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Abstract One approach to automated constraint modelling is to generate, and
then select from, a set of candidate models. This method is used by the automated
modelling system CONJURE. To select a preferred model or set of models for a
problem class from the candidates CONJURE produces, we use a set of training
instances drawn from the target class. It is important that the training instances
are discriminating. If all models solve a given instance in a trivial amount of time,
or if no models solve it in the time available, then the instance is not useful for
model selection. This paper addresses the task of generating small sets of dis-
criminating training instances automatically. The instance space is determined by
the parameters of the associated problem class. We develop a number of methods
of finding parameter configurations that give discriminating training instances,
some of them leveraging existing parameter-tuning techniques. Our experimental
results confirm the success of our approach in reducing a large set of input models
to a small set that we can expect to perform well for the given problem class.

1 Introduction and Background

Numerous approaches have been taken to automating aspects of constraint model-
ling, including: learning models from examples [8,4,5,17,3]; automated transformation
of medium-level solver-independent constraint models [23,21,24,20]; theorem proving
[7]; case-based reasoning [18]; and refinement of abstract constraint specifications [10]
in languages such as ESRA [9], ESSENCE [11],F [14] or Zinc [19,16]. We focus on the
refinement approach, where a user writes a constraint specification describing a problem
above the level of abstraction at which modelling decisions are made. Constraint spe-
cification languages support abstract decision variables with types such as set, multiset,
relation and function, as well as nested types, such as set of sets and multiset of rela-
tions. Therefore, problems can typically be specified very concisely. However, existing
constraint solvers do not support these abstract decision variables directly, so abstract
constraint specifications must be refined into concrete constraint models.

We use ESSENCE [11]. An ESSENCE specification (see Fig. 1) identifies: the para-
meters of the problem class (given), whose values define an instance; the combinatorial
objects to be found (find); and the constraints the objects must satisfy (such that).
An objective function may also be specified (min/maximising) and identifiers de-
clared (letting). Our CONJURE system3 [2] employs refinement rules to convert

3 http://bitbucket.org/stacs cp/conjure-public



an ESSENCE specification into the solver-independent constraint modelling language
ESSENCE′ [23]. We use SAVILEROW4 [22] to translate an ESSENCE′ model into input
for a particular constraint solver while performing solver-specific model optimisations.

By following alternative refinement paths CONJURE typically produces a large set
of models for a given ESSENCE specification. In our previous work [1] we developed
a racing process to select among these candidate models, in which a set of training
instances drawn from the problem class being modelled is used to gauge relative model
performance. For this process to be effective, it is important that the instances chosen
are discriminating: if all models solve a given instance in a trivial amount of time, or
if no model solves it in the time available, then the instance is not useful for model
selection. Our previous work assumed that such instances were given. In this paper we
address the task of generating discriminating training instances automatically.

2 Racing for Automated Model Selection

Our approach to model selection follows that we reported in [1], but with an improved
method of producing a set of winning models described below. It takes as input a set
of instances drawn from the target problem class. Our performance measure of a model
with respect to an instance is the time taken for SAVILEROW to instantiate the model
and translate for input to the MINION constraint solver [12] plus the time taken for MIN-
ION to solve the instance. We include the time taken by SAVILEROW since it adds desir-
able instance-specific optimisations, such as common subexpression elimination [13].

We conduct a race [6] for each provided instance. Given a parameter ρ ≥ 1, a model
is ρ-dominated on an instance by another model if the measure for the second model is
at least ρ times faster than the first. The ‘winners’ of an instance race are the models not
ρ-dominated by any other model. So that trivial instances do not discriminate we do not
consider any model that solves within 1s to be dominated. All models enter each race,
but for efficiency a model is terminated as soon as it is ρ−dominated by some other
model. Furthermore, the order in which the models are executed is influenced by their
performance in previous races: well-performing models are executed first to establish a
good ρ bound early. In order to guide our exploration of the instance space we assign
a discriminatory quality value to an instance with respect to the results of the race run.
This is the fraction of models that are ρ-dominated.

