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Abstract—Encoding to SAT and applying a state-of-the-art
SAT solver can be a highly effective way of solving constraint
problems. For many types of constraints there exist several
alternative SAT encodings; and the choice of encoding can sig-
nificantly affect SAT solver performance for any given problem.
Previous work has shown that machine learning (ML) can be
used to select SAT encodings for some constraint types, making
a choice for each relevant constraint type in a problem instance.
The state-of-the-art approach achieves good performance by first
building a small portfolio of configurations, then selecting a
configuration for a given problem instance using an ML model.
The approach necessitates generating training data for every
combination of encodings for the constraint types, thus it scales
exponentially as more constraint types are added. In this work,
we select potentially different encodings for each individual
constraint in a problem instance. We are able to match the
state-of-the-art performance while avoiding any limitation on the
number of constraint types considered. To achieve this we are
proposing new individual constraint features, we present a novel
method for generating training data, and we have developed a
new machine learning pipeline involving both unsupervised and
supervised learning.

Index Terms—Constraint programming, SAT encodings, ma-
chine learning, global constraints, pseudo-Boolean constraints,
linear constraints

I. INTRODUCTION

A popular and effective way of solving constraint satis-
faction and optimisation problems (CSPs and COPs) is by
reformulating them as instances of the Boolean satisfiability
problem (SAT). This process, known as encoding, can take into
account the particular structure of different constraint types in
the constraint modelling language. For many constraint types,
a variety of SAT encodings exist, i.e. schemes for representing
a constraint in a CSP as a set of Boolean variables and a
propositional formula over those variables.

The task of automatically selecting suitable encodings for
constraints into SAT has been addressed previously [1], [2],
[3]. Recent work shows that machine learning (ML) models
can be trained to select a good encoding for pseudo-Boolean
(PB) and linear integer (LI) constraints [3]. The ML-based
selections lead to significant performance improvements over
the single best encoding (based on the training set) even
when predicting encodings for problem classes not present
in the training set. The custom setup is also shown to greatly
outperform the sophisticated algorithm selection tool AUTO-
FOLIO [4]. In that work the choice was made once for each

relevant constraint type. In this work we also use specialised
features, but we make the selection for each individual PB or
LI constraint. We use the same constraint modelling pipeline
as the authors of LEASE-PI [3], namely the SAVILEROW
constraint modelling assistant [5] and the Kissat solver [6].
SAVILEROW works with models written in Essence Prime and
can produce output for a variety of back-end solvers, including
CP, SAT and SMT; Kissat has been consistently competitive
in SAT solving competitions during recent years [7].

The ML setup discussed in [3] was shown to learn well
to select good SAT encodings for PB and LI constraints,
especially when using features of the specific constraint types.
However, choosing one encoding for all constraints of a given
type in a problem instance potentially leads to two issues.
Firstly, a problem instance might contain many constraints
of the same type but with quite different features. A single
encoding selection may not be the best for all the constraints
of that type. Secondly, the features of individual constraints
are combined in [3] to produce a feature vector per instance,
potentially losing valuable information by aggregation.

Two questions naturally arise. Is it practical to train an ML
system to predict SAT encodings for each individual constraint
of a given type? And if so, how does the performance
compare to making one choice per constraint type in a CSP
instance? In this work we address these questions, describing
and evaluating an ML-based approach to learning to predict
encodings at the individual constraint level. We refer to this
system as INDICON. For ease of comparison, we refer to the
approach set out in [3] as LEASE-PI (for “Learning to Select
Encodings Per Instance”).

It is worth also noting that in LEASE-PI, the choice of PB
and LI encoding was made together; for training, a reduced-
size portfolio was used with 6 combinations of PB and LI en-
codings (out of a potential 81 combinations). Other constraint
types exist for which a variety of SAT encodings are available
(such as at-most-one and table). Extending the LEASE-PI
approach to further constraint types becomes impractical. In
INDICON, the training and prediction is made separately and
therefore allows easy extension to any further constraint types.

In summary, our contributions are as follows:
• We address the problem of selecting SAT encodings for

individual PB and LI constraints in instances of CSPs
from unseen problem classes.
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• We present and discuss how to obtain useful training data
for individual constraints.

• We adapt and extend the lipb features from [3] for PB and
LI constraints, in order to describe individual constraints.

