
AUTOMATICALLY IMPROVING CONSTRAINT
MODELS IN SAVILE ROW THROUGH

ASSOCIATIVE-COMMUTATIVE COMMON
SUBEXPRESSION ELIMINATION

Peter Nightingale

Özgür Akgün

Ian P Gent

Chris Jefferson

Ian Miguel

MOTIVATION – THE LONG-TERM GOAL

Automated Reformulation – Given a naïve model, automatically improve it via a
sequence of reformulations

We can take inspiration from two main sources:

 Compilers

 Automating techniques used by expert modellers

Typically stronger reformulations can be done on problem instances

This paper describes an algorithm for an instance-level reformulation – AC-CSE

2

BACKGROUND:
SAVILE ROW

A system that takes modelling language
Essence’

Performs essential and optional functions
to translate to solver input

Model File

Deal with undefinedness

Substitute in parameters

Unroll quantifiers, comprehensions

Matrix dereference to element

Atomise matrices

Etc etc

Reformulation passes

General flattening

After every step:

Simplify

expressions,

Variable deletion

Run Minion to filter

domains

Reformulation passes

General flattening

Output to target

Apply filtered domains

3

Parameter File

BACKGROUND:
IDENTICAL COMMON SUB-EXPRESSION ELIMINATION

The most basic Common Sub-Expression Elimination (CSE) extracts identical
expressions

x+y ≤ 4, x+y=z

where x,y in {0..5}, z in {0..10}

Extract x+y and replace with new auxiliary variable

x+y=aux, aux ≤ 4, aux=z

This allows the constraint solver to see that z ≤ 4

Without CSE, the solver can discover that z ≤ 8 (via x ≤ 4 and y ≤ 4)

CSE connects together overlapping constraints via a new variable

ASSOCIATIVE-COMMUTATIVE COMMON
SUBEXPRESSION ELIMINATION

Associative-Commutative Common Subexpression Elimination (AC-CSE) uses the fact
that sum, product, conjunction, disjunction are associative and commutative

In practice treat sums, products, conjunctions and disjunctions as unordered sets

Extract common subsets from sets of expressions

ASSOCIATIVE-COMMUTATIVE CSE

We have already sorted associative-commutative expressions (normalisation)

 x+y+z matches z+x+y with Identical CSE

But we cannot yet match arbitrary overlaps

 A binary tree representation would allow matching prefixes (left-branching) or postfixes (right-
branching) in the sorted order… GNU C++ compiler does this

 …but Savile Row represents AC operators using non-binary trees

+

+

y

x

z

+

yx z

+

+

y

w

z

+

yw z

6

ASSOCIATIVE-COMMUTATIVE CSE

Treat an AC expression as a set of terms

Find a subset common to two or more AC expressions

Extract the common subset everywhere and replace with an auxiliary variable

Can improve propagation dramatically

With some sensible assumptions, never reduces propagation

+

yx z

+

yw z

7

ASSOCIATIVE-COMMUTATIVE CSE

Extracting one AC-CS may block others

X-CSE (our proposed algorithm) uses heuristic ordering

 Extracts AC-CS with most occurrences first

 Never copies original expressions – can be more efficient in finite-domain context

I-CSE [Araya et al, CP 2008] extracts all AC-CSs between two expressions

 Makes copies of original expressions – potential big slowdown

 Context: Numerical CSP

Genuine choice – difficult to know right answer

Our experiments suggest X-CSE better in finite-domain context

8

EXPERIMENTS

Comparing total time (solving plus Savile Row time)

With AC-CSE (implemented by X-CSE algorithm) vs same config without AC-CSE

Many other options switched on: domain filtering, variable deletion, etc

Minion as the solver

 Static variable, value orderings

AC-CSE never increases search

 But can increase Minion time, Savile Row time.

Results on following slides are from a slightly newer Savile Row than paper

EXPERIMENTAL RESULTS

X-axis : total time
without AC-CSE

Y-axis: speed-up
quotient by applying
AC-CSE

Y-axis on log scale

EXPERIMENTAL RESULTS

Some Killer Sudoku
instances are
rendered almost
trivial by AC-CSE

Seems to have
exponential growth in
speed-up quotient

EXPERIMENTAL RESULTS

Some instances solve
within 10 minutes with
AC-CSE, time-out
without it

Killer Sudoku (24)

Car Sequencing (3)

SONET (2)

BIBD (2)

BIBD-implied (1)

EXPERIMENTAL RESULTS

The rest above 2x

BIBD (5)

BIBD-implied (3)

Killer Sudoku (5)

SONET (3)

Molnars (1)

Waterbucket (2)

EXPERIMENTAL RESULTS

Slow down by 2x or
more

Car sequencing! (1)

 One very easy instance:
X-CSE takes a long time,
saves no search

peaceableArmyQs2

pegSolitaireAction (2)

KILLER SUDOKU

9x9 grids too easy, we did 16x16

16x16 matrix, each cell takes value in {1..16}

Rows, columns and 4x4 subsquares: allDifferent

Clues are contiguous sets of cells

 The sum is given as part of the clue

 Cells within the clue are allDifferent

In the example (right) the clue must contain values 1,2,3

Entire matrix covered by non-overlapping clues

Model is exactly the above constraints

allDiff

Clue

Sum=6 and allDiff

15

KILLER SUDOKU

Rows/columns/subsquares are a permutation

Introduce sum constraints from AllDifferent

For each row, column and subsquare X:

sum(X) = 136 (for 16x16 case)

Suppose we had 6x6 Killer Sudoku (left)

sum(X) = 21

For each clue, we also get useless sum≤a and sum≥b

 Removed by Identical CSE followed by simplifiers

16

KILLER SUDOKU

New sums on rows/columns/subsquares intersect
with clues

In example (left), suppose two rows are k[1,..]
and k[2,..]

AC-CSE connects clues to rows

k[2,3] + … + k[2,6] is common to the 18 clue and
the row sum

k[2,1] + k[2,2] is common to the 6 clue and the
row sum

17

KILLER SUDOKU

k[2,3] + … + k[2,6] = aux1

k[2,1]+k[2,2] = aux2

aux1=18, aux2+k[1,1]=6

aux1+aux2=21

aux1 replaced with 18 (variable deletion)

aux2 becomes 3 (simplifier, then var deletion)

k[1,1] becomes 3 (simplifier, then var deletion)

18

KILLER SUDOKU – RESULTS

Some hard problems made almost
trivial

Peak instance:

Without X-CSE Savile Row took
2.26s

Minion timed out at 600s

2,774,028 nodes

With X-CSE Savile Row took 1.62s

Minion took 0.13s, 2 nodes

savilerow –O3 killer.eprime …

19

KILLER SUDOKU – SUMMARY

We need to do these steps:

1. Add implied sum to all AllDifferent constraints

2. Apply AC-CSE

3. Variable deletion (interleaved with simplifiers)

20

FUTURE WORK

Scalability

Both X-CSE and I-CSE can fail if…

 Very large number of sum constraints

 Very long sums

Many possible ways of improving scalability

 Anytime algorithm with time quota

Obtain more implied sum (or product) constraints from globals

THANK YOU

AC-CSE is implemented in Savile Row:

http://savilerow.cs.st-andrews.ac.uk/

Any questions?

