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Abstract. Pseudo-Boolean (PB) constraints often have a critical role
in constraint satisfaction and optimisation problems. Encoding PB con-
straints to SAT has proven to be an efficient approach in many applica-
tions, however care must be taken to encode them compactly and with
good propagation properties. It has been shown that at-most-one (AMO)
and exactly-one (EO) relations over subsets of the variables can be ex-
ploited in various encodings of PB constraints, improving their compact-
ness and solving performance. In this paper we detect AMO and EO
relations completely automatically and exploit them to improve SAT
encodings that are based on Multi-Valued Decision Diagrams (MDDs).
Our experiments show substantial reductions in encoding size and dra-
matic improvements in solving time thanks to automatic AMO and EO
detection.

Keywords: Automatic CSP reformulation · SAT · pseudo-Boolean · at-
most-one constraint.

1 Introduction

Solving constraint satisfaction and optimisation problems often requires dealing
with Pseudo-Boolean (PB) constraints, either explicitly stated in the original
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model or as a product of some reformulation process. A successful approach to
solving constraint problems is by translation to SAT and the use of SAT solvers.
Example tools that support this method include MiniZinc [24, 18], Picat [28],
and Savile Row [25]. Ideally, such encodings would be compact (in terms of the
number of clauses and additional variables) and would have good propagation
properties.

In this paper we focus on efficiently translating PB constraints to SAT within
Savile Row, which produces a reformulated SAT model from an input constraint
model in the Essence Prime language [26]. There exist several approaches for
compactly encoding PB constraints to SAT based on different representations,
such as Decision Diagrams [13, 2], Sequential Weight Counters [17], Generalised
Totalisers [19], and Polynomial Watchdog schemes [5].

There are also attempts to exploit collateral constraints to shrink these en-
codings further [1, 8]. In particular, in [8], it is shown how to use existing At-
Most-One (AMO) and Exactly-One (EO) relations on subsets of the variables of
a PB constraint to obtain very compact decision diagram-based representations.
In that work, the authors provide empirical evidence of the utility of using this
technique in several scheduling problems. Specifically, they provide specialised
SAT Modulo Theories (SMT) encodings exploiting AMO and EO relations. How-
ever, these relations are found by hand and are not always obvious.

In this work we propose a technique for exploiting such collateral constraints
when encoding PB constraints to SAT in a fully automatic manner. By collat-
eral constraints we mean constraints that are derived from the entire model in
some way. They may appear directly in the model, or they may be implied by
constraints in the model. One can then use a declarative constraint modelling
language and forget about collateral constraints when posting PB constraints.
The proposed system is able to automatically identify AMO and EO relations
and to take them into account when encoding PB constraints. In particular, we
use the approach described in [3] to detect sets of Boolean variables in a SAT
formula that model finite-domain variables, which essentially corresponds to de-
tecting the AMO (i.e., cardinality constraints with ≤ operator and k = 1) and
At-Least-One (ALO) relations among a set of Boolean variables. Later, in [7], a
method to detect arbitrary cardinality constraints (k ≥ 1) was introduced. To
the best of our knowledge, [7] is the first attempt to apply in practice reformula-
tion techniques through the automatic detection of cardinality constraints. They
reformulate the input SAT formula by erasing the clauses entailed by the cardi-
nality constraints detected so far. In our work, we tackle a different goal since
our aim is to use the automatically detected cardinality constraints to improve
the encoding of more general constraints, specifically PB constraints.

The proposed techniques are embedded in Savile Row. In preparing the SAT
encoding Savile Row employs the propagation facilities of the constraint solver
Minion [15] in order to identify AMOs, plus a syntactic technique for identifying
At-Least-One (ALO) relations (which together with AMOs comprise EO rela-
tions). The use of propagation techniques to obtain semantic information has
already been used in other scenarios. For example, in [11] unit propagation was
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used to deduce sub-clauses from implication graphs, and also unit propagation
was used in [14] to detect redundant clauses in SAT formulas.

We apply the technique to several problem classes and highlight the charac-
teristics of each regarding the automatically found AMO and EO relations. Our
experiments show dramatic improvements of encoding size and solving time.