A set of instances is ρ-fractured if every model is ρ-dominated on at least one in-
stance. In the presence of fracturing, care must be taken in defining the set of winning
models over a race sequence. We do so as follows. We first find a minimum hitting set of
winning models {a1, a2, a3, ...} which covers all instance races. We then define the set
Ai as the set of models that won every race that ai won. The set of sets {A1, A2, A3, ...}
then gives a summary of the winning models over all fractured parts of the instance
space. Note that each Ai ∩ Aj = ∅ (where i 6= j) as otherwise we could find a smal-
ler hitting set. Also note that in an unfractured instance space the unique A1 is simply
the set of models which won all races. However, for fractured spaces the set {Ai} is
not uniquely defined as it depends on the hitting set found: nevertheless it gives us a
representation of one particular fracturing of the instance space.

4 http://savilerow.cs.st-andrews.ac.uk



3 Methods for Generating Discriminating Instances

The instance space is defined by the parameters of a problem class. Consider the ES-
SENCE specifications in Figure 1. Langford’s Problem has two independent integer
parameters and hence a two-dimensional instance space. The Knapsack Problem is an
example of a more complex instance space, consisting of two integers and two func-
tions. The first integer, n, governs the number of items and also the domain of the two
given functions, which define the weights and values of those items. Our three methods
for generating discriminating instances in these spaces are described below. All run a
sequence of races and combine the results following the method described in Section 2.

Undirected: For each race in a sequence, undirected simply draws a sample
from the instance space and runs a race. Section 4 describes our sampling method.

Markov: This method is loosely based on the Markov chain Monte Carlo methods
used, e.g., to estimate the value of a multi-dimensional integral. We assume that dis-
criminating instances are likely to be found near (by some proximity measure) other dis-
criminating instances, and non-discriminating instances near other non-discriminating
instances. This naturally leads to a Markov chain that walks the instance space, is
attracted towards known discriminating instances, and is repelled from known non-
discriminating instances. Our measure of proximity per parameter type:

Integer The distance is simply the absolute difference between the two values.
Total Function Given functions f and g we compute the distance between f(i) and

g(i) for each i where both functions are defined, and aggregate using Euclidean
distance. When f and g have different domains of definition, some mappings in
f and/or g will be discarded. Suppose we had given weights : function
(total) int(1..n) --> int(1..100) (as in the Knapsack Problem) with
n a parameter. If the domain of definition int(1..n) differs between f and g,
then n must differ and this will count towards the instance distance.

Set Given sets S and T , the distance is
√
|S \ T |+ |T \ S|, also Euclidean.

Relation Treating a relation as a set of tuples, we use the distance measure for sets.

To obtain the instance distance, we combine the distance measure for each parameter
again using the Euclidean distance. This combines elegantly with the Euclidean dis-
tances computed per parameter. An initial instance is sampled using the method de-
scribed in Section 4. A race is run using this instance and a record taken of its discrim-
inatory quality. Each subsequent instance (sampled using the same method) is accepted
or rejected according to the scheme below. If an instance is accepted a race is run with
that instance, otherwise another instance is generated, and so on until the required race
sequence is complete. We use the following acceptance function, where xi−1 is the
previous accepted instance and x′i is the proposed instance.

A(xi−1, x
′
i) =

G′(x′i)

G(xi−1)

G′ estimates the discriminatory quality of the instance in the interval [0, 1] using the
quality values of previously accepted instances found by racing. We define a radius of
influence r, which is 10% of the greatest possible distance between any two instances,



LANGFORD’S PROBLEM (CSPLIB 24)
given k, n : int(1..)
letting seqLength be k * n
letting seqIndex be domain int(1..seqLength)
find seq : function (total, surjective) seqIndex --> int(1..n)
such that forAll i,j : seqIndex , i < j .

seq(i) = seq(j) -> seq(i) = j - i - 1

THE KNAPSACK PROBLEM
given n, totalWeight : int(1..)
given weights, values : function (total) int(1..n) --> int(1..)
find picked: set(maxSize n, minSize 1) of int(1..n)
maximising (sum i in picked . values(i) )
such that (sum i in picked . weights(i) ) <= totalWeight

THE PROGRESSIVE PARTY PROBLEM (CSPLIB 14)
given n_upper, n_boats, n_periods : int(1..)
letting Boat be domain int(1..n_boats)
given capacity, crew : function (total) Boat --> int(1..n_upper)
where forAll i : Boat . crew(i) <= capacity(i),
find hosts : set of Boat,

sched : set (size n_periods) of function (total) Boat --> Boat
minimising |hosts|
such that forAll p in sched . range(p) subsetEq hosts,

forAll p in sched . forAll h in hosts . p(h) = h,
forAll p in sched . forAll h in hosts .