• We evaluate empirically a number of alternative setups
for our approach.

The focus is not primarily on performance compared to ear-
lier work, but on scientific and methodological contributions:

• It is natural to ask whether setting constraint encodings
individually is more effective than setting the encoding
for all constraints of one type. We are investigating this
question by building the INDICON system.

• INDICON scales better than the earlier LEASE-PI ap-
proach, as discussed below.

• INDICON produces simpler ML models and that is ben-
eficial for explainability of decisions.

This work is from a PhD [8], which contains further details.

II. PRELIMINARIES

A constraint satisfaction problem (CSP) is defined as a
set of variables X , a function that maps each variable to its
domain, D : X → 2Z where each domain is a finite set, and
a set of constraints C. A constraint c ∈ C is a relation over a
subset of the variables X . The scope of a constraint c, named
scope(c), is the set of variables that c constrains. A constraint
optimisation problem (COP) also minimises or maximises the
value of one variable. A solution is an assignment to all vari-
ables that satisfies all constraints c ∈ C. Boolean Satisfiability
(SAT) is a subset of CSP with only Boolean variables and
only constraints (clauses) of the form (l1 ∨ · · · ∨ lk) where
each li is a literal xj or ¬xj . A SAT encoding of a CSP
variable x is a set of SAT variables and clauses with exactly
one solution for each value in D(x). A SAT encoding of a
constraint c is a set of clauses and additional Boolean variables
A, where the clauses contain only literals of A and of the
encodings of variables in scope(c). An encoding of c has at
least one solution corresponding to each solution of c. Pseudo-
Boolean (PB) and Linear Integer (LI) constraints are in the
form

∑n
i=1 qixi ⋄ k, where ⋄ ∈ {<,≤,=, ̸=,≥, >}, q1 . . . qn

are integer coefficients, k is an integer constant and xi are
Boolean or integer decision variables for PB and LI constraints
respectively. An at-most-one (AMO) constraint over a set of
Boolean decision variables requires that zero or one of them
are set to true.

III. METHOD

Figure 1 summarises the steps involved in INDICON:
1) We start with a corpus of problems (A), solve instances

with each single encoding choice per constraint type and
record the timings (B). These allow us to identify a good
default encoding choice for the instance.

2) We extract features of each individual PB or LI con-
straint in the problem instances (C).

3) We use a clustering algorithm to group all the relevant
constraints across all instances into clusters with similar
features (D).

(A) problem instances (with PBs or LIs)

(B) single-
choice timings

(C) constraint features

(D) constraints
labelled with cluster id

(E) encoding settings

(F) timing data
with clustered

encoding settings

(G) ML dataset with
per-constraint labels

(H) training data (I) test instances

(J) trained model

(K) INDICON timings
for evaluation

Preparation of ML Dataset

Training and Testing (×50)

solve (1) (2) extract features

cluster constraints (3)

prepare
systematic

encoding
choices (4)

solve (5)

train (8)

(6) label

train/test split (7)

(9) solve

Fig. 1: The steps involved in INDICON.

4) We prepare a number of encoding settings (E) for each
instance so that we can systematically try different
encodings for constraints by cluster.

5) Each problem is solved by SAVILEROW [5] using a fast
SAT solver with the per-cluster encoding settings (E)
and we record the resulting runtimes (F).

6) The timing results allow us to generate a training set (G)
with the best encoding label for each constraint.

We are now in a position to configure and train an ML
model on the features and labels obtained above. For the
sake of robustness, the entire process of splitting the corpus,
training and testing is repeated 50 times for each setup.

7) The problems (A) are split into training and testing in-
stances (H,I), keeping instances from the same problem
class together, i.e. only in either the training or test
set. This means we are making predictions for problem
classes which have not been seen in the training phase.

8) An ML model is trained (J) to predict per-constraint
encodings.

9) To evaluate performance, we solve the instances in our
test set (I), consulting the ML model (J) to decide
which encoding to use for each individual constraint,
and recording the time taken (K) in order to analyse the
performance.

In the rest of this section we briefly present the details of the
steps introduced above. Further details, results and discussion
can be found in [8].