2 Preliminaries

Essence Prime is typical of solver-independent constraint modelling languages
in providing integer and Boolean variable types, as well as multidimensional
matrices of these types. It supports arbitrarily nested arithmetic and logical
constraint expressions, as well as a suite of global constraints. Savile Row is able
to translate any Essence Prime model into SAT, which we define here.

A Boolean variable is a variable than can take truth values 0 (false) and 1
(true). A literal is a Boolean variable x or its negation ¬x. A clause is a dis-
junction of literals. A propositional formula in conjunctive normal form (CNF)
is a conjunction of clauses. Any propositional formula can be transformed into
CNF.

A CNF formula represents a Boolean function, i.e. a function of the form
f : {0, 1}n → {0, 1}. An assignment is a mapping of Boolean variables to truth
values, which can also be seen as a set of literals (e.g., {x = 1, y = 0, z = 0}
is usually denoted {x,¬y,¬z}). A satisfying assignment of a Boolean function
f is an assignment that makes the function evaluate to 1. In particular, an
assignment A satisfies a CNF formula F if at least one literal l of each clause in
F belongs to A. Such an assignment is called a model of the formula.

SAT is the problem of determining if there exists a satisfying assignment for
a given propositional formula. Given two formulas F and G, we say that G is a
logical consequence of F , written F |= G, iff every model of F is also a model of
G. We say that two Boolean functions F and G are logically equivalent, denoted
F ≡ G, if F |= G and G |= F .

Unit propagation (UP) is the core deduction mechanism in modern SAT
solvers: whenever each literal of a clause but one is false, the remaining literal
must be set to true in order to satisfy the clause. We say that G is a logical
consequence of F by UP, written F |=UP G, iff F ∧ ¬G can be determined to
be unsatisfiable by UP.

Savile Row encodes integer variables to provide SAT literals for (x = a) and
(x ≤ a) for each integer variable x and value a. Each constraint type is then
encoded using these SAT literals, as described in [25]. For this work we have
added the MDD encoding of PB constraints as defined below.

Definition 1. A pseudo-Boolean (PB) constraint is a Boolean function of the
form

∑n
i=1 qili �K where K and the qi are integer constants, li are literals, and

� ∈ {<,≤,=,≥, >}.

Definition 2. An at-most-one (AMO) constraint is a Boolean function of the
form

∑n
i=1 li ≤ 1, where all li are literals.
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Fig. 1. Left: BDD for P = 2x1 + 3x2 + 4x3 + 5x4 ≤ 7; Right: MDD for P , assuming
AMO(x1, x2) and AMO(x3, x4), where each xi branch means choosing xi = 1, and the
else branches mean choosing xi = 0 for all xi in the corresponding source node.

Definition 3. An at-least-one (ALO) constraint is a Boolean function of the
form

∑n
i=1 li ≥ 1, where all li are literals.

Definition 4. An exactly-one (EO) constraint is a Boolean function of the form∑n
i=1 li = 1, where all li are literals.

One of the best methods to encode PB constraints to SAT is to use Binary
Decision Diagrams (BDDs) [13]. In [2] an even more efficient encoding is given
for PB constraints where all coefficients, literals and K are positive and the
relational operator is ≤. Such a constraint has the important property of being
monotonic decreasing, i.e. any model remains a model after flipping inputs from 1
to 0. In [8] it is shown how the encoding can be dramatically reduced in size
in the presence of AMO constraints over subsets of the variables. The improved
encoding is based on Multi-Valued Decision Diagrams (MDDs) and is intended
also for monotonic decreasing PB constraints. Figure 1 shows an example of this
situation. The number of nodes and edges in the second diagram is substantially
reduced, and the number of clauses and variables needed to encode the diagram
is reduced accordingly. The input of this encoding is a PB constraint, and a
partition of its literals, where each part must satisfy an AMO constraint. We
will refer to each of the parts as an AMO group.

