

AUTOMATED REFORMULATION OF CONSTRAINT MODELS IN SAVILE ROW

WITH THANKS TO...

Thanks to co-authors (on the Savile Row paper, here at CP 2014):
Ozgur Akgun, Ian Gent, Chris Jefferson, Ian Miguel
And:
Andrea Rendl (author of Tailor)
Hakan Kjellerstrand, Andras Salamon for donating models
James Wetter for interesting conversations about AC-CSE
Glenna Faith Nightingale for putting up with me, plotting data

OUTLINE

Demo of Savile Row
What is automated reformulation?
A brief survey of work to date
Introducing Savile Row and the Essence' language
Reformulations in Savile Row
Chaining optimisations - examples

DEMO OF SAVILE ROW

A short demo - using Savile Row to solve Equidistant Frequency Permutation Arrays

EQUIDISTANT FREQUENCY PERMUTATION ARRAYS

$$
q=3, d=4, \lambda=2
$$

5 codewords: v=5
Video demo

2 of each symbol in each codeword	c1	1	1	2	2	3	3
	c2	1	2	1	3	2	3
	c3	1	2	3	1	3	2
	c4	1	3	2	3	1	2
	c5	1	3	3	2	2	1

AUTOMATED REFORMULATION - THE GOAL

```
What is a reformulation?
" Mapping from model to model preserving solutions
" Mapping preserving at least one solution (symmetry breaking, variable elimination)
" Mapping preserving at least one optimal solution (dominance breaking)
Automated Reformulation - Given a naïve model, automatically improve it via a
sequence of reformulations
We can get inspiration from two main sources:
" Compilers (we may have exhausted this source)
" Automating techniques used by expert modellers
Typically stronger reformulations can be done on problem instances
" This talk focuses on instances
```


BRIEF SURVEY

I could divide up modelling as follows:
" Choosing viewpoints, channelling between them

- Stating (re-stating) constraints for effective propagation
- Symmetry breaking, dominances
- Adding implied constraints
- Defining search strategy

Probably not exhaustive
Survey of automated or semi-automated reformulations under these headings

BRIEF SURVEY - VIEWPOINTS

Choosing viewpoints, channelling between them - Some - CONJURE can generate multiple models based on different viewpoints (Ozgur Akgun, lan Miguel et al).

Works from a language with nested types.

BRIEF SURVEY - VIEWPOINTS

Choosing viewpoints, channelling between them - Some - CONJURE can generate multiple models based on different viewpoints (Ozgur Akgun, lan Miguel et al).

Race the resulting models on a set of instances

- Recommends a portfolio of 'good' models

Replaces intuition or insight with systematic exploration of known refinements
Really should be called automated modelling - starts with an abstract specification language

BRIEF SURVEY - CONSTRAINTS

Stating (re-stating) constraints for effective propagation - Not a great deal

Aggregation (CGRASS, IBM CP Optimizer Presolve) - Collect constraints into globals, e.g. collect at-most, at-least into a Global Cardinality Constraint

Common Sub-expression Elimination (Andrea Rendl's Tailor, IBM Presolve, Minizinc with Functions) - Connect constraints together by finding identical or equivalent expressions

Model Seeker (Beldiceanu, Simonis) - Induces a model (using global constraints) from a set of example solutions

MiniZinc Globalizer (Leo et al) - Interactive, suggests global constraints to replace constraint sets - relies on model structure for scopes, e.g. matrix rows/columns

BRIEF SURVEY - SYMMETRY

Symmetry breaking, dominances - Yes
Graph automorphism-based approaches e.g. SHATTER (Aloul, Markov, Sakallah) add constraints to break the symmetry in the constraint network

Dominance detection and breaking (Chu \& Stuckey)
Dynamic symmetry breaking SBDD, SBDS - avoids generating the constraints but we would still need to find the symmetries

BRIEF SURVEY - IMPLIED CONSTRAINTS

Adding implied constraints - Some

Automatic Generation of Implied Constraints (Charnley, Colton, Miguel) - Generate solutions of small instances, hypothesise implied constraints about the problem class with HR, prove/disprove with Otter

Learning implied global constraints (Bessiere, Coletta, Petit) - Find parameters for implied (parameterised) global constraints

CGRASS (Frisch, Miguel, Walsh) - Forward-chaining of a set of rules deriving new constraints

BRIEF SURVEY - SEARCH STRATEGY

Defining search strategy - May not be necessary
SAT, SMT solvers have excellent heuristics, restarts, conflict learning In CP: DOM/WDEG, impact, restarts, ...

