Breaking Conditional Symmetry in Automated
Constraint Modelling with CONJURE

Ozgur Akgun, Ian P. Gent, Christopher Jefferson, Ian Miguel and Peter Nightingale !

Abstract. Many constraint problems contain symmetry, which can
lead to redundant search. If a partial assignment is shown to be in-
valid, we are wasting time if we ever consider a symmetric equiv-
alent of it. A particularly important class of symmetries are those
introduced by the constraint modelling process: model symmetries.
We present a systematic method by which the automated constraint
modelling tool CONJURE can break conditional symmetry as it en-
ters a model during refinement. Our method extends, and is com-
patible with, our previous work on automated symmetry breaking
in CONJURE. The result is the automatic and complete removal of
model symmetries for the entire problem class represented by the in-
put specification. This applies to arbitrarily nested conditional sym-
metries and represents a significant step forward for automated con-
straint modelling.

1 Introduction

Many constraint problems contain symmetry. That is, given a solu-
tion to an instance we can find another symmetric solution. Symme-
try can lead to redundant search. If a partial assignment is shown
to be invalid, we are wasting time if we ever consider a symmetric
equivalent of it. A variety of methods are available for ‘symmetry
breaking’, i.e. avoiding reporting equivalent solutions and doing re-
dundant search. Symmetry in constraints, and especially symmetry
breaking, has been the subject of much research [|17]].

A particularly important class of symmetries are those introduced
by the constraint modelling process: these are called model symme-
tries [[13]] and can occur even if the original problem has no symme-
try. An example would be representing a set of size n by a vector
of n constrained variables, required to be all different. Without care,
this can introduce n! symmetries, for the set represented by the vec-
tor in all possible orders. If the elements of the set are integers, there
is no deep problem: we can add the constraint that the integers are
increasing. However, this simple approach cannot be used directly if
the elements of the set are themselves (for example) sets of multisets.
This can lead to a dilemma. If the constraint problem is modelled at
a high level, in which sets of multisets are first class objects, we may
not be able to break the symmetry we introduce at the modelling
level. If the problem is modelled at a low level, e.g. with all variables
as integers, the resulting symmetry group may be complex and the
necessary set of symmetry breaking constraints hard to specify.

Recently, we solved this dilemma in the context of our automated
constraint modelling system CONJURE [/1]. We generalised the ap-
proach of ordering variables by introducing a total ordering < on

1 University of St Andrews, UK, email: {ozgur.akgun, ian.gent, caj21, ijm,
pwnl } @st-andrews.ac.uk

types in CONJURE. The ordering can be used to introduce symme-
try breaking constraints for symmetries that CONJURE introduces as
a part of its automated modelling refinements. This is automatic,
since each refinement rule indicates how to break any symmetry
it introduces. This obviates the need for an expensive symmetry
detection step following model formulation, as used by other ap-
proaches [23|25]. Furthermore the symmetry breaking constraints
added hold for the entire parameterised problem class captured by
the ESSENCE specification — not just a single problem instance —
without the need to employ a theorem prover.

In this paper we solve a major problem not addressed by our pre-
vious work. We show how CONJURE can break a different kind of
symmetry: conditional symmetry [16]. A conditional symmetry is
one which is not necessarily present in every solution: hence it is
conditional on properties of the solution. To illustrate how condi-
tional symmetry arises in constraint models, we consider the Domi-
nating Queens problem [[18]], recently used at the First International
Lightning Model and Solve Competitiorﬂ

Given a positive integer m, minimise the number of queens
placed on an m x m chess board such that no pair of queens
attack each other, and every unoccupied square of the board is
attacked by some queen.

The illustration shows a picture of
a solution for m = 5 and the minimal
number of 3 queens. A natural way
to consider the decision being made
in solving the Dominating Queens is
as finding a partial function from the
m rows of the chess board to the m
possible positions for a queen on each
row (the columns). There are several
ways to model a partial function in a constraint model. A common
approach is to employ a matrix, which we will call board in this ex-
ample, of decision variables indexed by 1..m, each of which also has
the domain {1..m}. The assignment board[i] = j indicates that the
queen associated with the ¢th row is assigned to the jth column. In
order to make the function partial we add a further matrix of deci-
sion variables, which we will call switches, also indexed by 1..m but
with domain {0, 1}. The assignment switches[i] = 1 indicates that
the ¢th row has an image in the partial function we are modelling,
whereas switches[i] = 0 indicates that the ¢th row has no image, or
equivalently that no queen is placed on the ith row.