An interesting particular case occurs when there are not only AMO con-
straints, but EO constraints over subsets of the variables in the PB constraint.
In this case, the number of variables can be reduced [8]: by subtracting the same
integer from all the coefficients of a set of variables in an EO relation, as well
as from K, we can make at least one coefficient become zero, and then remove
the zero-coefficient terms. The result of reducing the set of variables with an EO
relation is also an AMO group.
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3 Background: AMO and ALO Detection

In this section we present the approach described in [3] to semantically detect
AMO and ALO constraints in a SAT formula F . The idea is to compute for each
literal in F which other literals are entailed by unit propagation (UP). Then an
undirected graph G = (V,E) is constructed, where all vertices u ∈ V are literals
of F and an edge (u, v) ∈ E iff F ∧u |=UP ¬v, i.e. F ∧u∧¬v can be determined
to be unsatisfiable by UP. In other words, if (u, v) ∈ E then F |= (¬u ∨ ¬v),
therefore there is an AMO constraint between literals u and v. We refer to these
AMO constraints between two literals as mutexes. Accordingly, we refer to the
graph G as the UP-mutex graph of F .

Recall that a clique of a graph G = (V,E) is a subset of vertices of G such
that every pair of vertices u, v are adjacent, i.e. (u, v) ∈ E. Therefore, every
clique C = (V ′, E′) in the UP-mutex graph of a SAT formula F corresponds to
an AMO A =

∑
v∈V ′ v ≤ 1 such that F |= A. By construction, we know that

there is a mutex between all pairs of literals u, v ∈ V ′, hence F |= u+ v ≤ 1 and
so F |=

∑
v∈V ′ v ≤ 1. Thus we can identify all the AMO constraints in a SAT

formula F that can be detected by UP by finding the cliques in the UP-mutex
graph of F .

In [7] the authors propose an approach to detect cardinality constraints
(Boolean functions of the form

∑n
i=1 li ≤ k where all li are literals and k ≥ 1 is

an integer) which generalize AMO constraints. As pointed out by the authors,
this methodology is particularly useful for k > 2, compared to other approaches
for detecting cardinality constraints.

Given a set of literals L of a formula F we can also automatically detect
whether F |=UP ∨l∈Ll, i.e. F entails by UP an ALO constraint on L, by testing
whether F ∧

∧
l∈L ¬l is unsatisfiable by UP.

There are two key details in the procedure we have described to semantically
detect the AMO constraints in a SAT formula F . First of all, how do we detect
the mutexes, i.e. the level of local consistency (power of propagation) we use
to find them. Notice that by enforcing stronger consistency than UP we may
identify more mutexes and consequently more AMO constraints. Second, how
do we detect the cliques in the UP-mutex graph. Depending on the goal of the
particular application, the challenge is to properly address these two key details.
In the following section, we adapt this procedure to our context by replacing
the SAT formula F with a CSP instance, replacing unit propagation with the
propagation of the constraint solver Minion [15].

4 AMO and EO Relations in Savile Row

In this section we describe our approach and how it is integrated into Savile Row.
As part of this process we must deal with sum constraints that contain integer
terms, negative coefficients, and any comparator � ∈ {<,≤,=, 6=,≥, >}. The end
result is a monotonic decreasing PB constraint and a partition of its literals into
AMO groups. This is achieved by a sequence of reformulations, where the AMO
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groups will arise either from the decomposition of an integer variable, or from
the detection of a clique of mutexes in the mutex graph. As described in [25]
Savile Row performs two tailoring processes, the first of which uses the constraint
solver Minion [15] to filter variable domains, and the second produces output for
the desired solver (SAT in this case). Our approach adds mutex detection to
Minion, and finds AMO and EO groups during the second tailoring process.

4.1 Mutex Inference

The mutex inference step is performed on Minion’s CSP representation of the
problem at hand. This representation contains integer constraints that will be
transformed into PB constraints later. These integer constraints are of this form∑n

i=1 qiei �K. An expression ei may be an integer variable, a Boolean literal, or
(xi � ki) where xi is an integer variable or a Boolean literal. Next, any Boolean
expressions of the form (xi �ki) are replaced with a new Boolean variable bi and
the constraint bi ↔ (xi � ki) is added to the model. By adding the bi variables,
the mutex detection algorithm is able to see the mutex between x < 5 and x ≥ 5
for example.