(sum b in preImage(p,h) . crew(b))<= capacity(h),
forAll b1,b2 : Boat , b1 != b2 .

(sum p in sched . (p(b1) = p(b2))) <= 1

THE WAREHOUSE LOCATION PROBLEM. (CSPLIB 34)
given n_upper, n_stores, n_warehouses : int(1..30)
letting Store be domain int(1..n_stores),

WHouse be domain int(1..n_warehouses)
given capacity : function (total) WHouse --> int(1..n_upper),

opencost : function (total) WHouse --> int(1..n_upper),
cost : function (total) tuple (Store, WHouse) --> int(1..n_upper)

find open : function (total) Store --> WHouse
minimising (sum r in range(open). opencost(r)) + sum s : Store . cost((s,open(s)))
such that forAll w : WHouse . |preImage(open,w)| <= capacity(w)

Figure 1. Four sample ESSENCE specifications.

using the distance measure above.G′(x′i) finds the set of all previous accepted instances
within distance r of x′i. If this set is non-empty, G′(x′i) returns the mean of the true
quality values for the set. Otherwise, G′(x′i) = 0.5. G(xi−1) gives the true quality of
xi−1. Finally, a pseudorandom number a is generated within [0, 1], and x′i is accepted
if A(xi−1, x′i) ≥ a then. Hence, the proposed instance is always accepted if G′(x′i) is
greater than G(xi−1).

Smac: Our final method is based on SMAC [15], an automatic algorithm configura-
tion system. Given an algorithm, a description of its parameters, and a set of instances,
it finds the set of parameters for the algorithm that delivers the best performance on
the set of instances. Finding discriminatory instances is a very similar setting – the al-
gorithm is the problem class specification, its parameters instantiate particular instances
of the class and the set of problem “instances” is the set of models. We want to find the
set of problem class parameters – the set of problem instances – that has the optimum
discriminatory power with respect to the models.



We encode the problem class parameters into SMAC’s input format, which uses in-
teger and categorical variables. Integer givens are converted to integer parameters
with the range specified in the problem definition. We model structured givens such
as functions using multiple SMAC parameters. When one given depends on another,
such as the size of the domain of the function depending on n in the Knapsack Prob-
lem, we must be conservative: sufficient SMAC parameters are used to accommodate
the maximum size of the structured given. The extraneous parameters are ignored
when racing the instances so produced. Although SMAC has demonstrated that it is able
to handle large parameter spaces, this conservative encoding may hinder its ability to
cover the space effectively, since many of the values it is producing may be ignored.
Furthermore, SMAC does not support the complex constraints between parameters that
we sometimes require (where), so we use CONJURE to validate the instances that
SMAC generates and discard those that do not satisfy the constraints.

4 Uniform Versus Non-uniform Sampling

Except for SMAC, which has its own sampling method, our generation approaches re-
quire the ability to sample from the instance space associated with a problem class.
Since the instance spaces of the problem classes we consider are typically infinite, our
method requires some sensible bounds on the parameters involved in order to circum-
scribe a finite sub-space of interest. For example in Langford’s Problem, as discussed in
Section 5, we limit the two integer parameters to the ranges 2..10 and 1..50 respectively.

When the parameters defining the space are independent (e.g. the pair of integer
parameters to Langford’s problem), uniform sampling is straightforward: simply gener-
ate a value uniformly and independently for each parameter. When the parameters are
not independent, uniform sampling is more difficult. Reconsider the Knapsack Problem
from Figure 1. An approach to sampling from this space is first to generate n uniformly
then uniformly and independently generate a mapping for each element of the domain
(1..n) of the two functions weights and values. However, this introduces bias: there
are many more possible functions for large values of n than there are for small values of
n. Hence, if we generate n uniformly then a particular function for small n is far more
likely to be selected than a particular function for large n.

