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—— Abstract

Learning-to-Prune (LTP) is a machine learning technique that has been successfully applied to
several combinatorial optimization problems. In LTP, a machine learning model is trained to predict
parts of a problem instance that can be removed without large changes to the value of the optimal
solution. For example, on the maximum clique problem, the model would typically be trained to
predict vertices that are unlikely to be part of a maximum clique. After LTP is applied to prune a
given problem instance, the remaining part of it can be solved with a conventional solver. LTP is
parsimonious with training data, usually requiring only a few training instances. It also produces
ML models that are relatively simple and interpretable. In this paper we present early work on
LTP for CP: a general framework for training and applying LTP to problems expressed in a CP
modelling language. In this context LTP cannot benefit from problem-class-specific features. We
have developed a graph-based representation of the constraint network that captures the distinct
constraint types and the location of variables within each constraint. We also capture features of
the variables such as whether they are in the objective function. We focus on pruning Boolean
variables, and on problems with a linear objective function. Our method is evaluated on three
problem classes: maximum clique, the combinatorial auction problem, and a simple nurse rostering
problem with preferences. In each case, we show that LTP can substantially improve the performance
of a systematic solver, with a small cost in terms of the optimality gap.
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1 Introduction

Learning-to-Prune (LTP) is a machine learning technique that has been applied to several
combinatorial optimization problems with very promising results. LTP does not entirely solve
a given problem instance, but aims to make it easier to solve by removing some parts of it
(e.g. assigning some variables). To date, each implementation of LTP is specific to a problem
class, typically with problem-class-specific features and machine learning setup. In this
paper we present early work on LTP for CP: a general framework for training and applying
LTP to problems expressed in a CP modelling language. The generalized LTP framework
still needs to be trained for each problem class. However, the set of features is (largely)
generated from a graph that is derived from the syntax tree of the CP model. We have
developed a graph-based representation of the constraint network that captures the distinct
constraint types and the locations of variables within each constraint. We also capture other
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features of each variable such as whether it is in the (linear) objective function, and its
coefficient in the objective function. While the generalized LTP framework cannot benefit
from problem-class-specific features, we have found that it can be effective: experimental
results on two problem classes are very promising.

In LTP, a machine learning model is trained to predict parts of a problem instance that
can be removed without large changes to the value of the optimal solution. For example, on
the maximum clique problem, the model would typically be trained to predict vertices that
are unlikely to be part of a maximum clique. After LTP is applied to prune a given problem
instance, the remaining part of it can be solved with a conventional solver. If LTP is working
well, the conventional solver will be able to solve the pruned problem instance to optimality
much faster than the original instance, and with a small optimality gap between the two.
LTP is parsimonious with training data, usually requiring only a few training instances. It
also produces ML models that are relatively simple and interpretable compared to other ML
methods (as described in Section 2).

In this paper we focus on pruning Boolean variables, and on problem classes with a
linear objective function stated directly on the same set of Boolean variables. LTP is a
supervised learning method. We train a classifier to predict whether a variable will be true
or false in an optimal solution. Training data is generated by solving the training instances
to optimality, and labelling each relevant variable with its assignment in the optimal solution.
It is important to note that LTP learns to prune variables based on the instance distribution;
it may not be accurate if it is applied to instances from a different distribution.

The proposed framework is evaluated on three problem classes: maximum clique, the
combinatorial auction problem, and a simple nurse rostering problem with preferences. In
each case, we show that LTP can substantially improve the performance of a systematic
solver, with a small cost in terms of the optimality gap.

Conceptually, LTP is related to streamliners [7]: constraints that are added to a CSP
instance in the hope of solving it faster, but with no guarantee that the instance will
remain satisfiable. LTP can be thought of as predicting streamliners based on the instance
distribution, where the streamliner constraints are all unary and the context is optimization
rather than constraint satisfaction.

2 Background and Related Work

In this section, we present an outline of the work in the general area of machine learning for
combinatorial optimization followed by recent work on the learning-to-prune framework. We
also describe the graph embedding techniques that we use in our approach and the mid-level
modelling language used by us in our work.

2.1 Machine Learning for Combinatorial Optimization

In recent years, researchers have been exploring the usage of machine learning (ML) techniques
to efficiently solve combinatorial optimization problems. This is motivated by the following
factors:
In many applications like nurse rostering and vehicle routing problems, instances from
the same distribution need to be solved repeatedly (e.g. every week) and ML techniques
can learn the patterns from earlier solutions to speed-up solving the newer instances.
For many optimization problems, solving larger instances of the problem continues to
remain a major challenge. A learning model trained on solutions of smaller instances (that
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modern solvers can solve in reasonable time) can generalize and be used as a heuristic
solver for larger instances from the same distribution.

In applications where even solving small instances is difficult, reinforcement learning
techniques that capture the objective function in terms of rewards can still be quite
effective.

There are a large number of techniques that have been developed in this broad area
in the last decade. The learning techniques can be used as a standalone heuristic or as
a component of the solver or as a helper function to speed up solving the optimization
problems. The learning techniques (used in any of the above ways) can be broadly divided
into three categories: (i) end-to-end supervised learning techniques (see [3] for a survey), (ii)
reinforcement learning techniques (see [15, 30] for a survey) and (iii) unsupervised learning
techniques (see [9, 28] for some recent work). Many of these techniques use architectures
such as graph neural networks [29] and representations such as node and graph embeddings
for solving the problem.