This model of a partial function has conditional symmetry [16].
When switches[i] = 0, the values of board[i] become interchange-
able because the switch indicates that the ith row has no queen as-

2 nttp://cp2013.a4cp.org/program/competition

signed to it. This can have serious consequences for the performance
of the constraint solver in solving the model, since every dead end
visited in the search can potentially have many symmetric equiv-
alents, which will all be visited in the worst case. One approach
to breaking this symmetry is to add constraints to fix the value of
board[i] when switches[i] = 0, e.g.:

Viin 1..m . switches[i] = 0 — board[i] = 1
where we arbitrarily picked the value 1 as our “dontCare” value.
As we will demonstrate, conditional symmetry arises very frequently
not just in models of partial functions but also in models of other
fundamental structures such as sets, multisets and relations.

To deal with model conditional symmetries, we designate each
variable of each type as having a ‘dontCare’ value in its domain.
When the condition for a given symmetry applies, we state that an af-
fected variable must take its dontCare value. A dontCare value
for an abstract decision variable does not need to satisfy the structural
constraints of its domain. We show how this can be done during the
refinement process of automated modelling. Furthermore, this can be
done in such a way that at the final stage the dontCare values are
replaced by explicit values, meaning that no adaptation is required
of other tools or solvers. We describe how dontCare values are
achieved and refined in sets, multisets, relations, partitions and par-
tial functions. We show that dontCare values can be dealt with
correctly in nested types. Our experimental results show that, as ex-
pected, our technique can yield greatly reduced search. Finally we
give an analysis to show that dontCare values combine correctly
with other symmetry breaking techniques.

2 Automated Constraint Modelling & CONJURE

The modelling bottleneck characterises the difficulty of formulating
a problem of interest as a constraint model suitable for input to a
constraint solver. The space of possible models for a given problem
is typically large, and the model selected can have a dramatic ef-
fect on the efficiency of constraint solving. This presents a serious
challenge for the inexpert user, who has difficulty in formulating a
good (or even correct) model, and motivates efforts to automate con-
straint modelling. Several approaches have been taken to automate
aspects of constraint modelling, some of which include: learning
models from positive or negative examples [3H5}(7,[21[]; automated
transformation of medium-level solver-independent constraint mod-
els [[26H29]); theorem proving [6]; case-based reasoning [22]; and re-
finement of abstract constraint specifications [11]] in languages such
as ESRA [10]], ESSENCE [12], F [19] or Zinc [20}[24].

In this paper our focus is on the refinement-based approach, where
a user writes abstract constraint specifications that describe a prob-
lem above the level at which constraint modelling decisions are
made. Abstract constraint specification languages, such as ESSENCE
or Zinc, support abstract decision variables with types such as set,
multiset, relation and function, as well as nested types, such as set
of sets and multiset of relations. Problems can typically be specified
very concisely in this way, as demonstrated by the example in
However, existing constraint solvers do not support these ab-
stract decision variables directly, so abstract constraint specifications
must be refined into concrete constraint models.

We use ESSENCE [[12] herein. An ESSENCE specification, such
as that in identifies: the input parameters of the problem
class (given), whose values define an instance; the combinatorial
objects to be found (£ind); and the constraints the objects must sat-
isfy (such that). In addition, an objective function may be speci-
fied (min/maximising) and identifiers declared (Letting). Ab-

given n: int
letting ROW, COL be domain int (l..n)

find board: function (injective) ROW --> COL

minimising |board|

such that
forAll (rl,cl), (r2,c2) in toSet (board)
, rl < r2 |cl-c2| !'= |rl-r2|
such that
forAll r : ROW, ! (r in defined (board))
forAll c : COL .
(exists r2 : ROW , r != r2
board(r2) = c) \/
(exists r2 : ROW , r != r2 .
|board(r2) - c| = |r2 - r|

Figure 1: ESSENCE specification of the Dominating Queens
Problem.

stract constraint specifications must be refined into concrete con-
straint models for existing constraint solvers. Our CONJURE sys-
tenﬂ [2] employs refinement rules to convert an ESSENCE speci-
fication into the solver-independent constraint modelling language
ESSENCE’ [28]. From ESSENCE’ we use SAVILEROW| to translate
the model into input for a particular constraint solver while perform-
ing solver-specific model optimisations.

Every refinement rule that introduces conditional symmetry also
generates a constraint to break those symmetries. The other symme-
tries introduced by refinement are independent, so we can add con-
straints that immediately break each introduced group of symmetries
in a valid and complete manner. This leads to globally valid and com-
plete symmetry breaking.

