an auxiliary variable

Can improve propagation dramatically

With some sensible assumptions, never reduces propagation

ASSOCIATIVE-COMMUTATIVE CSE

Extracting one AC-CS may block others

X-CSE (our proposed algorithm) uses heuristic ordering

= Extracts AC-CS with most occurrences first

* Never copies original expressions — can be more efficient in finite-domain context

|-CSE [Araya et al, CP 2008] extracts all AC-CSs between two expressions
* Makes copies of original expressions — potential big slowdown
* Context: Numerical CSP

Genuine choice — difficult to know right answer

Our experiments suggest X-CSE better in finite-domain context

EXPERIMENTS

Comparing total time (solving plus Savile Row time)
With AC-CSE (implemented by X-CSE algorithm) vs same config without AC-CSE

Many other options switched on: domain filtering, variable deletion, etc

Minion as the solver

* Static variable, value orderings

AC-CSE never increases search

* But can increase Minion time, Savile Row time.

Results on following slides are from a slightly newer Savile Row than paper

Speed up factor with AC-CSE

500.0

20 5.0 20.0 100.0

0.5

EXPERIMENTAL RESULTS

bibd
bibd-implied
blackHole

efpa

futoshiki L
golomb ° ‘.
graphColouring .‘.

killerSudoku-16x16 'O
killerSudoku

o ®
langford
o
[.'.

magicSquare
molnars

peaceableArmyOfQueens2)
pegSolitaireAction

o o’ $. O
B = WtI S NVRT T S

5e-01 1e+00 5e+00 1e+01 5e+01
Total time without AC-CSE

1e+02

5e+02

1e+03

X-axis : total time
without AC-CSE

Y-axis: speed-up
quotient by applying
AC-CSE

Y-axis on log scale

Speed up factor with AC-CSE

500.0

20 5.0 20.0 100.0

0.5

EXPERIMENTAL RESULTS

bibd
bibd-implied
blackHole

efpa

futoshiki

golomb
graphColouring
killerSudoku-16x16
killerSudoku

langford

magicSquare
molnars

ens
eenél"‘ .
o
peaceableArmyOfQueens2)
pegSolitaireAction
I I | | I I I I
56-01 1e+00 5e+00 1e+01 5e+01 1e+02 5e+02 1e+03

Total time without AC-CSE

Some Killer Sudoku
instances are
rendered almost

trivial by AC-CSE

Seems to have
exponential growth in
speed-up quotient

Speed up factor with AC-CSE

500.0

20 5.0 20.0 100.0

0.5

EXPERIMENTAL RESULTS

bibd
bibd-implied
blackHole

efpa

futoshiki

golomb
graphColouring
killerSudoku-16x16
killerSudoku

langford
o
[.'.

lﬁvdh-pa- e'

peaceableArmyOfQueens2)
pegSolitaireAction

magicSquare
molnars

ens
eenéq .

5e-01 1e+00 5e+00 1e+01 5e+01
Total time without AC-CSE

1e+02

5e+02

1e+03

Some instances solve
within 10 minutes with

AC-CSE, time-out
without it

Killer Sudoku (24)
Car Sequencing (3)
SONET (2)

BIBD (2)
BIBD-implied (1)

Speed up factor with AC-CSE

500.0

20 5.0 20.0 100.0

0.5

EXPERIMENTAL RESULTS

u'qu:%‘;’ o:o!/.*’mw * ‘.: 4 o QW @ o o°

bibd .
bibd-implied o o
blackHole
o °
o o _o°
o

efpa
futoshiki o
golomb

graphColouring
killerSudoku-16x16
killerSudoku

langford

magicSquare
molnars

Qe evroee® o

@
peaceableArmyOfQueens2)
pegSolitaireAction
I I I | I I I I
56-01 1e+00 5e+00 1e+01 5e+01 1e+02 5e+02 1e+03

Total time without AC-CSE

The rest above 2x
BIBD (5)
BIBD-implied (3)
Killer Sudoku (5)
SONET (3)
Molnars (1)
Waterbucket (2)

Speed up factor with AC-CSE

500.0

20 5.0 20.0 100.0

0.5

EXPERIMENTAL RESULTS

bibd .
bibd-implied o o
blackHole

[]

efpa

futoshiki ®
o ¥

golomb

graphColouring .'. oo
killerSudoku-16x16 'O
killerSudoku

®
o
L
langford o ® o 00 () ‘
® o

magicSquare) ¢ ® ®
molnars .'. '.

ens

eené g ‘!Am?‘. "Y o o°° LG ® © Qe

‘b () L J [) L

peaceableArmyOfQueens2
pegSolitaireAction

5e-01 1e+00 5e+00 1e+01 5e+01 1e+02 5e+02 1e+03
Total time without AC-CSE

Slow down by 2x or
more

Car sequencing! (1)

* One very easy instance:
X-CSE takes a long time,
saves no sedrch

peaceableArmyQs2
pegSolitaireAction (2)

KILLER SUDOKU Clue

Sum=6 and allDiff

9x9 grids too easy, we did 16x16

16x16 matrix, each cell takes value in {1..16}

Rows, columns and 4x4 subsquares: allDifferent A

Clues are contiguous sets of cells

* The sum is given as part of the clue

= Cells within the clue are allDifferent

In the example (right) the clue must contain values 1,2,3
allDiff
Entire matrix covered by non-overlapping clues

Model is exactly the above constraints

KILLER SUDOKU

Rows /columns/subsquares are a permutation
Introduce sum constraints from AllDifferent
For each row, column and subsquare X:
sum(X) = 136 (for 16x16 case)

Suppose we had 6x6 Killer Sudoku (left)
sum(X) = 21

For each clue, we also get useless sum<a and sum=b
* Removed by Identical CSE followed by simplifiers

KILLER SUDOKU

New sums on rows/columns/subsquqres intersect
with clues

In example (left), suppose two rows are k[1,..]
and k[2,..]

AC-CSE connects clues to rows

k[2,3] + ... + k[2,6] is common to the 18 clue and
the row sum

k[2,1] + k[2,2] is common to the 6 clue and the
row sum

KILLER SUDOKU

k[2,3] + ... + k[2,6] = aux]

k[2,1]+k[2,2] = aux?2

aux1=18, aux2+k[1,1]=6

aux 1 +aux2=21

aux1 replaced with 18 (variable deletion)
aux?2 becomes 3 (simplifier, then var deletion)

k[1,1] becomes 3 (simplifier, then var deletion)

Speed up factor with X-CSE

150 250 350

50

KILLER SUDOKU — RESULTS

— D

oo
o

Q

& D

0]

o @@@O

TM)O

190

o
A

o)
A=

2

5

I
10 20 50 100 200
Total time without X-CSE (s)

I
500

Some hard problems made almost
trivial

Peak instance:

Without X-CSE Savile Row took
2.26s

Minion timed out at 600s
2,774,028 nodes

With X-CSE Savile Row took 1.62s
Minion took 0.13s, 2 nodes

savilerow —O3 killer.eprime ...

KILLER SUDOKU — SUMMARY

We need to do these steps:
Add implied sum to all AllDifferent constraints
Apply AC-CSE

Variable deletion (interleaved with simplifiers)

FUTURE WORK

Scalability
Both X-CSE and I-CSE can fail if...

* Very large number of sum constraints

* Very long sums

Many possible ways of improving scalability

* Anytime algorithm with time quota

Obtain more implied sum (or product) constraints from globals

THANK YOU

AC-CSE is implemented in Savile Row:

http:/ /savilerow.cs.st-andrews.ac.uk /

Any questions?