A. Problem Corpus

The problems used are largely the same as in LEASE-
PI [3], [9] (with the addition of more nurse scheduling
problems based on instances in NSPLIB [10]), providing a
variety of problem categories. The corpus consists of 50
constraint models with up to 50 instances each. There are 551
instances featuring PBs and 347 with LIs. Constraint models
include problem classes such as nurse scheduling, car sequenc-
ing, knapsack, n-queens, balanced incomplete block design
(BIBD), quasigroups, equidistant frequency permutation arrays
(EFPA), multi-mode resource-constrained project scheduling
(MRCPSP), and optimum portfolio design (OPD).

B. Menu of PB and LI Encodings

We use the same 9 encodings for PB and LI as in [3]: the 8
PB(AMO) encodings described and analysed in [11] (GGPW,
GGT, GGTd, GLPW, GMTO, GSWC, MDD, RGGT) as well
as the non-AMO-aware Tree encoding [3] – all 9 encodings
are in SAVILEROW. A PB(AMO) is a PB constraint where the
decision variables are partitioned into subsets, each subject
to an AMO constraint. The AMO partition is automatically
detected [12] for existing PB constraints. LI constraints (if not
encoded with Tree) are reformulated into PB(AMO)s where
each integer variable becomes a set of Boolean variables with
an AMO constraint. An equality (either PB or LI) can be either
encoded with Tree or broken down into two inequalities and
encoded with a PB(AMO) encoding.

Integer decision variables are encoded with the order encod-
ing for Tree and with the direct encoding for the PB(AMO)
encodings. Where both encodings are generated (due to a mix
of PB/LI encodings or the presence of other constraints), SAT
clauses are generated to channel the two representations. This
has the potential to create larger encodings, but Tree performs
well overall and so we include it in our menu nevertheless.

C. Feature Extraction

We adapt the feature extraction to consider the same as-
pects of PB/LI constraints as in the lipb featureset used
in LEASE-PI [3]. In that work, the features of individual
constraints were aggregated across all the constraints in a
problem instance, but here we record each feature of the
individual constraint. In addition, we extract the following:
is equality records whether the constraint is an equality
(rather than ≤); amog maxw med is the median maximum
weight across AMO groups and gives more information about
the distribution of maximum weights in the AMO groups when
coupled with the existing mean measure amog_maxw_mn;
amog maxw mn2k is the ratio of the mean of maximum
coefficients in the AMO groups to the upper limit k and
could be an indication of how difficult the constraint will be
to satisfy, with a higher value meaning a tighter constraint;
amog maxw sum (the sum of the maximum coefficients) tells
us the size that the “left-hand side” of the comparison could
potentially reach. The complete list of resulting features is
given in Table I.

TABLE I: Features used by INDICON, with their identifier and
brief description. The New column shows new features added
just for INDICON, in addition to LEASE-PI’s lipb features [3].

New Feature Description

n Number of terms
wsum Sum of coefficients
q0 Minimum coefficient
q2 Median coefficient
q4 Maximum coefficient
iqr IQR of coefficients
skew Coefficients’ quartile skew
sepw Number of distinct coefficient values
sepwr Ratio of distinct coefficient values to

number of coefficients
✓ is equality Is it an equality constraint?

k Right-hand side k of the constraint
amogs Number of At-Most-One groups

(AMOGs)
amog size mn Mean size of AMOGs
amog size mn r2n Mean AMOG size ÷ number of terms

✓ amog maxw med Median size of the maximum coefficient
across AMOGs

amog maxw mn Mean size of the maximum coefficient
across AMOGs

✓ amog maxw mn2k The ratio of amog maxw mn : k
✓ amog maxw sum Sum of the maximum coefficients in

each AMOG
amogs maxw skew Skew of the maximum coefficient in

AMOGs
✓ amog maxw sum k prod amog maxw sum ×k

D. Obtaining Training Data

The requirement for our training data is a feature vector
per constraint (for the constraint type in question) as well as
a target label to learn. We initially solve each instance in the
corpus using each of the encodings available to establish a
baseline default encoding for each problem instance. To obtain
the target label, we adopt two approaches.

Inheriting from Host Instance: In this approach we use
the baseline encoding of the instance (as described above) as
the target label for all the constraints in the instance. This is
an easy way to generate a training set, but it relies heavily on
the assumption that constraints of one type will have similar
characteristics within one problem instance, which seems in
opposition to the motivation behind INDICON. Nevertheless,
it turns out to be a useful method overall.