To illustrate how CONJURE rules can be extended to generate
symmetry-breaking constraints of this form, consider the rule given
below, which models a partial injective function using a matrix of
tuples. The first component of the tuple indicates if the function is
defined for this index value. When this first component is t rue, the
second component gives the result of the function. A constraint is
posted to ensure injectivity of the function variable: this constraint
works on every distinct pair of indices and produces a disequality
constraint on the second component of the tuple on the condition
that the corresponding first components take the value t rue.

Name: Function~1DPartial
Matches: function (injective) &fr —-> &to
Produces: refn : matrix indexgd by [&fr] of (bool, &to)

Constraint: forAll i, j sfr , 1 !'= 3 /\ refn[i][1]
/\ refn[jl[1l] . refn[i][2] != refn[j][2]

This rule successfully breaks the symmetry on active parts of the
function domain. However, where the first component of a position
in the matrix takes the value false the second component is un-
constrained as its value does not affect the function being repre-
sented. This is exactly the kind of symmetry we want to break us-
ing dontCare constraints; adding the following constraint without
modifying the rule fixes inactive parts of the function domain to a
single value.

iforAll i : &fr . !'refn[i,1] -> dontCare(refn[i, 2]

3 Sources of Conditional Symmetry

ESSENCE has five abstract type constructors corresponding to five
of the most common combinatorial objects that combinatorial prob-
lems typically require us to find: set, multiset, relation, partition and

3 http://bitbucket.org/stacs_cp/conjure-public
4http://savilerow.cs.st-andrews.ac.uk

function. Any type constructed with one (or a combination) of these
must be refined before a model can be output in ESSENCE’. Con-
ditional symmetry can arise from the refinement of all the abstract
types formed using these constructors, as we will demonstrate.

In what follows we will show one or more refinements for each of
the five type constructors listed above, each corresponding to a CON-
JURE refinement rule. Typically, representing an abstract domain like
set using a more concrete domain like mat rix requires the addi-
tion of structural constraints in order to maintain the invariants of
the original domain, such as distinctness of members of a set. Sym-
metry breaking constraints are added by refinement rules in the form
of additional structural constraints. The operators .< and .<= are
often used to order expressions and to break symmetry. Where con-
ditional symmetry is introduced by a refinement rule, we show the
dontCare constraint required to break it. In Section 4, we will dis-
cuss how these dontCare constraints are handled.

3.1 Sets

Conditional symmetry can arise when refining sets with unknown
cardinality. Consider the following set with unknown but bounded
size, where 7 can be any ESSENCE domain.

T
‘find s: set (maxSize n) of 7

, [forAll i

The explicit refinement of s is shown below. In this refinement,
each element in s is explicit in matrix sval.

find sVal: matrix indexed by [int(l..n)] of T
find sUsed: matrix indexed by [int (1..n)] of bool
such that
forAll i : int(l..n-1
sUsed[i+1] -> sUsed
forAll i : int(l..n-1
sUsed[i+1] -> sVall[

)
)[1],
i1 .< sval[i+1]

Some variables in sVal may not be significant (when sUsed [1]
is false, sVal[i] is not used), therefore this refinement has con-
ditional symmetry. The following additional constraint breaks the
conditional symmetry.

T

‘forAll i int(1..n) !sUsed[1] -> dontCare(sVall[i]

The marker variable refinement of s has a variable indicating the
size of the set, as shown below.

find sVal: matrix indexed by [int(l..n)] of T
find ssize: int (0..n)
such that

forAll i : int(l..n-1) .

i+l <= ssize -> sVal[i] .< sVal[i+1]

The marker variable refinement introduces conditional symmetry
when variables in sVal are unused. The following additional con-
straint breaks the conditional symmetry.

T

‘forAll i int(1..n) i > ssize -> dontCare(sVal[i]

Both of the above set refinements work independently of 7. The
special case of 7 being an integer domain can be represented with-
out introducing conditional symmetry. CONJURE contains two re-
finement options for sets of integers. The first is the dummy value
refinement which uses a value that is not in the original integer do-
main to indicate unused variables. The second is the occurrence re-
finement which uses a matrix of boolean variables indexed by the
integer domain. These two refinements do not introduce conditional
symmetry, so do not need the addition of new constraints to break it.

3.2 Multisets

The refinement of multiset domains with unknown cardinality can
also introduce conditional symmetry. Consider the following mul-
tiset domain with unknown but bounded size, where 7 can be any
ESSENCE domain.

