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Abstract

When solving a combinatorial problem using
propositional satisfiability (SAT), the encoding of
the constraints is of vital importance. Pseudo-
Boolean (PB) constraints appear frequently in a
wide variety of problems. When PB constraints oc-
cur together with at-most-one (AMO) constraints
over the same variables, they can be combined into
PB(AMO) constraints. In this paper we present
new encodings for PB(AMO) constraints. Our ex-
periments show that these encodings can be sub-
stantially smaller than those of PB constraints and
allow many more instances to be solved within a
time limit. We also observed that there is no sin-
gle overall winner among the considered encod-
ings, but efficiency of each encoding may depend
on PB(AMO) characteristics such as the magnitude
of coefficient values.

1 Introduction

Discrete decision-making problems crop up in many contexts
in the modern world. Such problems can be expressed as
constraint satisfaction (or optimisation) problems (CSPs or
COPs), then solved using a variety of solver types. An in-
creasingly popular and successful approach to solving CSPs
and COPs is to encode them into Boolean formulas and then
to apply an off-the-shelf SAT solver. This approach is at-
tractive because of the power of modern conflict-directed
clause learning (CDCL) SAT solvers, which incorporate con-
flict learning, powerful search heuristics, and fast propagation
of the Boolean constraints.

Linear equations and inequalities are ubiquitous in con-
straint problems such as scheduling, routing, resource alloca-
tion, and many other hard combinatorial problems. Pseudo-
Boolean (PB) constraints are a particular type of linear con-
straint of the following form, where q1, . . . , qn and K are in-

∗This is an extended abstract of the paper [Bofill et al., 2022],
that was published in the Artificial Intelligence journal in 2022.

teger constants, and x1, . . . , xn are 0/1 variables:
n∑

i=1

qixi #K where # ∈ {<,≤,=,≥, >}

There has been a great deal of work on encoding PB
constraints to SAT, some of which is reviewed by Philipp
and Steinke [2015]. State-of-the-art encodings are based
on Binary Decision Diagrams [Eén and Sorensson, 2006;
Abı́o et al., 2012], Sequential Weight Counters [Hölldobler
et al., 2012], Generalized Totalizers [Joshi et al., 2015; Zha
et al., 2019], and Polynomial Watchdog schemes [Bailleux et
al., 2009; Manthey et al., 2014]. At-most-one (AMO) con-
straints (i.e. constraints of the form

∑m
i=1 xi ≤ 1) are also

very common, with the most basic being a mutual exclusion
between two 0/1 variables.

Combinations of PB and AMO constraints usually appear
in settings where one option has to be chosen among a set of
incompatible options, and the decision has an associated cost.
Bofill, Coll, Suy, and Villaret [Bofill et al., 2017b; Bofill et
al., 2020] proposed a SAT encoding based on Multi-valued
Decision Diagrams (MDDs) for a conjunction of a PB con-
straint with a set of AMO constraints over the variables of the
PB constraint. Such conjunctions are referred to as PB(AMO)
constraints. The AMO constraints (which are encoded sepa-
rately and may be encoded to SAT using any AMO encoding)
allow certain interpretations to be erased from decision dia-
grams, and to represent the PB constraint as an MDD instead
of as a Binary Decision Diagram (BDD). The encoding of
the MDD is notably smaller than the encoding of an equiva-
lent BDD, and the solving time is substantially reduced. This
technique has been used to provide efficient formulations of
particular kinds of scheduling problems [Bofill et al., 2017b;
Bofill et al., 2017a]. Also, Ansótegui et al. [2019] integrated
the MDD-based SAT encoding of PB(AMO) constraints into
the automatic reformulation pipeline of Savile Row [Nightin-
gale et al., 2017], showing important size and solving time
improvements compared to a BDD-based encoding oblivious
to the existence of AMO constraints.