Clustering Across the Corpus: We cluster the individual
constraints into groups across all the instances in the corpus.
We use agglomerative clustering (as implemented in [13])
because it allows us to choose the number of clusters according
to the data, rather than having to specify it arbitrarily as
in some alternative unsupervised learning algorithms. Each
feature vector of a constraint begins by being its own cluster.
As we increase the allowed distance between points in a
cluster, clusters merge. This is illustrated in Figure 2. In the
first dendrogram (for PBs), we see for example that as the
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Fig. 2: Dendrograms showing agglomerative clustering by
constraint features. The x-axis shows the Euclidean distance
between clusters. On the y-axis labels indicate the number of
data points in a branch.

inter-cluster distance passes 12, 6 clusters become 5. The data
remains split into 5 clusters until the distance is 19. Then, the
clusters keep joining quite quickly until we reach a distance
of 27 and we’re left with 2 clusters. For our purpose we
observe that 2 clusters and 5 clusters cover the largest ranges
of distances. Of these we choose 5 clusters as this allows
us to try more configurations for our encodings while still
being practical to implement. Using similar reasoning for the
LI constraints (illustrated in the second dendrogram), we select
6 clusters. In preliminary experiments we also worked with 3
clusters, but 6 clusters gave better results.

Systematically Timing Combinations of Encodings: Once
each individual constraint is associated to a cluster, we need
to try different combinations of encodings by cluster in order
to obtain runtimes and thereby label the constraints in each
cluster with a target encoding. Recall that we have 9 candidate
encodings. Consider an instance with 5 clusters of constraints
– an exhaustive approach would try every possible combina-
tion; however, that would amount to 95 combinations which
would take an enormous amount of compute time to run. A
compromise is to choose the single best choice as the baseline
encoding for all constraints and then change the encodings
of one cluster of constraints in turn. This way the example
above would require (1 + 8× 5) = 41 combinations. Solving
the instance 41 times remains practical to implement and the
number of runs needed scales linearly with the number of
encoding choices for a fixed number of clusters.

E. Training and Testing

We split our corpus into training and test sets randomly,
ensuring that instances of a problem class are either in
the training or test set, never in both. This means we are
attempting the challenging task of making predictions for
unseen problem classes. The train/test split is approximately
80% : 20% (approximate because of the different numbers of
instances available for each problem class). We carry out 50
splits with different random seeds.

Similar to [3] we train classifiers to select between pairs of
encodings; the final prediction is the result of voting from the

TABLE II: INDICON performance for the best 3 setups for
PB and LI constraints, ordered from best to worst performing.
Each setup is tested over 50 train/test splits. Performance is
measured using PAR10 and shown as a multiple of the Virtual
Best* (single-choice) time. Also shown are: the Single Best
time; the number of clusters from which the training data was
obtained; the ML classifier used – decision trees (DT), random
forests (RF), or gradient boosted trees (GB).

INDICON for PB INDICON for LI

Setup Runtime Setup Runtime

Clusters Classifier PAR10 VB* Clusters Classifier PAR10 VB*

1 RF 5.57 Single Best 4.53
1 DT 5.69 6 RF 6.44
5 GB 8.10 1 RF 6.70
Single Best 11.58 6 GB 11.12

trained classifier models. We separately train random forests,
gradient boosted trees and simple decision tree models. In
early experiments we also tried k-nearest neighbours and sim-
ple neural networks, as well as an ensemble of all classifiers
mentioned above, but the performance was worse than with
the classifiers we present here.

F. Experimental Setup

Experiments were carried out on a cluster with Intel Xeon
6138 20-core 2.0 GHz processors; the memory limit per
job was 6GB. SAVILEROW was run with AMO detection
switched on, a SAT clause limit of 10 million, and a 1 hour
timeout. Kissat (sc2021-sweep) was used, with its own 1-
hour timeout. Each run is repeated with 5 different seeds; the
median runtime is calculated and a 10-fold penalty is applied
for any total runtime over 1 hour to give PAR10 results.

IV. RESULTS AND DISCUSSION

The corpus contains problem classes with PBs, LIs, or both.
We apply INDICON separately to these two constraint types,
using the problems containing the relevant constraint type.