BRIEF SURVEY

Very brief survey - please don't be offended if your paper was not there!
Aspects of modelling:

1. Choosing viewpoints, channelling between them - Some
2. Stating (re-stating) constraints for effective propagation - Not a great deal
3. Symmetry breaking, dominances - Yes
4. Adding implied constraints - Some
5. Defining search strategy - May not be necessary

Some aspects better researched than others
We will be looking mainly at 2. \& 4.

INTRODUCING SAVILE ROW

Modelling tool
Reads the evolving language Essence' (Essence-Prime)
" I'll show some examples later
Produces solver output for:
- Minion
- Gecode (via Flatzinc)
- An almost-flat, instance-level subset of Minizinc
- Experimental output for Dominion solver synthesiser
- In next non-bugfix release: SAT

INTRODUCING SAVILE ROW

Implemented in Java - works on Linux, Mac, Windows
Savile Row 1.6 available under GPL 3
http://savilerow.cs.st-andrews.ac.uk/

WHY THE NAME?

Tailoring: optimising and specialising a model for a particular solver
(name by Andrea Rendl)

Savile Row is a street of bespoke tailors in London

SIGNS

Any suggestions?
(no prize for the Hollywood sign)

THIS TUTORIAL

Focusses on a particular point in an automated modelling toolchain
After class parameters are known
Before general flattening, specialising for particular solvers

- Of course Savile Row does do general flattening etc

Finite domain CP
" Although many of the reformulations l'll talk about are relevant elsewhere

- Set variables and continuous variables

SaVILE ROW AND ESSENCE'

THE ESSENCE' LANGUAGE

Essence' is similar to other modelling languages e.g. OPL
The Essence' model file represents a problem class
The parameter file contains the instance data
Contains only the types Integer, Boolean, and type constructor Matrix - no abstract types such as Set, Multiset, Function

Quantifiers forAll, exists, sum to construct expressions
Matrix comprehensions to build matrices
The usual infix operators: $+, *, /,=,<, / \backslash / \backslash /$, etc
Various functions and global constraints

ESSENCE' EXAMPLES - KNAPSACK

language ESSENCE' 1.0

given maxWeight : int
given values: matrix indexed by [int(1..numEntries)] of int(1...)
given weights : matrix indexed by [int(1 ..numEntries)] of int(1 ..)
find x : matrix indexed by [int(1 ..numEntries)] of bool
maximising sum $\mathrm{i}: \operatorname{int}(1 .$. numEntries) . $\mathrm{x}[\mathrm{i}]$ *values[i]
such that
(sum i: int(1 ..numEntries) . $\mathrm{x}[i]^{*}$ weights[i]) <= maxWeight

ESSENCE' EXAMPLES - SUDOKU

language ESSENCE' 1.0
find M : matrix indexed by $[\operatorname{int}(1 . .9), \operatorname{int}(1 . .9)]$ of $\operatorname{int}(1 . .9)$
such that
forAll row : $\operatorname{int}(1 . .9)$. allDiff(M[row,..]),
forAll col : int(1..9). allDiff(M[..,col]),
forAll $\mathrm{i}, \mathrm{i}: \operatorname{int}(1,4,7) . \operatorname{allDiff}([M[k, I] \mid k: \operatorname{int}(i . . i+2), I: \operatorname{int}(j . . j+2)])$
\$ Also needs the clues
Quantifiers and matrix comprehensions

ESSENCE' EXAMPLES - CAR SEQUENCING

```
Just the essential constraints - slide along the sequence seq, and gcc
forAll option: int(1 ..numoptions) .
    forAll windowStart : int(1 .numcars-windowSize[option]+1) .
        (sum pos: int(windowStart..windowStart+windowSize[option]-1).
            seq[pos] in toSet([ class | class : int(1 ..numclasses), optionsRequired[class, option]])
        )<=optMax[option],
gcc(seq, [ i | i : int(1..numclasses)], numberPerClass)
```

toSet([...]) is just a set of integers (car classes) constructed from a matrix parameter