A solution to this problem is to enumerate all of the valid instances of the instance
sub-space and sample uniformly from this set. This enumeration problem is naturally
cast as a (simple) constraint problem. An ESSENCE specification E∗ for the enumera-
tion problem can be obtained automatically from an original ESSENCE specification E
simply by replacing in E the given (parameter) statements with find (decision vari-
able) statements and discarding the rest of E. As a very simple example, performing
this process for Langford’s Problem produces:

find k : int(2..10)
find n : int(1..50)

Care must be taken that this transformation produces valid ESSENCE. For the Knapsack
Problem (assuming sensible parameter limits) it produces:

find n : int(1..100)



find totalWeight : int (1..1000)
find weights : function (total) int(1..n) --> int(1..100)
find values : function (total) int(1..n) --> int(1..100)

This is invalid because a decision variable is used to define the size of the domain of
the two function variables. The solution we adopt is to leave n as a parameter, solve the
problem for each value of n and take the union of the results.

We obtain a single model for E∗ automatically using CONJURE and the Compact
heuristic [1] — this is sufficient because the enumeration problem is typically easy.
MINION is then used to find all solutions to the model. Our uniform sampling method
is to select uniformly from this set of solutions.

The drawback of uniform is that it limits the size of space that we can consider.
An alternative approach, which we call solver-random, is to sample by requesting
a single solution from MINION, employing a random variable and value order. This in-
troduces bias for much the same reason as described above: the distribution of solutions
to the model may not be uniform. However, solver-random is much more scalable.

In order to compare uniform with solver-random we performed an exper-
iment on two problem classes: Warehouse Location and the Progressive Party Prob-
lem (see Figure 1). So that uniform sampling was feasible, the instance space for
each problem class was restricted to around a billion instances by limiting the upper
bounds of each of their parameters. For each problem class we ran three sequences of
thirty races using our Markov and Undirected generation approaches. In this ex-
periment there was no substantive difference between Markov and Undirected —
probably because of the (lack of) discriminatory quality of the instance sampled as we
discuss below. For Warehouse Location the performance of the two sampling methods is
identical, reducing 128 input models to 64 non-dominated models. For the Progressive
Party Problem solver-random actually performs better than uniform, reducing
256 input models to 16 non-dominated models, whereas uniform produces between
63 and 77 non-dominated models. The bias inherent to solver-uniform appears to
have been beneficial in this case, guiding the methods to discriminating instances.

These experiments provide some evidence that solver-random is a reasonable
approach to sampling the instance space. It is also worth noting that the restrictions
on the size of the instance space that we explore (to accommodate uniform) restricts
the discriminatory quality of the instances that we find — producing 64 non-dominated
models for Warehouse Location is a relatively weak result. solver-random scales
easily to more challenging, hence more discriminating, instances as we will see in the
following section where we use solver-random exclusively.

5 Experimental Results
In this section we report an experimental evaluation of our instance generation meth-
ods. Following the outcome of our experiment in Section 4, we use solver-random
sampling throughout. We experiment on six problem classes described below with res-
ults summarised in Table 1. For each class we run three independent sequences of races.
For Markov and Undirected we run 30 races, each with a time budget of 6 hours.
This time budget is divided by the number of models to obtain the maximum time al-
lowed for a particular model to solve an instance. Rather than a maximum number of



runs, SMAC requires a total time budget. We specify the maximum time either of the
other methods took to complete the race sequence.

Given the volume of experiments we use heterogeneous compute resources, while
ensuring that all experiments for each problem class are run on the same resource. In
all cases, a model is given 6.5GB of RAM and run on an AMD-based architecture. The
Social Golfer Problem was run on a 32-core 2.1GHz machine, Warehouse Location
on a 64-core 2.1GHz machine, and the remainder on 2.1GHz processors on Microsoft
Azure.

Our results are summarised in Table 1. For each problem class we record: the num-
ber of models refined by CONJURE from the associated ESSENCE specification; the
size of the output set(s) of models as described in Section 2; the number of discovered
fractured parts of the instance space; and, for Markov and Undirected, the number
of races until convergence. This last measure indicates how many of the 30 races are
necessary to achieve the final result. Detailed discussion follows.