A. Selecting Encodings for One Constraint Type

To evaluate the performance of INDICON, we record the
PAR10 running time for the 50 test sets as a multiple of the
virtual best time achievable by using a single encoding. It is
prohibitive to calculate a true virtual best by running every
single combination of encodings for every constraint in any
sizeable instance. Our reference is called VB* to emphasise
that this is a single-choice virtual best. We also show the single
best (SB) result, which is the result of always choosing the
one encoding which performed best on the training set.

The results are shown in Table II. For this corpus INDICON
seems to work better for PBs than for LIs, with the best setup
achieving 5.57 times the VB* time, compared to 11.58 times
for the single best (SB) time. In the LI setting, INDICON
does not even match the SB performance of 4.53 on this
corpus, coming in at 6.44 times VB*. This may be explained
to an extent by the fact that in [3] the authors found that the
choice of PB encoding could make a much bigger difference
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Fig. 3: Number of instances solved by CPU time up to 1
hour for the single-choice virtual best (VB*), single best (SB),
default encoding (Def), best LEASE-PI setup and INDICON.

to solving performance, whereas for LIs it tended to be the
case that there was one encoding (GGPW) which usually
outperformed the others.

In terms of the classifiers used, it is interesting that a simple
decision tree classifier employed in a pairwise voting setup is
performing almost as well as random forests for selecting the
PB encoding – this opens up the way to more explainability
for the encoding choice made.

The best setups for PB come from the non-clustered training
data, i.e. where the target label for training was simply the
encoding which worked best for the host instance of every
constraint. In the LI setting, the setup using 6 clusters slightly
outperforms the setup based on the simpler labelling source.

B. Comparison with Per-Instance Selection in LEASE-PI

We carry out a second experiment in order to compare
the performance of INDICON with LEASE-PI. We consider
the 250 instances which contain both PB and LI constraints
and appear in at least one of the LEASE-PI and one of the
INDICON test sets. For each instance we randomly sample
with replacement 100 results from LEASE-PI and 100 results
of running INDICON to select both PB and LI encodings. Each
solving run is done 5 times and the median time is recorded
to account for randomness in SAT solving.

The results are shown in Figures 3 and 4. Figure 3 shows
how many instances were solved as we increase the CPU time.
INDICON is competitive with LEASE-PI and does better for
some of the harder instances which take around 3000 seconds
to solve. This slight edge is confirmed by the mean PAR10
solving time across the 25000 “contests”: for LEASE-PI the
mean is 1161 seconds with 689 timeouts, and for INDICON
the mean is 1145 seconds with 668 timeouts. In Figure 4 we
see a fairly consistent performance between the two selectors,
without any extreme differences as there are no crosses in
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Fig. 4: PAR10 times for the best LEASE-PI versus INDICON
where INDICON has set both PB and LI encodings. The num-
ber of timeouts is 689 for LEASE-PI and 668 for INDICON.

the top left or bottom right corners. The curve at the bottom
left indicates that LEASE-PI is doing better on the easiest
instances, whose runtime is under 1 second. The overhead
of retrieving a separate encoding choice for each constraint
from the ML classifiers becomes less significant as the overall
solving times increase for harder problems.

The LeaSE-PI paper [3] has a section (Analysis of the
configuration space) which shows that the best choice for LI
was dominated by one good choice, whereas for PB constraints
the best choice of encoding was much more varied. This is
not fully explained, but it could be that in the corpus we used
the sum (LI) constraints were encoding larger integer values,
whereas the coefficients in the PBs were smaller. The mean
value for median coefficient in a PB is 1.03, compared to
142 for LI constraints. In INDICON we once again find that
selecting encodings for PB constraints affects the performance
more than for LI constraints, as discussed in Section IV-A.

A final observation is that in LEASE-PI the ML setup is
able to take into account both types of constraints across the
entire instance, so to some extent it could learn combinations
of constraint choices based on how decision variables are
shared between the different constraints. Here, we make the
choice in isolation for each constraint type but are still able to
match the performance of LEASE-PI. We did run trials which
included whole-instance features in the INDICON training
data, but performance actually suffered.

C. Analysis of Encodings Choices

1) PB constraints: We present in Table III a summary of
the variety of distinct encoding choices made for all the PB
constraints in our corpus when using the most successful setup,
i.e. pairwise random forest classifiers using a single cluster for
target labels. Leaving aside the models which just have one
PB constraint, such as knapsack, we observe that for many



TABLE III: Distinct PB encoding choices made per instance
by INDICON for problems with at least 10 instances. We show
the model name, # of instances, the mean number of PBs per
instance, the min., max., and mean number of choices, as well
as the standard deviation.