This work is an extended abstract of Bofill et al. [2022],
whose main contribution is to generalize five state-of-the-art
SAT encodings of PB constraints to encode PB(AMO) con-
straints, as well as the introduction of new optimizations for
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Figure 1: Sequential Weight Counter representation of 2x1 + 3x2 + 4x3 + 7x4 ≤ 8 (left) and of (2x1 + 3x2 + 4x3 + 7x4 ≤
8, {{x1, x2}, {x3, x4}}) (right).

already existing encodings of PB constraints. In this extended
abstract we provide a summary of the main idea behind the
generalizations (Section 2), an overview of the new encod-
ings (Sections 3, 4 and 5), and we briefly comment on the
results of our experimental evaluation (Section 6).

In this extended abstract we just provide schematic rep-
resentations of the developed encodings as well as a short
description of the encoding idea, so that the reader can vi-
sually appreciate the size reductions achieved thanks to us-
ing PB(AMO) encodings. The original work contains many
other details, including: normalization and reduction tech-
niques for PB(AMO) constraints; detailed explanation of the
existing PB encodings and the introduced ones; formal def-
initions of the clauses introduced by the different encod-
ings; detailed examples for all encodings; proofs of cor-
rectness, sizes and propagation properties of all encodings;
new heuristics to build unbalanced totalizers that generate
smaller formulas; and extensive experiments with two rep-
resentative SAT solvers on existing and new benchmarks
for different problem classses, namely: the Nurse Schedul-
ing problem, the Combinatorial Auctions problem, the Mul-
timode Resource-Constrained Project Scheduling Problem,
the Resource-Constrained Project Scheduling Problem with
Time-Dependent Resource Capacities and Requests; and the
Multi-choice Multidimensional Knapsack Problem.

2 Encoding Technique
There exist a myriad of techniques to encode AMO and PB
constraints to SAT. Therefore, the straightforward approach
for a problem containing both kinds of constraints is to en-
code each of them separately with some existing technique,
and join the resulting sets of clauses. However, when the vari-
ables of a PB constraint also occur in AMO constraints, we
can do much better. As a motivating example, consider the
PB constraint:

2x1 + 3x2 + 4x3 + 2x4 + 3x5 + 4x6 ≤ 7

Also, suppose there are two AMO constraints: x1+x2+x3≤1
and x4+x5+x6≤1. Encoding the PB constraint alone would
require several clauses and (depending on the chosen encod-
ing) multiple additional variables. For example, the General-
ized Totalizer encoding [Joshi et al., 2015] has 23 additional
variables and 56 clauses. However, the two AMO constraints
rule out most of the values that the sum (2x1+ · · ·+4x6)

could take, and almost all such values that break the PB con-
straint. Encoding the PB constraint together with the two
AMO constraints requires just one clause to prevent x3 and
x6 being assigned true together. This simple observation un-
derpins all the PB(AMO) encodings presented in this paper.

In our encodings, we consider PB constraints such that all
their variables also belong to some AMO constraint. No-
tice that this is not a limitation in the sense that any single
variable x can constitute itself an AMO constraint x ≤ 1
if no other AMO constraint contains it. Moreover, we re-
quire the AMO constraints to be disjoint. Again, this is not a
limitation, since we can always remove variables from AMO
constraints to achieve this property, e.g. if we have the con-
straint x1+x2+x3≤1, implicitly we also have the constraint
x1+x2≤1. We refer to this kind of conjunction between one
PB constraint and a set of AMO constraints as a PB(AMO)
constraint.