Minion is called to perform domain filtering [25] and to find mutexes between
literals of Boolean variables. For each Boolean variable b in the CSP, each value of
b is assigned in turn and the propagation loop of Minion is called. Consequences
of the assignment are propagated through the entire constraint model, includ-
ing integer variables and global constraints. All assignments of other Boolean
variables (to either 0 or 1) by propagation are recorded in the mutex graph G.

Mutex inference is very similar to [3] (described in Section 3) with the SAT
formula replaced by the CSP, and unit propagation replaced by Minion’s propa-
gation algorithms. Comparing propagation power is not straightforward because
it depends on the SAT encoding on the one hand, and fine details of propagators
on the other. However, there is one key advantage to using the CSP representa-
tion: we avoid generating the (potentially very large) encoding of the problem
instance without considering AMO and EO relations. See, for example, the Nurse
Scheduling Problem (Section 5.3) where the encoding that uses AMO and EO
relations is ten times smaller than the one without.

4.2 Normalisation

To use the MDD encoding referred to in Section 2 we must have monotonic
decreasing PB constraints in ≤ form. Reformulations are required both before
and after the AMO and EO groups are constructed. In the first step, all PB and
sum constraints are rearranged into the form

∑n
i=1 qiei ≤ K with arithmetic

transformations [13].
Terms qiei where ei is integer are dealt with as follows. Let q = qi and e = ei.

First, if q < 0, then q ← −q and e← −e. Second, if the smallest possible value
c of e is less than 0, then e← e+ c and K is adjusted by adding qc. Finally, the
term qe with n possible values becomes an AMO group of n−1 terms containing
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e = ki by enumerating all values ki except the smallest value, and K is adjusted
accordingly.

At this point, all expressions ei in the constraint are Boolean. All terms qiei
where qi < 0 are made positive by replacing with qi(1 − ¬ei), then multiplying
out and subtracting the constant from both sides. The constraint is now a mono-
tonic decreasing ≤ PB constraint, suitable for encoding to SAT via an MDD as
described in Section 2. However, the next steps may require inverting the polar-
ity of some Boolean expressions ei in order to match the detected AMOs, losing
the normal form. In this case, the normal form will be restored after making the
polarities match.

4.3 AMO and EO Detection

For each PB constraint, we take the subgraph G′ = (V ′, E′) of the mutex graph
G where V ′ is a set containing both literals of all Boolean variables in the
constraint. The algorithm has a list of vertices L, initially containing all vertices
in V ′. L is sorted by descending degree in G′. A clique cover is constructed by
iterating a greedy clique finding algorithm. To construct one clique, the algorithm
takes the first vertex from L then adds as many as possible other vertices in the
order of L, breaking ties (where the degree is equal) by choosing the vertex
whose coefficient is most common within the clique (as a heuristic to reduce the
number of outgoing edges of the corresponding nodes in the MDD). Whenever a
vertex v is added to a clique, both v and ¬v are removed from L. The end result
is a clique cover containing one literal of each Boolean variable in the constraint.

For each clique in the cover, a new AMO or EO group is built as follows.
If the negations of literals in the clique correspond with negations in the PB
constraint (or the clique has one literal) then we do (1), otherwise (2).

1. The AMO group is constructed directly from the clique. If all literals in the
group form an EO corresponding to an integer variable (i.e. literals corre-
spond to (x = a) or ¬(x 6= a) for all values a of some integer variable x),
then we can exploit the EO relation to reduce the size of the group. We
delete the term(s) with the smallest coefficient c, and subtract c from K and
from the other coefficients within the AMO group.

2. If the negation of the term qiei does not match the literal in the clique, the
term is rewritten as qi(1− ¬ei) (and rearranged as above), creating a term
with a negative coefficient. Once all terms of the group have the appropriate
sign, an EO is created by making a new Boolean variable b (constrained to be
true iff all expressions ei in the group are false) and adding a term 0b to the
group. All coefficients within the group and K are adjusted by subtracting
the smallest coefficient. Terms with coefficient zero are removed to create an
AMO group.