SAVILE ROW - ABSTRACT SYNTAX TREE

Savile Row works on an abstract syntax tree
Ordinary 'rules' walk the tree, replacing subtrees
More complex reformulations scan the whole tree, then replace subtrees later

THE BARE MINIMUM

Minimal tailoring to a typical solver:

1. Deal with undefinedness $-S R$ implement the relational semantics
2. Substitute in the parameters
3. Unroll all quantifiers and matrix comprehensions
4. Flatten any non-flat expressions, e.g. $X[$ allDiff($[p, q, r])]=5$ becomes $X[a]=5$ and (a <-> allDiff([p,q,r]). Definition of flat varies by solver.
5. Output to solver language

Some assumptions here. Any expression can be extracted when flattening; matrices are indexed from 0 and one-dimensional.

THE BARE MINIMUM

Suppose we have this expression:
forAll i,j : int(1..100) . i<j -> M[i,j] $\neq M[j, i]$
Unrolls to:
$1<1->M[1,1] \neq M[1,1]$,
$1<2->M[1,2] \neq M[2,1]$, etc
Flattens to:
$a<->(1<1)$,
$b<->(M[1,1] \neq M[1,1])$,
$a->b$
Terrible model - lots of useless auxiliary variables (in red)

CONSTANT EVALUATION

The minimal tailoring doesn't do constant evaluation (evaluating constant sub-expressions)

```
forAll i,j : int(1..100) . i<j -> M[i,j] F M[j,i]
```

Unrolls to:
$1<1->M[1,1] \neq M[1,1]$,
$1<2->M[1,2] \neq M[2,1]$, etc
Evaluate all constant sub-expressions:
false -> $M[1,1] \neq M[1,1]$,
true $->M[1,2] \neq M[2,1]$, etc
Better, but not good enough

CONSTANT FOLDING

Implication (and many others) can be further simplified when containing constants Evaluate all constant sub-expressions:
false $->M[1,1] \neq M[1,1]$,
true $->M[1,2] \neq M[2,1]$, etc
Apply rules about implication-with-constants:
true,
$M[1,2] \neq M[2,1]$, etc
Just need to remove that true from the And.

BASIC TRANSLATION

Basic (nearly minimal) tailoring to a typical solver:

1. Deal with undefinedness
2. Substitute in the parameters
3. Unroll all quantifiers and matrix comprehensions
4. Constant folding
5. Flatten any non-flat expressions, e.g. X[allDiff([p,q,r])]=5 becomes $X[a]=5$ and (a <-> allDiff([p,q,r]). Definition of flat varies by solver.
6. Output to solver language

Does no model optimisation

MATRICES

Essence' allows holey matrices
find M : matrix indexed by [$\operatorname{int}(1 . .5,10 . .15), \operatorname{int}(2,4,6,8)]$ of $\operatorname{int}(1 . .10)$
Two ways of accessing M :
" Matrix dereference $M[X, Y]-X$ and Y can be any expression, with or without decision variables.
" Matrix slice $M[Z, .$.$] - Take row Z$ from $M . Z$ is any expression without decision variables.
Fun: $M[. ., .].[. ., 6][M[1,2]]$
How to slice with a decision variable expression Z:
[$M[Z, i] \mid i: \operatorname{int}(2,4,6,8)]$

MATRICES

Dealt with in multiple stages

1. Shift indices to 0 -based contiguous ranges and adjust all matrix derefs and slices
2. Matrix derefs become element functions

- $M[x, y]$ becomes element(flatten(M), $4 x+y$)

3. Atomise into individual decision variables
" element([M_00_00, M_00_01, ...], 4x+y)
Last step allows, for example, unifying two variables in the matrix, tightening domains of individual variables from the matrix

AUXILIARY VARIABLES

Flattening (and other processes we will see later) create new auxiliary variables
Potential Danger - increase the number of solutions, increase search
To avoid problems, there are some conventions about aux variables

1. Always a function of primary variables

- Possibly via other auxiliary variables
" Cannot have multiple values after primary variables assigned, assuming at least FC

2. Branched after the primary variables

- Assuming the solver will let us specify this

OPTIMISATIONS

Now we have the basics, we can start to optimise

1. Simplifiers
2. Variable deletion
3. Domain filtering

SIMPLIFIERS

Every expression type in Savile Row has a simplifier

" A function that takes an expression and returns a smaller, simpler expression
The simplifier performs constant evaluation as an absolute minimum