T
‘find ms : mset (maxSize n) of T

CONJURE has explicit and occurrence refinements of multiset do-
mains. These are analogous to the set refinements, with the difference
being that the boolean variables are replaced with integers represent-
ing the number of occurrences of a value.

The explicit refinement models each element in the explicit matrix
msVal.

find msVal: matrix indexed by [int(1l..n)] of 7
find msOccur: matrix indexed by [int (l..n)] of int (0..n)
such that

forAll i : int(1l..n-1) .

msOccur [1i+1] > 0 -> msOccur[i] > O,
forAll i : int(1l..n-1) .

msOccur [i+1] > 0 -> msVal[i] .< msVal[i+1],
(sum 1 int(l1..n) . msOccur[i]) <= n

The value of msOccur models the number of occurrences of a
value. Conditional symmetry arises when msOccur [1] is O, and it
can be broken using the following additional constraint.

1
: int(l..n) . msOccur[i]=0 —-> dontCare(msVal[i])‘

Similar to the occurrence refinement of sets, the occurrence refine-
ment of multisets does not introduce conditional symmetry.

3.3 Relations

ESSENCE includes relation domains of any arity, and the refinement
of relations with unknown number of entries can introduce condi-
tional symmetry. Consider a relation of arity 2 and unknown but
bounded size.

ifind r relation (maxSize n) of (7 % T)

One refinement of r is to represent the relation as a set of tuples,
then use the explicit representation of a set, as shown above. This
introduces conditional symmetry because some variables are unused
when the relation is smaller than its maximum size. The conditional
symmetry is broken by reusing the implementation for set domains.

A second refinement of r uses a two-dimensional matrix of
boolean variables, where each entry in the matrix represents the in-
clusion of one tuple in the relation. This refinement is similar to oc-
currence refinements of sets and multisets; it only works on integer
domains but does not introduce any conditional symmetry.

3.4 Partitions

Partitions in ESSENCE are a set of non-empty, disjoint sets of values
drawn from the inner domain 7. Unlike the conventional meaning
of partition ESSENCE partitions do not necessarily cover all values
of 7, they cover a subset of values. Consider the following partition
domain with unknown but bounded number of parts.

ifind p : partition (maxNumParts n) from 7 ‘

This partition will be refined into a set of sets of 7, and additional
constraints will be posted to maintain properties of a partition. Both
levels of sets in the generated refinement domain introduce condi-
tional symmetry, and these are broken by reusing the implementation
for set domains.

3.5 Functions

In ESSENCE function domains are partial unless modified by the
total attribute. Consider the following partial function domain,
which has a bounded size.

ifind f: function (maxSize n) int(a..b) -—> 7

The explicit representation of £ is as follows.

find fVal: matrix indexed by [int(a..b)] of 7
find fUsed: matrix indexed by [int (a..b)] of bool
such that (sum i : int(a..b). fused[i]) <= n

This representation introduces conditional symmetry when items
in £Val are unused, indicated by fUsed taking the value false.
This conditional symmetry is broken using the following additional
constraint.

T

‘forAll i : int(a..b) ' fUsed[1] -> dontCare(fVall[i]

The structural constraints of the inner type are only posted on the
active parts of the outer set.

The same technique is used for every representation in CONJURE
that has active and inactive parts. Each representation only needs to
report how to selectively post constraints to active parts of the deci-
sion variables used.

T

l

find x : set (maxSize 5) of A

(a) Input ESSENCE specification. A can be any domain.

find xused : matrix indexed by [int(1..5)] of bool
find xval : matrix indexed by [int(l..5)] of A
such that
forAll i: int(l..n-1) . xused[i+l] -> xused[i],
forAll i : int(1..4) .
xused[i] /\ xused[i+1l] -> xval[i] .< xvall[i+1],
forAll i : int(1..5)
Ixused[1] -> dontCare(xval[i]

4 Handling dontCare in CONJURE

This section presents the handling of dontCare constraints in
CONJURE. We begin by defining the dont Care constraint and how
it is implemented. We will then show how structural constraints and
dontCare constraints are handled for nested domains.