The Knapsack Problem The parameter space is limited as described in Section 4.
All of our methods perform well on this problem class, identifying that the instance
space is fractured into two parts. The parts correspond to satisfiable versus unsatisfiable
instances. For the satisfiable part, all three methods returned a single winner model
(from the 64 input), which employs a 0/1 model of the problem. For the unsatisfiable
part, all three methods also returned a single winning model based on an explicit rep-
resentation of the set of items in the knapsack. Both Markov and Undirected show
some variability in how quickly they converge on this result.

Langford’s Problem The parameters to this problem are a pair of independent in-
tegers (limited as described in Section 4). Therefore, solver-random sampling is
unbiased for this problem. None of our methods found the instance space to be frac-
tured, and each was able to reduce the input set of models drastically to a small set of
non-dominated models. Over the three independent runs, Markov shows a slight edge
in performance returning a single model in one case, whereas Undirected on one
occasion returns six models. Both show some variability in steps to convergence.

The Social Golfer Problem The parameters to this problem are a triple of inde-
pendent integers, hence solver-random sampling is again unbiased. Each parameter
is limited between 1 and 100. Hence, a large fraction of this instance space is unfeas-
ibly difficult so we would expect our more informed approaches to perform better in
this case study. In fact, SMAC struggles with this class, in two cases finding no discrim-
inating instances at all. Undirected’s performance is variable, sometimes outputting
a single model, but on one occasion also finding no discriminating instances. By con-
trast Markov performs well, reducing the 24 input models to between 1 and 4 on each
run and on one occasion identifying a fracture in the instance space.

The Progressive Party Problem This class has the most (256) input models. Per-
haps unsurprisingly, therefore, the instance space is fractured — but this is only iden-
tified by Markov and Undirected. When fracturing is detected, Markov is more
consistent than Undirected in the size of the returned set for the first fractured part.

The Warehouse Location Problem All three methods are able to reduce the input
set of 128 models significantly. Markov has the best performance, followed by SMAC
and then Undirected. No fracturing was found.



Markov SMAC Undirected

Output Steps to Output Output Steps to
Problem #Models Sizes Frac. Conv. Sizes Frac. Sizes Frac. Conv.

Knapsack-1 64 1,1 2 20 1,1 2 1,1 2 7
Knapsack-2 64 1,1 2 13 1,1 2 1,1 2 30
Knapsack-3 64 1,1 2 2 1,1 2 1,1 2 3

Langford-1 154 4 1 28 4 1 6 1 1
Langford-2 154 1 1 14 3 1 4 1 14
Langford-3 154 4 1 2 4 1 3 1 29

SGP-1 24 1,4 2 26 1 1 1 1 7
SGP-2 24 4 1 13 24 1 1 1 15
SGP-3 24 1 1 7 24 1 24 1 30

PPP-1 256 32,8 2 2 8 1 53,8 2 19
PPP-2 256 32,8 2 12 16 1 27,8 2 11
PPP-3 256 8 1 9 15 1 17 1 7

Warehouse-1 128 32 1 17 32 1 45 1 16
Warehouse-2 128 24 1 13 49 1 72 1 26
Warehouse-3 128 8 1 16 27 1 54 1 26

BACP-1 48 1,1 2 24 26 1 1 1 8
BACP-2 48 1 1 1 8 1 1 1 25
BACP-3 48 1 1 2 25 1 1 1 7

Table 1. Results for the six problem classes over three independent runs.

Balanced Academic Curriculum Problem Only Markov is able to detect a frac-
ture in the instance space for this class, and only on one of its runs. Both Markov
and Undirected reduce the input model set drastically from 48 to a single winning
model. SMAC performs much less well on this class, perhaps hampered by the neces-
sary encoding compromises (see Section 3) on what is a more complex instance space
defined by 7 integers, two functions and a relation.

6 Conclusions
We have developed and investigated three methods for generating discriminating in-
stances for the purpose of automated constraint model selection. Our experimental
evaluation shows that all of these methods are capable of reducing a large number of
possible models to a much smaller set. The methods are able to detect fracturing if it
occurs and successfully determine the best models for each fraction. Overall, our novel
Markov approach has the best performance on the problem classes in our experiments.
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