The result in all cases is an AMO group whose size is at most the size of the
clique. In case (1), if an EO is detected then at least one term can be removed
relative to the clique. In case (2), if multiple terms have the smallest coefficient
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then the AMO group is smaller than the clique. Each AMO group detected in
this way will be added to the model as an AMO constraint.

We find EO groups by a syntactic check in case (1) above. EO groups can
also be detected semantically using propagation (Section 3), and the semantic
approach may find more EO groups. In our case this would involve calling Minion
a second time, with more overhead than the syntactic check.

4.4 Reformulation Example

In this section we give an example of the normalisation and reformulation process
that illustrates the described steps and cases. Suppose we have a CSP instance
C with the following variables:

– x which is an integer variable with domain {1, 2, 3};
– y which is an integer variable with domain {−2,−1, 0, 1}; and
– z and t that are Boolean variables.

Suppose C has the following two constraints to be translated to SAT:

C1 : 2(x = 1) + 4(x = 2) + 3(x = 3)− 3y + 4z + 5t ≤ 13
C2 : ¬z ∨ ¬t

Before performing the mutex inference, we replace each of the expressions of
the form (x � k) with a Boolean auxiliary variable b, and add the constraint
b↔ (x � k). C1 is replaced with the following four constraints:

b1 ↔ (x = 1)
b2 ↔ (x = 2)
b3 ↔ (x = 3)

C3 : 2b1 + 4b2 + 3b3 − 3y + 4z + 5t ≤ 13

The inference mechanism described in Section 4.1 detects the following mutexes,
where the first three come from the decomposition of integer variable x, and the
last one is due to constraint C2:

¬b1 ∨ ¬b2
¬b1 ∨ ¬b3
¬b2 ∨ ¬b3
¬z ∨ ¬t

The following two AMO relations are inferred from the above mutexes:

b1 + b2 + b3 ≤ 1
z + t ≤ 1

These two AMO relations are added to the model as AMO constraints.
An EO relation is detected among b1, b2, and b3, as described in Section 4.3.

The EO relation is converted into an AMO by removing the term with the
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smallest coefficient in C3 (b1 in this case), and adjusting the coefficients of the
other terms (as described in Section 4.3). The two Boolean variables z and t
form an AMO group. Finally, the integer variable y with four values will form
an AMO group of three terms, as described in Section 4.2.

C3 is reformulated into C4 as follows:

C4 : 2b2 + 1b3 + 9[y = −2] + 6[y = −1] + 3[y = 0] + 4z + 5t ≤ 14

Note that the right hand side constant has been adjusted to 14, and the coef-
ficients of the terms corresponding to x and y have been adjusted as well. The
variables of C4 are partitioned into the following three AMO groups:

{b2, b3}
{[y = −2], [y = −1], [y = 0]}

{z, t}

If the AMO and EO detection process is enabled, the SAT encoding has
18 variables and 33 clauses. Without the detection, it has 33 variables and 53
clauses. The SAT encoding of the MDD derived from C4 has only 7 clauses,
whereas the MDD derived from the constraint without AMO and EO detection
(which has only one non-singleton AMO group derived from y) is encoded with
37 clauses.

5 Experimental Evaluation

In this section we evaluate our approach on four diverse case studies: Combina-
torial Auctions (CA), the Multi-Mode Resource-Constrained Project Scheduling
Problem (MRCPSP), the Nurse Scheduling Problem (NSP), and the Multiple-
Choice Multidimensional Knapsack Problem (MMKP). Each of these problem
classes have AMO and EO relations that could be identified by expert modellers,
and we show that our system is able to identify them without any human ef-
fort. The effects on the size and solving time of the resulting SAT formula are
dramatic.

All problems except MRCPSP use a PB objective function. To abstract solv-
ing performance from any particular optimisation process of the PB objective
function, we converted CA, NSP and MMKP problem classes into decision prob-
lems. Specifically, we bound the objective function with the best known value of
the objective function, so we are searching for a solution that is as good as the
best known solution.