The dontCare constraint takes as an argument a decision vari-
able of any domain and forces it to take a unique assignment. The
assignment must be unique but it does not need to maintain the invari-
ants of the domain: care is taken to ensure that other structural con-
straints are not posted together with dontCare constraints as the
two would conflict. The implementation of dontCare is straight-
forward: dontCare on a decision variable with an abstract domain
is rewritten into a dontCare on the representation of the decision
variable. For example a dontCare on a partition variable will
be rewritten into a dont Care on the representation of it which has a
set of set domain. Other abstract domains are handled similarly.
dontCare constraints on matrix and tuple domains are rewritten
into a conjunction of dontCares on the elements of the domain.
After successive application of such rewrites, the model only con-
tains dontCare constraints on Boolean and integer domains. At
this stage CONJURE rewrites the dont Care constraint into an unary
equality constraint using the lowest value of the domain. The result
is a valid ESSENCE’ model: no modification of the underlying con-
straint modelling and solving systems is required.

Refinement rules to select representations in CONJURE operate
on domains and CONJURE applies them both when they are at the
top level and when they are nested inside another domain construc-
tor. For example, the domain set of function A -> Brepre-
sents a set of functions mapping values from A to B. First, CONJURE
chooses a representation for the outer set and refines it; then, the in-
ner function is refined. During the refinement of the inner function,
structural constraints need to be generated. These constraints need
to be posted only to the active parts of the outer set, namely they
need to be guarded using the switch variables. Conditionally apply-
ing structural constraints of the nested domains at the outer level is
called lifting.

presents an example of conditional lifting of struc-
tural constraints. gives an ESSENCE problem specification
which contains a variable size set which contains another abstract
domain in it. gives the intermediate state, after refining the
outer set and adding its structural constraints. Finally, gives
the result of refining the nested domain nested inside a set domain.

(b) After the outer set is refined.

T
\
\
\
\
\
\
\
\
\

find xused : matrix indexed by [int(1..5)] of bool
find xval’ : matrix indexed by [int(1..5)] of A’
such that
forAll i: int(l..n-1) . xused[i+1l] -> xused[i],
forAll i : int(1..4) .
xused[i] /\ xused[i+1l] -> xval’[i] .< xval’ [i+1],
forAll i : int(1..5)
!xused[i] -> dontCare (xval’ [i]),
forAll i : int(1..5) .
xused[i] -> structural (xval’ [1])

1
\
\
\
\
\
\
\
\
\

(c) A refined. The structural constraint for A, which is imposed on the
elements ofxval’, is posted conditionally.

Figure 2: Lifting structural constraints conditionally.

5 Interaction with Search

It has been observed previously [15] that, due to bad interactions
with the search strategy, adding symmetry breaking constraints can
actually increase search effort. This is because the first solution that
would have been found is removed by the symmetry breaking con-
straints. In practice, however, this is usually not a concern: the reduc-
tion in the size of the search space makes up for this effect, and the
search required to find all solutions will always be smaller, given a
static variable and value ordering. Furthermore, the symmetry break-
ing constraints themselves provide strong information as to how to
organise the search to avoid conflicts.

Nonetheless, it is worth noting that exactly the same problem
arises when breaking conditional symmetries using dontCare.
Consider the set refinement given in Section 3.1 This refines a
set s to two matrices sVal and sUsed. For the purposes of
this example, we will set the parameters in this example to n=3,
T=1int (1..3).Consider search first assigning sval [3] the value
2. The dontCare constraint implies that sUsed [3] is true, which
further implies sUsed [2] and sUsed [1] are also true. This forces
the set to be size 3. If instead there were no dontCare constraints,
then we would still have to branch on sUsed. In particular, if the
dontCare constraints were not present, search could have set each
element of sUsed to false. If the only solution to our problem re-
quires s = {}, this would find the solution faster.

However, as our experiments show, as with traditional symmetry
breaking, benefits of effective conditional symmetry breaking greatly
outweigh the possible small loss caused by a bad variable ordering.

6 Experiments

We ran two simple experiments to illustrate the effectiveness of au-
tomated conditional symmetry breaking in CONJURE by counting
the number of solutions to ESSENCE problem specifications with
and without dont Care constraints. The first also demonstrates that
arbitrary combinations of nested types can be handled, even with
conditional symmetries in each. In these experiments SAVILEROW
and MINION were run with their default options on a 32-core AMD
Opteron 6272 at 2.1 GHz.