- If all children of the expression are constant, then the expression must become a constant

Simplifiers are loosely analogous to propagators

- Constant evaluation analogous to checking satisfaction - both evaluate a constraint on constants to true or false

Given expression E, simplifiers can

" Examine bounds of the children of E

- Compare children of E for syntactic equality (e.g. allDiff becomes false if two children are same expression)
- Get full domain of any children that are decision variables

SIMPLIFYING LEX-ORDERING

One example to illustrate simplifiers

SIMPLIFYING LEX-ORDERING

One example to illustrate simplifiers
Get rid of syntactically equal pairs

SIMPLIFYING LEX-ORDERING

One example to illustrate simplifiers
Some pairs must be equal because of pairs to the left - Rule 1 [Frisch \& Harvey]

SIMPLIFYING LEX-ORDERING

One example to illustrate simplifiers
Suppose p:\{6..10\} and r: \{1..5\} - pair p,r cannot satisfy constraint

SIMPLIFYING LEX-ORDERING

One example to illustrate simplifiers
Only one pair left - replace with $<$

SIMPLIFIERS

Savile Row runs simplifiers repeatedly until no further changes are made

- Similar to the propagation loop of a propagating constraint solver

No need for idempotence
From now on, "simplify" means run all simplifiers to exhaustion

VARIABLE DELETION

Suppose someone wrote this:
find quasiGroup : matrix indexed by [nDomain, nDomain] of nDomain
find qgDiagonal : matrix indexed by [nDomain] of nDomain such that
forAll i : nDomain . qgDiagonal[i] = quasiGroup $[i, i]$, allDiff(qgDiagonal),

The alIDiff is an implied constraint in the Quasigroup 3 Idempotent problem

VARIABLE DELETION

Need to unify equal variables in this case
" Triggered by $=$, <-> (iff on Boolean variables) and special type ToVariable

- Intersect the two domains
- Keep the first in the default search order
find quasiGroup : matrix indexed by [nDomain, nDomain] of nDomain
such that
allDiff([quasiGroup[1,1], quasiGroup[2,2], ... , quasiGroup[n,n]]),
(not valid Essence' - actually done after quasiGroup atomised)

VARIABLE DELETION

Replace a variable with a constant
" Triggered by a constraint e.g. $\mathrm{x}=5$ or singleton domain
Unify negated boolean variables
" x <-> !y
" Requires target solver to support negation views (a.k.a. mappers) everywhere - Minion
What else could be done?
With views, could delete any x where $x=v i e w(y)$

DOMAIN FILTERING

It can be useful to tighten domains of decision variables

- Interacts with variable deletion - can cause variables to be assigned
- Interacts with simplifiers - causes tighter bounds on expressions, constants in place of variables
- Causes tighter bounds for auxiliary variables
" Feeds into optimisation passes we will see later
Savile Row delegates to an external solver - Minion - avoids duplicating functionality

DOMAIN FILTERING

1. Do first part of tailoring process - stops after atomising matrices, before flattening

DOMAIN FILTERING - BIBD

Boolean 2-d matrix - lex-ordering rows and columns $-\mathrm{v}=8, \mathrm{k}=4, \mathrm{l}=6$

Removes about one-third of the variables - some constraints thrown away, others simplified

OPTIMISATIONS SO FAR

Put the ingredients in, crank the handle...

1. Tighten the formulation of the constraints, remove true constraints
2. Remove redundant variables
3. Tighten variable domains
... Some tightening up of the model. No really substantial reformulations yet.

BUT these reformulations lay the groundwork for other more substantial ones
savilerow -O0 -deletevars -reduce-domains (simplifiers always on)

AGGREGATION

AllDifferent created from $\neq,<$, other allDifferent constraints

A, B, C, D may be arbitrary expressions - not just variables
Leads to implied sum constraints - more later

AGGREGATION

Collect AtMost, AtLeast into Global Cardinality Constraint
atmost ($[w, x, y, z],[2,2,2],[1,2,3]$) - at most 2 occurrences each of 1,2 and 3
atleast($[w, x, y, z],[1,1,1],[1,2,3]$) - at least 1 occurrence each of 1,2 and 3
Are collected into:
$\operatorname{gcc}([w, x, y, z],[1,2,3],[a u x 1, a u x 2, a u x 3])$,
New variables aux 1...aux3 in $\{1 . .2\}$