For the decision problems CA, NSP, and MMKP, we use the Glucose 4.1
SAT solver [4]. For MRCPSP, where we minimise an integer variable, we use
the MaxSAT solver Open-WBO version 2.0 [23], which uses Glucose 4.1 as its
core SAT solver. All the experiments were run on an 8GB Intel R© Xeon R© E3-
1220v2 machine at 3.10 GHz. In a preliminary experiment we ran the SAT solver
Lingeling (version bcj) [6] on the CA problem and obtained similar results to
those reported below with Glucose.
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In our experiments we use three configurations. The first (PB) has no AMO
or EO detection, however normalisation is always applied when encoding a con-
straint via an MDD (Section 4.2). The second configuration (PB(AMO)) per-
forms AMO detection but not EO detection (i.e. the EO check in step (1) of
Section 4.3 is switched off). The third configuration (PB(EO)) has both AMO
and EO detection.

Reported solving times include both reformulation preprocessing and time
spent by the SAT solver.

Fig. 2. Scatter plots comparing the median of the solving time among all 10 executions
for each instance in the dataset. From left to right and top to bottom: CA, MRCPSP,
NSP, MMKP.

5.1 Combinatorial Auctions

The Combinatorial Auctions (CA) problem can be stated as the problem of
assigning items to bidders in such a way that the maximum profit is obtained [22].
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Table 1. Summary statistics of configurations PB, PB(AMO) and PB(EO) for the
four case studies. — indicates time out.

problem setting Q1 med Q3 t.o. vars clauses

CA
PB 1.11 3.74 — 42 506 1006
PB(AMO) 0.98 1.40 3.33 0 47 236
PB(EO) 0.98 1.40 3.33 0 47 236

MRCPSP
PB 2.55 3.68 9.33 29 54 112
PB(AMO) 2.89 4.70 8.57 8 12 59
PB(EO) 2.89 4.68 8.41 8 12 57

NSP
PB — — — 199 116 231
PB(AMO) 1.30 1.85 6.81 4 26 120
PB(EO) 0.76 0.86 1.26 3 8 22

MMKP
PB 0.82 4.98 21.09 0 31 62
PB(AMO) 0.33 0.47 1.53 0 3 17
PB(EO) 0.28 0.39 1.43 0 2 10

Every bidder makes an offer for a set of items (a package), and it has to be
decided whether to sell the whole package to the bidder. It is not allowed to
sell only a proper subset of the demanded items. A natural viewpoint to model
the problem is to introduce a Boolean variable sold[b] for each package b, that
states whether it is sold or not. Then, the decision version of the problem can
be stated as:

forAll b1: int(1..nBids-1) .

forAll b2: int(b1+1..nBids) .

incompBids[b1,b2] ->

(!sold[b1] \/ !sold[b2]),

(sum b : int(1..nBids) .

sold[b] * profit[b] ) >= lb

where nBids is the number of bids, profit[b] is the bid value for package b,
incompBids[b1,b2] is true when two bids have a non-empty intersection, and
lb is the minimum total profit that is required.

The first constraint ensures that no item is sold in two different packages, or
equivalently that every item is sold in at most one package. This will allow Savile
Row to detect mutexes between variables sold[b] where packages share some
item. Typically the sets of packages that contain each particular item will not
be disjoint, so the clique cover finding algorithm plays an especially important
role when reformulating this problem.

In this work we consider the dataset reported in [9] which was generated using
the Combinatorial Auctions Test Suite [22], and have an appropriate complexity
to illustrate the effects of our techniques. It consists of 170 instances with the
number of bids between 70 and 200. For this problem the syntactic check does
not identify any EO relation, so PB(AMO) and PB(EO) are identical.
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5.2 MRCPSP

The Multi-mode Resource-Constrained Project Scheduling Problem (MRCPSP)
is an iconic problem in the scheduling field [10]. The problem requires deciding
a start time (schedule) and an execution mode (schedule of modes) for each
job of a project. The jobs are non-preemptive, i.e. they cannot be paused once
they have started. Also, the jobs have demands over a set of resources, that can
be either renewable, i.e. the amount of resource assigned to a job is recovered
once the job finishes, or non-renewable, i.e. availability is not restored when jobs
finish. For each job, its duration and its demands depend on the chosen execution
mode. The schedule must ensure that a given set of precedence relations between
jobs are all satisfied, that the given availability of renewable resources is never
surpassed during the execution of the project, and that the given availability of
non-renewable resources is enough to supply the demands. Moreover, the project
completion time (makespan) must be minimised.