First, we generated 25 ESSENCE specifications. Each contains a
single decision variable with a 3-level nested domain, but no con-
straints. The innermost domain is always an integer domain, and we
generate all combinations of 5 domain constructors in ESSENCE for
the other layers. The outer two layers have a bounded size of 2, so can
also be empty of or size 1, meaning that each layer will require ad-
ditional dont Care constraints. Moreover, the structural constraints
of the inner layer will need to be posted conditionally as described
in[Figure 2] CONJURE contains multiple refinement options for all of
the domains in this experiment. In some cases it is able to generate
thousands of models for one problem. However, since the conditional
symmetry breaking constraints are needed in all of these models we
only picked one model per problem using the Compact heuristic [[1].

presents the number of solutions for the same problem
specification with and without conditional symmetry breaking con-
straints. The results are as expected: models with dontCare con-
straints have fewer solutions than those without. When finding all
solutions for a model without dontCare constraints many of the
generated solutions are symmetric to other solutions. The most ex-
treme cases involve partitions, and can produce hundreds of millions
of solutions when there are only ten symmetrically distinct ones. Us-
ing dontCare constraints, these symmetric solutions are avoided
and the solver doesn’t need to waste effort searching through them.

For the second experiment, we refer to the ESSENCE specification

of the Dominating Queens problem given in The specifi-
cation contains a partial function. We refined the specification for

eachn € {4...14}, with and without dont Cares. [Figure 3|plots
the total time taken by both SAVILEROW and MINION to translate
and solve the problem instance. For all but the smallest instance,
the model with dontCares is solved faster, for n = 8 more than
430 times faster. In this experiment a time limit of one hour was
applied to MINION. SAVILEROW always took less than 8 seconds.
Without dontCares, the solver timed out for n € {9...14}, but
with dontCares we found it scales considerably better, timing out
forn € {12...14}.

o
S |
g °
@ |
£ g o o
- n
8
2 | .
. - B o Without Don't-Care
& 8 ° o With Don't-Care
-
T T T T T T
4 6 8 10 12 14

Parameter n

Figure 3: Plot of total time to solve Dominating Queens.

7 Consistent Symmetry Breaking

A well known issue when using constraints to break multiple sets of
symmetries in the same problem is that the constraints can conflict,
leading to lost solutions (see e.g. [9]). This problem does not occur
when CONJURE breaks symmetries and conditional symmetries in-
troduced during refinement. The reason for this is simple: each sym-
metry is broken as soon as it is introduced, allowing us to handle each
introduced symmetry group in isolation.

To elaborate, one important feature of CONJURE is that during re-
finement we have a valid model after the application of each refine-
ment rule (these partially-refined specifications include some con-
structs internal to CONJURE not in ESSENCE). Therefore when we
introduce a conditional symmetry during refinement, and then im-
mediately remove it by the addition of new constraints, at no point
simultaneously are there two model symmetries that we have to break
consistently. If, on the other hand, we delayed breaking symmetry
until refinement was complete, we would then have to break all sym-
metries in a consistent manner.

The symmetry breaking constraints generated by CONJURE can-
not conflict with any constraints provided by the user either. CON-
JURE only breaks the symmetry introduced by itself. For this pur-
pose, it posts symmetry breaking constraints on the concrete decision
variables it generates, the users do not have access to these variables
and they cannot write any conflicting constraints in terms of them.

Using the refinement rules in this paper, refining any ESSENCE
specification with a single variable with CONJURE produces a model
with an identical number of solutions. This implies we have broken
all symmetries which would lead to one ESSENCE solution being
duplicated as multiple ESSENCE’ solutions. We only need to ensure
each refinement rule in isolation achieves this goal, then the applica-
tion of all rules will achieve this.

We have focused in this paper on model symmetry. While the
abstraction of the ESSENCE language naturally lends itself to writ-
ing ESSENCE specifications without symmetry, we do expect that
some ESSENCE specifications will contain symmetries and condi-
tional symmetries. Assuming this symmetry has been detected (a
topic not addressed in this paper) and broken consistently by adding
additional constraints to the specification prior to refinement (for ex-
ample via the Crawford Ordering [8]]) there will be no consistency
issue with the way in which CONJURE breaks model symmetry.

8 Other uses of dontCare in refinement

The dontCare operator has other uses beyond type refinement. For
example [|14]] discusses how to deal with undefined values (for exam-
ple dividing an integer value by 0) during refinement.