Problem Class # inst # PBs # distinct encodings used

min max mean std

bibd 19 174.42 1 4 2.15 0.54
bibd-implied 22 212.86 1 3 2.15 0.39
blackHole 11 101.09 1 2 1.14 0.35
bpmp 14 7.00 1 1 1.00 0.00
carSequencing 49 975.20 1 3 1.43 0.73
efpa 20 78.30 2 3 2.08 0.28
handball7 20 516.00 1 2 1.17 0.37
killerSudoku2 50 1149.10 1 2 1.17 0.38
knapsack 18 1.00 1 1 1.00 0.00
knights 44 85.23 1 2 1.02 0.14
langford 39 73.10 1 2 1.10 0.30
mrcpsp-pb 20 100.45 1 3 1.39 0.53
n queens 20 1326.50 1 2 1.25 0.44
n queens2 16 256.50 1 2 1.33 0.48
nurse-sched 50 99.12 1 2 1.89 0.32
opd 33 11.18 1 2 1.73 0.45
sonet2 24 10.00 1 2 1.47 0.50

TABLE IV: PB encodings selected by INDICON in 50 test sets.
We show the number of constraints for which each encoding
has been selected, as a total and as a proportion; we also show
how often each encoding was the single best encoding (SB)
for an instance.

Encoding individual constraints instance single best

freq. % freq. %

Tree 1,134,061 94.8 255 46.3
MDD 60,335 5.0 76 13.8
GGPW 968 0.1 79 14.3
GGTd 733 0.1 49 8.9
GGT 0 0 17 3.1
GMTO 0 0 20 3.6
GLPW 0 0 8 1.5
RGGT 0 0 21 3.8
GSWC 0 0 26 4.7

problems several encoding choices are made within instances.
These include BIBD, EFPA, nurse scheduling and OPD.

A further insight is given in Table IV which shows how
often each encoding was chosen by INDICON across the test
sets for PB constraints, once again using the best-performing
setup. The table also shows the distribution of single best
encoding for instances as a whole (recall that this is used at
the beginning of building the training data to obtain good base
encodings). We see that the selections made by INDICON rely
mostly on the Tree and MDD encodings, using them almost
exclusively. The distribution of encodings in the single best
column suggests that INDICON is not making full use of the
suite of encodings available; however, the results shown earlier
in Table II indicate that the ability to select the encodings
at individual constraint level gives a significant performance
advantage over the single best choice.

As an aside, we carried out the same analysis of encoding

TABLE V: Distinct LI encoding choices as in Table III.

Problem Class # inst # LIs # distinct encodings used

min max mean std

briansBrain 16 1.00 1 1 1.00 0.00
handball7 20 633.15 2 3 2.67 0.48
immigration 23 1.00 1 1 1.00 0.00
killerSudoku2 50 64.96 2 5 2.49 0.63
knapsack 24 1.00 1 1 1.00 0.00
knights 44 168.45 1 2 1.15 0.36
life 16 219.94 2 4 2.52 0.70
molnars 17 2.00 1 2 1.45 0.50
mrcpsp-pb 19 29.21 1 6 2.42 0.87
opd 33 80.58 1 3 2.00 0.47
sonet2 24 1.00 1 1 1.00 0.00

TABLE VI: LI encodings selected by INDICON as in Table IV.

Encoding individual constraints instance single best

freq. % freq. %

GGPW 150,933 72.3 78 22.5
RGGT 42,486 20.3 27 7.8
GMTO 6,623 3.2 10 2.9
GSWC 3,735 1.8 16 4.6
GLPW 2,021 1.0 3 0.9
GGTd 2,001 1.0 22 6.3
GGT 871 0.4 18 5.2
Tree 178 0.1 136 39.2
MDD 0 0 37 10.7

selections using the second-best performing setup which uses
decision trees rather than random forests. We observed a
bigger spread of selections, and almost identical performance.
It appears that the random forest classifiers are yielding a
narrower set of predictions which are more robust than the
ones obtained from just using decision trees.

2) LI constraints: We turn our attention to the selection of
encodings for LI constraints. We focus on the best performing
setup, which for LI is pairwise random forest classifiers trained
on timings which were obtained from 6 constraint clusters.
The summary statistics of the number of distinct LI encoding
selections is shown in Table V. Broadly there are fewer LIs per
instance (compared to problems which had PBs, Table III), but
there are more problem classes where at least two choices are
used and indeed cases where 6 different encodings are used.