We model the resource constraints as follows. We introduce an auxiliary
integer variable mode[j] for each job j, which represents the selected execution
mode for job j. To deal with renewable resources constraints we also introduce a
Boolean variable jobActive[j,m,t] for each job j, execution mode m and time
instant t within a scheduling horizon, which is constrained to be true iff job i

is running in mode m at time t. The renewable resource constraints are:

forAll t: int(0..horizon) .

forAll res: int(1..resRenew) . (

sum j: int(1..jobs) .

sum m: int(1..nModes[j]) .

jobActive[j,m,t]*resUsage[j,m,res]

) <= resLimits[res]

We model non-renewable resource constraints as:

forAll res : int(resRenew+1..nRes) . (

sum j: int(1..jobs) .

sum m: int(1..nModes[j]) .

(mode[j]=m) * resUsage[j,m,res]

) <= resLimits[res]

where horizon is a scheduling horizon which accepts a valid schedule (if the
instance is satisfiable), 1..resRenew and resRenew+1..nRes are the sets of re-
newable and non-renewable resources respectively, 1..jobs is the set of all jobs,
1..nModes[j] is the set of available execution modes for job j, resUsage[j,m,res]
is the consumption of job j on resource res when it runs in mode m, and
resLimits[res] is the availability of resource res.

MRCPSP contains many notions of activity and mode incompatibilities,
which allow the reformulation process to find AMO constraints on the variables
of resource PB constraints. For instance, every activity must run in exactly one
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execution mode, and if an activity precedes another they will never run in par-
allel. Further, two modes of a pair of activities are incompatible if the combined
demands for the two modes surpass the availability of some resource.

For this problem we have used the 552 satisfiable instances of the j30 dataset,
which is the hardest from PSPLib [21]. These instances contain projects of 30
activities, 3 possible execution modes for each activity, 2 renewable resources
and 2 non-renewable resources.

5.3 NSP

The Nurse Scheduling Problem (NSP) is the problem of finding an optimal as-
signment of nurses to shifts per day considering some coverage and shift prefer-
ence constraints. There are plenty of variants of this problem depending on the
constraints considered [12, 27]. In this work we consider the basic version of the
problem where solutions must satisfy all shift coverage constraints, i.e. each shift
and day must have a certain number of nurses assigned, and must satisfy the
constraint that each nurse only works a certain number of days per week, and
must minimise the total penalisation according to the preferences of the nurses.

PB constraints appear in the Essence Prime model when bounding the total
amount of penalisation allowed. We use integer variable nS[n,d] to state the
shift assignment of each nurse n and day d, and the penalisation constraint is as
follows:

(sum n: int(1..nNurses) .

sum d: int(1..nDays) .

sum st: int(1..nShiftTypes) .

(nS[n,d]=s) * p[n,d,st] ) <= ub

where nNurses is the number of nurses, nDays the number of days, nShiftTypes
the number of shift types and p[n,d,st] is the penalty of assigning shift st to
nurse n on day d. Finally, since we are computing the decision version of NSP,
ub is the maximum cost allowed. Notice that EO relations occur among the
penalties for each nurse and day, since nS ranges over integer values from 1 to
nShiftTypes.

In this work we consider a set of instances from NSPLib, a repository of
thousands of NSP instances grouped into classes by several complexity indica-
tors. Details can be found in [27]. We focus on a sample of 200 instances taken
uniformly and independently at random from the N25 Set: 25 nurses, 7 days and
4 shift types (including the free shift). Each instance has a minimum number of
nurses required per shift and day, and includes the nurses preferences to work
on each shift and day (a penalty is between 1 and 4, where 1 is the rank of the
most preferred shift).

5.4 MMKP

The Multiple-choice Multidimensional Knapsack Problem (MMKP) is a max-
imisation problem. Given a set of classes of items and a knapsack with several
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capacity-bounded dimensions, it is required to pack exactly one item of each
class without surpassing the knapsack capacities. Each item of each class has a
given profit, and a weight in each dimension. It is also required to maximise the
profit of the chosen items [20]. The decision version of the problem requires that
the profit is greater than or equal to a lower bound lb.