Consider the refinement of (x/y=z) <-> B, for integer vari-
ables x,y, z and Boolean B. In MiniZinc 1.6, this produces the fol-
lowing refinement (rewritten as ESSENCE):

find bl,b2,B: bool

find i1,1i2,x,y,z: int (0..3)

such that
(b1 /\ b2) = B, x / il = i2,
(z = i2) <-> Dbl, (y = il1) <-> b2,
(y '= 0) <=> b2

We want to ensure that for every assignment to x, y, z and B which
satisfy (x/y=z) <-> B, there is exactly one assignment to the
auxiliary variables b1, b2, i1 and 12 which satisfies all the con-
straints. When y !'= 0, this is the case. On the other hand, when y
= 0then i1 and i2 can be assigned any value under the conditions
that i1 != 0 and x/i1=1i2. We will show how to remove this

Inner) , s

Outer set mset function relation partition

dontCare With | Without || With | Without || With Without With Without || With Without
set 11 38 22 87 46 632 67 297 15 845
mset 19 58 34 129 73 928 101 441 25 1315
function 25 64 49 144 100 1024 144 484 36 1444
relation 137 632 667 3222 || 4042 174512 7382 36542 296 318452
partition 41 310978 352 | 9092502 10 | > 277220736 88574 | > 198611820 208 | > 138135600

Table 1: Number of solutions with and without dont Care constraints. A > indicates number of solutions found within 1 hour CPU timeout.

conditional symmetry. We must first remove O from the domain of
11. This does not alter the set of solutions, as y = 0 impliesy !=
ilandy != O implies y = il. After removing O from the do-
main of 11, we can add the constraint -b2 -> dontCare (il).
This eliminates all conditional symmetry by ensuring 11 only takes
a single value when y != 0, which further implies a single valid
assignment for 12 by the constraint x/11=12 and for b1l by the
constraint (z = i2) <-> bl.

9 Conclusion

We have presented a systematic method by which the automated con-
straint modelling tool CONJURE can break conditional symmetry as
it enters a model during refinement. Our method extends, and is com-
patible with, our previous work on automated symmetry breaking in
CONJURE. Excepting unnamed types, which are a technical part of
ESSENCE designed to encapsulate a particular part of symmetry, the
result is the complete and automatic removal of model symmetry for
the entire problem class represented by the output model - a signifi-
cant step forward for automated constraint modelling.

Acknowledgements This work was supported by UK EPSRC
EP/K015745/1. Jefferson is supported by a Royal Society University
Research Fellowship.

REFERENCES

[1] Ozgur Akgun, Alan M Frisch, Ian P Gent, Bilal Syed Hussain, Christo-
pher Jefferson, Lars Kotthoff, Ian Miguel, and Peter Nightingale, ‘Au-
tomated Symmetry Breaking and Model Selection in Conjure’, in Prin-
ciples and Practice of Constraint Programming - CP 2013, (2013).
Ozgur Akgun, Ian Miguel, Christopher Jefferson, Alan M. Frisch, and
Brahim Hnich, ‘Extensible automated constraint modelling’, in AAAI-
11: Twenty-Fifth Conference on Artificial Intelligence, (2011).

Nicolas Beldiceanu and Helmut Simonis, ‘A model seeker: Extracting
global constraint models from positive examples’, in /8th International
Conference on Principles and Practice of Constraint Programming, pp.
141-157, (2012).

Christian Bessiere, Remi Coletta, Eugene C. Freuder, and Barry
O’Sullivan, ‘Leveraging the learning power of examples in automated
constraint acquisition’, in 10th International Conference on Principles
and Practice of Constraint Programming, Lecture Notes in Computer
Science, pp. 123—137. Springer Berlin Heidelberg, (2004).

Christian Bessiere, Remi Coletta, Frederic Koriche, and Barry
O’Sullivan, ‘Acquiring constraint networks using a SAT-based version
space algorithm’, in AAAI 2006, pp. 1565-1568, (2006).

John Charnley, Simon Colton, and Ian Miguel, ‘Automatic generation
of implied constraints’, in Proc. of ECAI 2006, pp. 73-77, (2006).
Remi Coletta, Christian Bessiere, Barry O’Sullivan, Eugene C. Freuder,
Sarah O’Connell, and Joel Quinqueton, ‘Semi-automatic modeling by
constraint acquisition’, in 9th International Conference on Principles
and Practice of Constraint Programming, pp. 812-816, (2003).

James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy,
‘Symmetry-breaking predicates for search problems’, KR, 96, (1996).
Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian
Miguel, Justin Pearson, and Toby Walsh, ‘Breaking row and column
symmetries in matrix models’, in Proceedings CP 2002, pp. 462—476.

(2]

(3]

(4]

(51

(6]
(71

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Pierre Flener, Justin Pearson, and Magnus f\gren, ‘Introducing ESRA, a
relational language for modelling combinatorial problems’, in LOPSTR
2003, pp. 214-232, (2003).