Similarly to allDifferent, leads to implied sum constraints

AGGREGATION - GOLOMB RULER

Naïve model:
find ruler : matrix indexed by [int(1..ticks)]
of int(0..ticks**2)
ruler[1]=0,
forAll i: int(2..ticks).
ruler[i-1] < ruler[i],
forAll i,i,k,l : TICKS .
$((\mathrm{i}<\mathrm{i}) / \backslash(\mathrm{k}<\mathrm{I}) / \backslash((\mathrm{i}>\mathrm{l}) \backslash(\mathrm{i}>\mathrm{k})))->$
(ruler[i] - ruler[i] != ruler[l] - ruler[k])

AGGREGATION - GOLOMB RULER

For ticks=5, Savile Row produces this:
ruler2 in $\{1 . .19\}$, ruler3 in $\{3 . .22\}$,
ruler4 in $\{6 . .24\}$, ruler5 in $\{10 . .25\}, \ldots$
allDiff([ruler2, ruler3, ruler4, ruler5, aux8, aux9, aux10, aux11, aux 12, aux 13])
ruler2<ruler3, ...
ruler3-ruler2=aux8, ...
Domain filtering, variable deletion, aggregation

GLOBAL CONSTRAINTS TO IMPLIED CONSTRAINTS

Focused on cardinality constraints so far:
allDiff([x,y,z]), where x, y, z in $\{1 . .5\}$
$x+y+z \geq 6, x+y+z \leq 12$
$\operatorname{GCC}([x, y, z],[1,2,3],[a, b, c])$, where x, y, z in $\{1 . .3\}$ and a, b, c in $\{0 . .2\}$
$x+y+z \geq 4, \quad x+y+z \leq 8, a+b+c=3$
Little or no use alone
" $a+b+c=3$ adds propagation for Minion
Overlap with other sums
Feeds into Associative-Commutative CSE - described later

COMMON SUB-EXPRESSION ELIMINATION

Suppose the same expression appears in more than one place - very common
Variables $x[1 . .10]$ in $0 . .10$
$x[1]+x[2]+\ldots+x[10]<10$,
$x[1]+x[2]+\ldots+x[10]=10$
Nothing so far can discover the conflict - 24,301 left-branches Minion, 24,302 fails Gecode

Extract $x[1]+x[2]+\ldots+x[10]$, introduce $a u x 1$
aux $1<10$, aux $1=10$ Oleft-branches Minion, 1 fail Gecode

COMMON SUB-EXPRESSION ELIMINATION

One of the main topics of Andrea Rendl's PhD
Algorithm (implemented in Tailor) has two main parts:

1. Normalisation

- Sort all commutative operators +, *, =, etc
- Have only one form of asymmetric comparisons $<, \leq,<l e x$
- Constant folding/simplifiers applied uniformly

2. Flattening
" During general flattening, re-use same auxiliary variable for identical expressions

- Hash table of all expressions flattened so far

IDENTICAL CSE

In Savile Row, Identical CSE is a separate optimisation pass, not an addition to general flattening

1. Normalisation
2. Insert every non-trivial expression into hash table
3. Expressions with two or more occurrences: extract and replace with new aux variable

With some sensible assumptions, Identical CSE cannot worsen propagation
Can obtain tighter bounds on auxiliary variables, improve propagation

IDENTICAL CSE

Let's look at this example again

Variables $x[1 . .10]$ in $0 . .10$
$x[1]+x[2]+\ldots+x[10]<10$,
$x[1]+x[2]+\ldots+x[10]=10$
Identical CSE algorithm extracts $x[1]+x[2]+\ldots+x[10]$, introduces aux 1
aux $1<10$, aux $1=10$
Tailor's algorithm misses this case - no need to flatten either original constraint

- Separate pass vs part of general flattening

IDENTICAL CSE

41 problem classes, 423 instances
Variable deletion, simplifiers with/without Identical CSE

Three groups:

1. No difference
2. Speeds up propagation by reducing \# aux variables - 2-3x faster on Knights Tour
3. Strengthens propagation e.g. on a naïve Golomb Ruler with no allDiff. Hundreds of times faster

COMMON SUB-EXPRESSION ELIMINATION

Interesting results so far
How can we push CSE further?