The encoding technique we employ for PB(AMO) con-
straints works as follows. First, we will encode all AMO con-
straints with some existing technique, thus obtaining a set of
clauses F1. Then, instead of constructing a full encoding of
the PB constraint, we construct a simplified version assuming
that the AMO constraints will hold, obtaining a set of clauses
F2. The resulting encoding of the PB(AMO) constraint is
F1∪F2. In order to take into account the AMO constraints in
the second step, we consider the PB constraint and a partition
of its variables. In particular, the variables of each part cor-
responds to the variables of a different AMO constraint. For
instance, in the motivating example given before, we consider
the tuple:

(2x1 + 3x2 + 4x3 + 2x4 + 3x5 + 4x6 ≤ 7,

{{x1, x2, x3}, {x4, x5, x6}})

One encoding of the example would be F1 = {(x1 ∨
x2), (x1 ∨ x3), (x2 ∨ x3), (x4 ∨ x5), (x4 ∨ x6), (x5 ∨ x6)},
and F2 = {(x3 ∨ x6)}.

The generation of F1 can be easily achieved with any ex-
isting encoding technique for AMO constraints. In this work
we present many encoding techniques for F2, taking as input
the PB constraint and variable partition.

3 Sequential Weight Counter Encoding
The Sequential Weight Counter encoding for PB constraints
was defined in [Hölldobler et al., 2012], and is illustrated
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Figure 2: Totalizer representation of 2x1 + 3x2 + 4x3 + 5x4 + 3x5 + 4x6 + 6x7 + 8x8 ≤ 10 (left) and, of (2x1 + 3x2 + 4x3 + 5x4 +
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by Figure 1 (left). The resulting CNF formula simulates
a circuit that sequentially sums the coefficients of the vari-
ables assigned 1. For each variable, we include a compo-
nent (counter) that increases (if needed) the accumulated sum
value. Finally, the clauses of the encoding also require that
the sum never exceeds the maximum allowed by the PB con-
straint.

Taking into account that some subsets of variables satisfy
an AMO constraint, we can reduce the number of counters.
In particular, all the variables of a same part of the parti-
tion (AMO constraint) share the same counter. As illustrated
by Figure 1 (right), this effectively decreases the number of
counters, and therefore the number of output pins (auxiliary
variables) and the number of clauses.

4 Totalizer-Based Encodings
A totalizer is a binary tree where the leaf nodes represent
items to be summed, and each non-leaf node represents the
sum of its two children. An encoding of PB constraints based
on totalizers was presented by Joshi et al. [2015] and named
Generalized Totalizer (GT). In GT, each leaf node is attached
to a single PB term qixi, and takes the value qi when xi is
true and 0 otherwise. An example of a totalizer representing
a PB constraint can be seen in Figure 2 (left). The SAT en-
coding consists of a CNF formula simulating the totalizer as
well as a clause forbidding that the maximum allowed sum is
exceeded at the root node. Note that each node of a totalizer
represents an integer value. In the GT encoding, these values
are (roughly) represented as an order encoding, i.e., for each
value v ∈ 0, . . . , k, that a node O can take, we introduce the
variable o≥v . The encoding is optimized by only introduc-
ing auxiliary variables o≥v for values v that are reachable by
adding the two children.

Zha et al. [2019] presented an alternative totalizer-based
encoding for PB constraints, named n-level MTO (Modulo
Totalizer). In the MTO, the value of the nodes is represented
with a decomposition into multiple digits in a mixed radix
base. For instance, in a decimal decomposition, we would in-
troduce variables representing the value of the units, variables
for the tens, the hundreds, the thousands, etc. This typically
results in much smaller formulas but with weaker propagation
properties.

In our work we present generalizations of both GT and
MTO to encode PB(AMO) constraints. The overall idea of
the generalization is the same in both cases and illustrated in
Figure 2 (right). Here, instead of associating only one vari-

able to a leaf node, we associate all the variables of an AMO.
However, the way of achieving this association is different
for GT and for MTO (more details can be found in the full
paper). By grouping the variables of the AMO constraints,
we can reduce the number of leaves of the totalizer which in
turn will reduce the number of clauses and auxiliary variables
of the encoding.