The distribution of encodings used is broader for LIs than
for PBs; in Table VI there is still a dominant choice (this time
GGPW), but RGGT is also selected for 20% of constraints and
all encodings except MDD are picked at some point. When
we compare against the single best encodings shown on the
right of the table, we may deduce that INDICON is missing
out on some very good choices; however this conclusion is
not necessarily sound because the single best choice cannot
apply different encodings to individual constraints.

D. Explaining Decisions using Decision Trees

We noted earlier that decision trees in a pairwise arrange-
ment perform almost as well as random forests for selecting
PB encodings. To illustrate how this selection is made, we
show in Figure 5 one example decision tree produced in the



k ≤ 1.5
p = 100%

isequality ≤ 0.5
p = 48.2

p = 11.0%
RGGT

p = 37.1%
GSWC

q2 ≤ 1.5
p = 51.8%

p = 46.6%
GSWC

p = 5.2%
RGGT

Fig. 5: Decision tree from one pairwise training run for PB
encodings. The p values are the proportion of training samples;
on the left side of operators are features, e.g. k is the upper
limit of the PB constraint, q2 is the median coefficient, and
isequality is 1 for an equality constraint and 0 otherwise.

training phase. This particular tree is selecting between RGGT
and GSWC. The first branch is on the upper limit k of the PB
constraint; when the upper bound is small (the left branch),
then the choice comes down to whether we are dealing with an
equality; however, when the upper limit is at least 2 (the right
branch), then the choice depends on the median coefficient q2.

V. RELATED WORK

LEASE-PI selects SAT encodings per constraint type using
ML; in [3] the authors compare LEASE-PI’s performance
with AUTOFOLIO [4] which is a sophisticated (albeit general)
algorithm selection tool. LEASE-PI significantly outperforms
AUTOFOLIO on the specific task in question. In this paper
we show that INDICON performs slightly better even than
LEASE-PI. In earlier work, Soh et al. [14] select between
the order, log and a hybrid encoding on the basis of a single
criterion related to the domain size of the variables involved.
PBLIB [15] provides a PB2CNF class which selects the
encoding based purely on the size of the constraint. ML is
used to select SAT encodings for integer variables in MeSAT
[2]. Proteus [1] also makes this kind of choice based on CSP
instance features, having first chosen whether to use a SAT
or CP solver; it also predicts which SAT solver to use. An
automated approach to extracting SAT problem features has
been proposed [16], using autoencoders to represent the SAT
formula in a low-dimensional space – this approach could be
used to extract features of PB and LI constraints in our work.

VI. CONCLUSION

We have presented INDICON, an ML system for selecting
SAT encodings of individual constraints in a CP model. To
our knowledge, INDICON is unique in choosing an encoding
for each constraint separately. We have shown that the perfor-
mance of INDICON for selecting both PB and LI constraint
encodings is marginally better than the existing state of the
art. The key benefits of INDICON compared to the prior work
are scaling and simplicity (leading to explainability). It treats
each constraint type as a separate ML problem, and as a
consequence it scales linearly in the number of constraint
types (unlike LEASE-PI [3], the best version of which scales
exponentially in the number of constraint types). INDICON

typically learns simpler models than LEASE-PI, which bene-
fits explainability of the system. Even very simple ML models
such as decision trees can provide competitive results in this
context as demonstrated in our experimental evaluation, in
which selections are made for unseen problem classes. We
also share insights about the distribution of encoding selections
made by INDICON for PB and LI constraints.

ACKNOWLEDGMENTS

We thank the UK EPSRC for grants EP/W001977/1 and
EP/R513386/1. We used Viking, a compute cluster provided
by the University of York. We are grateful to the University
of York, IT Services and the Research IT team.

REFERENCES

[1] B. Hurley, L. Kotthoff, Y. Malitsky, and B. O’Sullivan, “Proteus: A
Hierarchical Portfolio of Solvers and Transformations,” in Integration of
AI and OR Techniques in Constraint Programming, ser. Lecture Notes
in Computer Science, H. Simonis, Ed. Cham: Springer International
Publishing, 2014, pp. 301–317.
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