COMMON SUB-EXPRESSION ELIMINATION

Interesting results so far
How can we push CSE further?
Extend the equivalence to match non-identical expressions
Active CSE [Rendl et al, thesis \& SARA 2009]

- Applies a set of transformations

ACTIVE CSE

Algorithm sketch. For a given expression e and transform \dagger that applies to e:

1. Apply t to make e'
2. Simplify and normalise e'
3. Check for occurrences of e' elsewhere in the model
4. e replaced with aux, e' replaced with $\dagger(a u x)$ - e.g. !aux for boolean negation

Boolean negation: $(x=y, x \neq y),(x<y, y \leq x),(a \backslash / b,!a / \backslash!b)$
Unary minus: $(x+y+z,-x-y-z)$
Multiply by 2 or -2 : ($33 x-67 y, 134 y-66 x$)
Simplifiers are vital - turn $!(x<y)$ into $y \leq x$

ACTIVE CSE

41 problem classes, 423 instances

Active CSE vs Identical CSE

Very rarely a benefit
Best case: pegSolitaireState, 1.8 x solver speed-up, same search
$3=$ moves[5] matches $3 \neq$ moves[5]
Clearly performing the 'active' transformations takes some time

ACTIVE CSE

41 problem classes, 423 instances

Active CSE vs Identical CSE

I suspect hand-written models might explain this
" Cut and paste of expressions

- Simply expressing the same thought in the same way throughout a model

Theoretically more robust than Identical CSE, therefore switched on by default in Savile Row - this may change

COMMON SUB-EXPRESSION ELIMINATION

How can we push CSE further?
Reorder expressions to create identical sub-expressions

Associative-Commutative CSE

- Numerical CSP, interval propagation [Araya, Trombettoni \& Neveu, CP 2008]
" Finite domain CSP [Nightingale et al, CP 2014]

ASSOCIATIVE-COMMUTATIVE CSE

We have already sorted associative-commutative expressions
" $x+y+z$ matches $z+x+y$ with Identical CSE
But we cannot yet match arbitrary overlaps

- A binary tree representation would allow matching prefixes (left-branching) or postfixes (rightbranching) in the sorted order... GNU C++ compiler does this
" ...but Savile Row represents AC operators using non-binary trees

ASSOCIATIVE-COMMUTATIVE CSE

Treat an AC expression as a set of terms
Find a subset common to two or more AC expressions
Extract the common subset everywhere and replace with aux

Can improve propagation dramatically
With some sensible assumptions, never reduces propagation

ASSOCIATIVE-COMMUTATIVE CSE

Example: Knapsack problem

given maxWeight : int
given values : matrix indexed by [int(1..numEntries)] of int(1..)
given weights : matrix indexed by [int(1..numEntries)] of int(1..)
find x : matrix indexed by [int(1..numEntries)] of bool
maximising sum $\mathbf{i}: \operatorname{int}\left(1\right.$..numEntries) . $x[i]^{*}$ values[i]
such that
(sum $\mathbf{i}: \operatorname{int}(1$..numEntries) . x[i]*weights[i]) <= maxWeight
The two sums overlap where values[i]=weights[i]

ASSOCIATIVE-COMMUTATIVE CSE

Conflicting AC-CSs

$$
\begin{array}{ll}
w+x+y, & w+x+z, \\
w+y+z \\
w+x+ & w+x+z, \\
x+y+z
\end{array}
$$

I-CSE [Araya et al] extracts all AC-CSs between two expressions

- Makes copies of original expressions - potential big slowdown

X-CSE uses heuristic ordering

- Extracts AC-CS with most occurrences first
- Never copies original expressions - can be more efficient in finite-domain context

Genuine choice - difficult to know right answer

ASSOCIATIVE-COMMUTATIVE CSE

X-CSE algorithm implemented in Savile Row

Sum, Product (seen to be useful)
And, Or (apparently not useful - at least on our benchmarks)

Just switch on optimisation level 3 (highest)
savilerow -O3 ...