Another contribution of our work is a new totalizer-based
encoding, which is novel not only for the PB(AMO) case but
also for the classical PB setting. We call this encoding the
Reduced Generalized Totalizer (RGT). The starting point of
RGT is the tree structure of the GT encoding. Once the tree
is constructed, it applies a reduction algorithm in order to ob-
tain a more compact representation that replaces individual
numeric values with intervals. In some cases, RGT will de-
tect that terms in the PB constraint are redundant. When this
occurs the redundant terms are removed and the entire encod-
ing process is repeated (until a fixpoint is reached). RGT is
frequently substantially smaller than GT and this translates to
improved solver efficiency.

5 Watchdog-Based Encodings
Two different PB encodings were presented in [Bailleux et
al., 2009], namely the Global Polynomial Watchdog (GPW)
and the Local Polynomial Watchdog (LPW). Both of them
use as a basis a so-called polynomial watchdog circuit, rep-
resented in Figure 3 (left). GPW uses just one polynomial
watchdog, while LPW introduces one polynomial watchdog
for each variable, and the practical difference is that the for-
mer results in smaller formulas but with weaker propagation
properties. This kind of circuit decomposes the coefficients of
the variables in a binary representation. The variables of ev-
ery bit are added with sorter circuits, and the different bits are
later added in merger circuits. Whenever the maximum value
of the PB is surpassed, the so-called watchdog pin (variable)
w is set to true.

The basic idea of our PB(AMO) generalization, illustrated
in Figure 3 (right), is to represent the j-th bit of all variables
of the i-th AMO with a single auxiliary variable yi,j . This can
reduce the number of inputs of the sorters, and by extension
reduce the number of variables of clauses not only to encode
the sorters but also the mergers, as can be appreciated with
the decrease of pins in Figure 3 (right).

Moreover, in the original work we present many formula
reduction techniques for watchdog-based encodings, espe-
cially for LPW, based on reusing pins and components of the
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circuits. These size reductions are especially suitable in the
PB(AMO) case, where the assumption of AMO constraints
allows for extra circuit reuses.

6 Results

As proved in the original work, the newly introduced encod-
ings for PB(AMO) constraints maintain the same propaga-
tion strength by unit-propagation that their PB counterparts
have. We also achieve theoretical size reduction of the en-
codings, both in terms of number of auxiliary variables and
number of clauses. This is certified by our experimental sec-
tion, where we can identify size reductions of up to three or-
ders of magnitude. This reduction in size has a clear impact
on the solving times, which are drastically reduced with the
PB(AMO) approach, based on experiments conducted with
two recent CDCL SAT solvers. Compared to their PB coun-
terparts, PB(AMO) encodings allow many more instances to
be solved within a time limit, and solving time is improved by
more than one order of magnitude in some cases. Similarly,
the new totalizer-based encoding and the presented totalizer-
building heuristic also generate smaller encodings and im-
prove the solving times.

In Table 1 we show a few selected experimental results
from the full paper, with five encodings chosen from the eight
encodings in the full paper, with only one problem class, and
with only one SAT solver. The selected results show very
clear benefits from using PB(AMO) encodings on that prob-
lem class, with a very substantial reduction in the number of
time-out instances.

We also show empirically the usefulness of having distinct
encodings with different properties, usually with trade-offs
between number of variables, number of clauses and propa-
gation strength, since the best choice depends on the tackled
problem class.
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PB PB(AMO)

Enc. Med. time t.o. Enc. Med. time t.o.

BDD 4.87 117 MDD 1.03 41
SWC 8.44 162 GSWC 1.70 41
GTd 3.33 75 GGTd 1.79 35
RGT 4.56 154 RGGT 1.28 38
GPW 7.91 187 GGPW 1.10 26

Table 1: Solving times and number of timeouts using CaDiCaL with
the RCPSP/Tj120 benchmarks. Median time (in seconds) and num-
ber of time-out instances (over 600 seconds) are reported for five
selected PB encodings (left) and their PB(AMO) equivalents (right),
showing that many more instances are solved with PB(AMO) en-
codings and that the solving time is improved.
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