A. M. Frisch, C. Jefferson, B. Martinez Hernandez, and I. Miguel, ‘The
rules of constraint modelling’, in Proc. of the IJCAI 2005, (2005).
Alan M. Frisch, Warwick Harvey, Chris Jefferson, Bernadette
Martinez-Hernandez, and Ian Miguel, ‘Essence: A constraint language
for specifying combinatorial problems’, Constraints 13(3), 268-306,
(2008).

Alan M. Frisch, Chris Jefferson, Bernadette Martinez-Hernandez, and
Ian Miguel, ‘Symmetry in the generation of constraint models’, in Pro-
ceedings of the International Symmetry Conference, (2007).

Alan M Frisch and Peter J Stuckey, ‘The proper treatment of undefined-
ness in constraint languages’, in Principles and Practice of Constraint
Programming-CP 2009, 367-382, Springer, (2009).

Tan P. Gent, Warwick Harvey, and Tom Kelsey, ‘Groups and constraints:
Symmetry breaking during search’, in CP, ed., Pascal Van Henten-
ryck, volume 2470 of Lecture Notes in Computer Science, pp. 415-430.
Springer, (2002).

Tan P. Gent, Tom Kelsey, Steve Linton, Iain McDonald, Ian Miguel,
and Barbara M. Smith, ‘Conditional symmetry breaking’, in CP, ed.,
Peter van Beek, volume 3709 of Lecture Notes in Computer Science,
pp. 256-270. Springer, (2005).

Tan P. Gent, Karen Petrie, and Jean-Francois Puget, Handbook of Con-
straint Programming (Foundations of Artificial Intelligence), chapter
Symmetry in Constraint Programming, 329-376, Elsevier Science Inc.,
New York, NY, USA, 2006.

PB Gibbons and JA Webb, ‘Some new results for the queens domina-
tion problem’, Australasian Journal of Combinatorics, 15, (1997).
Brahim Hnich, ‘Thesis: Function variables for constraint program-
ming’, Al Commun, 16(2), 131-132, (2003).

Leslie De Koninck, Sebastian Brand, and Peter J. Stuckey, ‘Data inde-
pendent type reduction for zinc’, in ModRef10, (2010).

A. Lallouet, M. Lopez, L. Martin, and C. Vrain, ‘On learning constraint
problems’, in 22nd IEEE International Conference on Tools with Arti-
ficial Intelligence (ICTAI), volume 1, pp. 45-52, (2010).

James Little, Cormac Gebruers, Derek G. Bridge, and Eugene C.
Freuder, ‘Using case-based reasoning to write constraint programs’, in
CP, p. 983, (2003).

Toni Mancini and Marco Cadoli, ‘Detecting and breaking symmetries
by reasoning on problem specifications’, in Abstraction, Reformulation
and Approximation, volume 3607 of Lecture Notes in Computer Sci-
ence, pp. 165-181. Springer Berlin Heidelberg, (2005).

Kim Marriott, Nicholas Nethercote, Reza Rafeh, Peter J. Stuckey,
Maria Garcia de la Banda, and Mark Wallace, ‘The design of the zinc
modelling language’, Constraints 13(3), (2008).

Christopher Mears, Todd Niven, Marcel Jackson, and Mark Wallace,
‘Proving symmetries by model transformation’, in /7th International
Conference on Principles and Practice of Constraint Programming,
CP’11, pp. 591-605, Berlin, Heidelberg, (2011). Springer-Verlag.

P. Mills, E.P.K. Tsang, R. Williams, J. Ford, and J. Borrett, ‘EaCL 1.5:
An easy abstract constraint optimisation programming language’, Tech-
nical report, University of Essex, Colchester, UK, (December 1999).
N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack., ‘Minizinc: Towards a standard CP modelling language’, in
Proc. of CP 2007, pp. 529-543, (2007).

Andrea Rendl, Thesis: Effective Compilation of Constraint Models,
Ph.D. dissertation, University of St. Andrews, 2010.

Pascal Van Hentenryck, The OPL Optimization Programming Lan-
guage, MIT Press, Cambridge, MA, USA, 1999.

	Introduction
	Automated Constraint Modelling & Conjure
	Sources of Conditional Symmetry
	Sets
	Multisets
	Relations
	Partitions
	Functions

	Handling dontCare in Conjure
	Interaction with Search
	Experiments
	Consistent Symmetry Breaking
	Other uses of dontCare in refinement
	Conclusion