ASSOCIATIVE-COMMUTATIVE CSE

X-CSE+Active CSE vs Active CSE

- Switching on X-CSE switches on implied sum constraints from AllDiff

ASSOCIATIVE-COMMUTATIVE CSE

ASSOCIATIVE-COMMUTATIVE CSE

X-CSE+Active CSE vs Active CSE

- Switching on X-CSE switches on implied sum constraints from AllDiff

Losers (by $2 x$ or more):

- Car sequencing again!
- One very easy instance: X-CSE takes a long time, saves no search
- PeacableArmyQueens2
- PegSolitaireAction - 2 instances

Never increases search - increases Minion time, Savile Row time

FURTHER INSPIRATION FROM COMPILERS?

Chris Jefferson and I looked through a list of compiler optimisations
Most not relevant - a few are:
Loop-invariant Code Motion - Done, by Identical CSE, after quantifiers unrolled
CSE - Done
Constant folding - Done
Dead-Store elimination - Not done in Savile Row

- Would be equivalent to finding functional variable, removing it and its defining constraint
- Chris Mears mentioned this at ModRef

FORWARD-CHAINING REFORMULATIONS

FORWARD-CHAINING REFORMULATIONS

We have seen several reformulations
These can be useful individually
Much more interesting when one feeds another
Two detailed examples of this happening

BIBD

A familiar benchmark

Usually modelled with a matrix of boolean variables:
given v, k, l : int
letting b be $\left(l^{*} v^{*}(v-1)\right) /\left(k^{*}(k-1)\right)$
letting r be $\left(I^{*}(v-1)\right) /(k-1)$
find bibd: matrix indexed by [int(1..v), int(1..b)] of bool

BIBD

such that
forAll block : int(1 ..b) .
(sum object : int(l ..v). bibd[object, block]) = k, \$ column sum
forAll object : int(1..v).
(sum block : int(1 ..b). bibd[object, block]) $=$ r, $\$$ row sum
\$ scalar product of two rows is I
forAll object1, object2 $: \operatorname{int}(1$..v) . (object1 < object2) -> ((sum block : int(1 ..b).
bibd[object1,block] * bibd[object2, block]) $=1$),

BIBD

\$ Row and column symmetry breaking
forAll row: int(1..v-1) .
bibd[row,..] <=lex bibd[row+1,..],
forAll col: $\operatorname{int}(1 . . b-1)$.
bibd[..,col] <=lex bibd[..,col+1]

BIBD

Naïve model (except the symmetry breaking)
Not obvious (to me at least) how this model can be automatically improved

- No CSEs
- Overlap between row sums \& scalar products - but not clear how to exploit that

Feel free to interject - how can this model be improved?

BIBD - DOMAIN FILTERING

$$
\text { BIBD } v=8, k=4, \mathrm{I}=6
$$

The combination of symmetry-breaking and problem constraints causes domain filtering:

$\mathbf{0}$	$\mathbf{1}$																							
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$																					
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$														
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$																						
$\mathbf{0}$				$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$				$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$				$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$																								
$\mathbf{1}$																								
$\mathbf{1}$																								
$\mathbf{1}$	$\mathbf{1}$																							
$\mathbf{1}$	$\mathbf{1}$																							

BIBD - SIMPLIFIERS

These values are subbed into the relevant constraints
Scalar product $0 *$ bibd $[5,2]+\ldots+1 * \operatorname{bibd}[5,15]+\ldots+1 * \operatorname{bibd}[5,28]=1$
Becomes
$\operatorname{bibd}[5,15]+\ldots+\operatorname{bibd}[5,28]=1$

BIBD - AC-CSE

0	0	0	0	0	0	0	0	0	0	0		0	0	0		1	1	1		1	1	1	1			1	1	1	1	1	1
0	0	0	0	0	0	1	1	1	1	1		1	1	1	0	0	0	0		0	0	0	0	0		1	1	1	1	1	1
0					1	0	0					1	1	1		0	0					1	1	1	1	0	0	0			
0																															
1							r-1-1																	1							
1																															
1	1																														
1	1																														
pr	o											5	,1	5]								,	28								
m												[5	5,2		+							,									

Effectively splits row into two pieces, summing to I and r-1-I

BIBD - AC-CSE

0	0	0	0	0	0	0	0		0	0	0			0	0	1	1		1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	1	1		1	1	1	1		1	1	0	0		0	0	0	0	0	0	1	1	1	1	1	1
0					1	0	0					1		1	1	0	0					1	1	1	0	0	0			
0																														
1																														
1																														
1	1																													
1	1																													

Step 1: Splits row into two pieces, summing to I and r-1-I
Step 2: Red parts also sum to I - extract these to aux vars