The PB constraints appear in our Essence Prime model when bounding ca-
pacities and profit. We use integer variables item[c] to state which item of class
c has been chosen. The constraints are as follows:

forAll d: int(1..nDimensions) . (

sum c: int(1..nClasses) .

sum i: int(1..classSize) .

(item[c]=i) * weight[c,i,d]

) <= cap[d],

(sum c: int(1..nClasses) .

sum i: int(1..classSize) .

(item[c]=i) * profit[c,i] ) >= lb

where nDimension is the number of dimensions, nClasses is the number of
classes, classSize is the number of items in each class (n.b. in this dataset all
classes have the same number of items), weight[c,i,d] is the weight of item i

of class c for dimension d, cap[d] is the capacity of dimension d, profit[c,i]
is the profit of item i of class c and lb is the minimum profit to be achieved.

Notice that EO relations occur because item ranges over integer values from
1 to classSize.

For conducting the experimental evaluation we have chosen the 1983 satis-
fiable instances from the 2000 instances of dataset (10-5-5-G-R-W) from [16],
that contain 10 classes of 5 items each, and the knapsack has 5 dimensions. This
dataset turns out to be reasonably hard in comparison to others from the same
work that appear to be easy for SAT solvers.

5.5 Experimental Results

Our results in Table 1 show a very significant reduction in the sizes of the SAT
formulas for all four studied problems, both in the number of variables and
number of clauses, thanks to the AMO and EO detection and reformulation
process. The greatest reduction with approach PB(AMO) occurs in CA, where
the number of variables is divided by 10 and the number of clauses by 4. In all
four problem classes, the reduction in size directly translates to improved solving
time. The most extreme case is NSP, in which only one instance is solved within
the given timeout if AMO detection is not used, whereas almost all instances are
solved with PB(AMO). Only 4 instances reach the time limit with PB(AMO).
PB(EO) gives a further size reduction on all problems except CA, and it has
a particular impact on NSP, where the additional size reduction reduces the
number of clauses by ten times overall.
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Figure 2 compares total time (including reformulation and solving) of PB and
PB(EO) for every instance of each problem class. The solving time improvements
are remarkable for all four problem classes. There are improvements between one
and two orders of magnitude in many cases between PB and PB(EO), although
there is a small overhead on some of the easiest instances.

6 Conclusion and Future Work

We have presented a fully automatic approach to find and exploit at-most-one
(AMO) and exactly-one (EO) relations in SAT encodings of PB constraints.
The approach is integrated into Savile Row, a constraint modelling tool that
can automatically produce a SAT encoding of any constraint model written
in the language Essence Prime. Until now, AMO and EO relations have been
exploited for this purpose only in problem-specific encodings constructed by
experts. Results show dramatic improvements in SAT formula size and solving
time on four problem classes.

In future work we will explore stronger inference mechanisms for the detection
of mutexes, which could lead to larger and more effective AMO relations. We
also plan to study whether we can reformulate PB constraints more efficiently
through detection of cardinality constraints with k ≥ 2 applying the approach
in [7].
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25. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.:
Automatically improving constraint models in Savile Row. Artificial Intelligence
251, 35–61 (2017). https://doi.org/10.1016/j.artint.2017.07.001

26. Nightingale, P., Rendl, A.: Essence’ description. arXiv:1601.02865 (2016),
https://arxiv.org/abs/1601.02865

27. Vanhoucke, M., Maenhout, B.: NSPLib: a nurse scheduling problem library: a
tool to evaluate (meta-)heuristic procedures. In: Brailsford, S., Harper, P. (eds.)
Operational research for health policy: making better decisions. pp. 151–165. Peter
Lang (2007)

28. Zhou, N.F., Kjellerstrand, H.: The picat-sat compiler. In: PADL: International
Symposium on Practical Aspects of Declarative Languages. pp. 48–62. LNCS 9585,
Springer (2016). https://doi.org/10.1007/978-3-319-28228-2 4