BIBD - AC-CSE

0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	1			1	1	1	1	1	1	1	1			1	1
0	0	0	0	0	0	1	1	1	1	1	1		1	1	1	0			0	0	0	0	0	0	1	1		1	1	1
0					1		0	0					1	1	1	0	0	0				1	1	1	0	0				
0																														
1																														
1																														
1	1																													
1	1																													

Step 1: Splits row into two pieces, summing to I and r-1-I
Step 2: Red parts also sum to I - extract these to aux vars
Step 3: Green parts common to scalar product and row sum - extract these

BIBD - RESULTS

Cross-constraint communication
Each row sum (rows 4-8) joined to 3 scalar product constraints

Convincingly beats naïve model

Sophisticated model introduces implied constraints [Frisch, Jefferson, Miguel, ECAI 04]

Savile Row beats sophisticated model, and can improve it.

BIBD - SUMMARY

We need to do these steps in order:

1. Add lex-ordering constraints (manual)
2. SAC-Bounds domain filtering
3. Sub in assigned values and simplify sum of products
4. AC-CSE

KILLER SUDOKU

9×9 grids too easy, we did 16×16
16×16 matrix, each cell takes value in $\{1 . .16\}$
Rows, columns and 4×4 subsquares: allDifferent
Clues are contiguous sets of cells

- The sum is given as part of the clue
- Cells within the clue are allDifferent

In the example (right) the clue must contain values 1,2,3
Entire matrix covered by non-overlapping clues
Model is exactly the above constraints

KILLER SUDOKU

Rows/columns/subsquares are a permutation Introduce sum constraints from AllDifferent

For each row, column and subsquare X :
$\operatorname{sum}(X)=136$ (for 16×16 case)
Suppose we had 6x6 Killer Sudoku (left)
$\operatorname{sum}(X)=21$

For each clue, we also get useless sum $\leq a$ and sum $\geq b$

- Removed by Identical CSE followed by simplifiers

KILLER SUDOKU

New sums on rows/columns/subsquares intersect with clues

In example (left), suppose two rows are $\mathrm{k}[1, .$. and $\mathrm{k}[2, .$.

AC-CSE connects clues to rows
$\mathrm{k}[2,3]+\ldots+\mathrm{k}[2,6]$ is common to the 18 clue and the row sum
$k[2,1]+k[2,2]$ is common to the 6 clue and the row sum

KILLER SUDOKU

$k[2,3]+\ldots+k[2,6]=a u x 1$
$\mathrm{k}[2,1]+\mathrm{k}[2,2]=\mathrm{aux} 2$
$\operatorname{aux} 1=18, \operatorname{aux} 2+k[1,1]=6$
$a u \times 1+a u \times 2=21$
aux 1 replaced with 18 (variable deletion)
aux2 becomes 3 (simplifier, then var deletion)
$\mathrm{k}[1,1]$ becomes 3 (simplifier, then var deletion)

KILLER SUDOKU - RESULTS

Some hard problems made almost trivial

Peak instance:
Without X-CSE Savile Row took 2.26s

Minion timed out at 600s
2,774,028 nodes
With X-CSE Savile Row took 1.62s
Minion took $0.13 \mathrm{~s}, 2$ nodes
savilerow -○3 killer.eprime ...

KILLER SUDOKU - SUMMARY

We need to do these steps in order:

1. Add implied sum to all AllDifferent constraints
2. Apply AC-CSE
3. Variable deletion (interleaved with simplifiers)

IMMINENT

SAT encoding
The first iteration, but good enough to beat static variable ordering sometimes

- Thanks to student Patrick Spracklen

Automatic variable symmetry breaking
Calls a graph automorphism solver then adds lex-ordering

- Thanks to student Saad Atiher and Chris Jefferson

Both need a little more testing - should appear very soon

CONCLUSIONS

I hope I have convinced you that reformulations are an interesting research topic Most interesting when one reformulation feeds valuable input into another

Try Savile Row for yourself:
http://savilerow.cs.st-andrews.ac.uk/

THE OTHER TUTORIAL - CSPLIB

Completely re-written website
Editor-in-chief: Chris Jefferson
Website maintainer: Bilal Hussain
http://csplib.org/

Contribute new problems here on Github:
http//github.com/csplib/csplib/