Nonetheless, the application of machine learning to combinatorial optimization is not
without its challenges. Unlike many applications of machine learning in computer vision,
natural language processing, machine translation, self-driving vehicles etc., combinatorial
optimization problems have highly correlated decision variables and the correlations are
long-range with very little spatial or temporal coherence. Thus, deep learning architectures
such as convolutional neural networks and recurrent neural networks that are designed to
leverage the spatial and temporal coherence often do not generalize well for combinatorial
optimization problems. In fact, since many of the combinatorial optimization problems are
NP-hard, the exact decision boundary separating the optimal solutions from non-optimal
solutions is often quite complex. Learning the exact boundary typically requires a fairly
complex architecture and a vast amount of training data, which is difficult to obtain for
NP-hard optimization problems. For instance, one of the successful learning technique in
this domain is the neural combinatorial optimization approach [2]. This is a combination of
Pointer networks [27], a Monte Carlo policy gradient and an actor-critic architecture. The
pointer network is itself a combination of a sequence-to-sequence deep learning model based
on RNN; another deep learning model based on LSTM for attention mechanism to deal with
long-range correlations and usage of pointers to deal with the issue of fixed vocabulary size
required for neural networks. Since the learnt algorithm (mapping from input to output) is
implicit in the learning model, whose complexity in turn is governed by the highly complex
underlying architecture, the learnt heuristics are far too complex for humans to interpret
(leave aside the mathematical analysis in pursuit of provable guarantees). It is unclear what
features of the input instances are being exploited by the learnt heuristic and on which class
of data-sets will the learnt heuristic perform well. Furthermore, the non-interpretable nature
of the heuristic means that addition of a new constraint or slightest deviation of the input
instance from the training distribution can result in unexpected solutions. These limitations
severely constrain the usage of such heuristics in real-life deployment of optimization solutions.
Note that interpretable learning techniques are also important in many applications from a
legal and privacy regulations (e.g., GDPR) view as well as for engineers to trust and deploy
them in many real-world applications.

Reinforcement learning techniques for combinatorial optimization usually have a high
computational time involved and unsupervised approaches generally struggle to obtain good
optimality-time tradeoff for the combinatorial optimization problems.
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2.2 Learning-to-Prune

To address the limitations of supervised end-to-end deep learning approaches, an alternative
learning framework called learning-to-prune (LTP) has been developed. The high-level
idea behind this framework is that instead of learning a complex decision boundary to
exactly separate all optimal solutions from non-optimal solutions (that necessitates complex
architecture and large amount of training), it predicts the variable values in the optimal
solution and learns a simpler decision boundary such that all variables on one side are either
all Os or all 1s in some optimal solution. These variables are then fixed and the remaining
problem (hopefully much smaller) is then solved by the exact solver. In fact, this framework
is actually solving a sparsification problem but instead of developing a problem-specific
sparsification algorithm or heuristic, a supervised classification model is employed. The
framework has been successfully used for the maximum clique problem [12, 13], travelling
salesperson problem [6, 22], k-median and related problems of facility location, set-cover,
max-coverage [23] and Steiner tree problem [31].

In the existing literature, the features used in the LTP framework are problem specific and
are carefully selected based on the algorithmic and heuristic literature on the optimization
problem. In this paper, we explore if we can leverage it to solve a generic constraint
programming formulation. Thus, instead of problem-specific features, we only use features
that can be derived just by looking at the constraint and objective function formulation.
This can be in the form of a primal graph where nodes correspond to variables in the
formulation and two nodes share an edge if the corresponding variables co-occur in the scope
of a constraint. Alternatively, the features can be derived from the bi(tri)-partite graph
where both variables and constraints are represented as nodes and an edge exists between
a variable node and a constraint node if and only if the corresponding constraint contains
the variable corresponding to the variable node. We use generic features from the network
analysis literature such as centrality measures, clustering coefficients and from the node
embedding and the graph embedding literature briefly reviewed in the next subsection.

2.3 Graph Embeddings

A popular way to get feature representation for nodes in a graph is to build a low dimensional
vector embedding for each node. The key idea behind these node embeddings is that similar
nodes should have embeddings vectors that are close whereas dissimilar nodes should have
embedding vectors that are further away. In the last decade, many different techniques have
been developed for computing node embeddings that capture different notions of similarities
between nodes (see [11] for a very recent survey). We briefly review a couple of node
embedding techniques that we use in this work.

GLEE [24] leverages the simplex geometry of a graph and focuses on geometric properties
instead of the traditionally used spectral properties. It extracts the Eigenvectors corres-
ponding to the largest eigenvalues of the graph Laplacian and uses these vectors as the
node embeddings. It aims to avoid just concentrating on the local community of nodes, it
has fewer configuration parameters and so, we think that it is a good complement to the
structure-based node attributes from [8].

The Multi-scale Attributed Node Embedding [21] concatenates node attributes from
different neighbourhood sizes keeping the information from different distances separate.

In our LTP framework, we use these embeddings in isolation or together with network
analytics features as the node representation. The classification models then learn a mapping
from these representations to a binary target indicating whether the node is in the optimal



D. Ajwani, P. Nightingale, F. Ulrich-Oltean

solution or not (whether the corresponding variable is 1 in the optimal solution or not).
As indicated before, the goal is not to get an exact decision boundary, but only a simple
boundary such that all variables on one side can be fixed. The node representations (and the
embeddings involved in it) are crucial to obtain a good classification model.

2.4 Constraint Programming Background

For this work we use SAVILE Row [17], a constraint modelling tool that works with models
written in the language Essence Prime and produces problem definitions for a range of
solvers, including CP, SAT, MaxSAT, and SMT. Essence Prime is a mid-level modelling
language which allows boolean and integer decision variables (including in matrix form),
along with quantifiers, the common logic and arithmetic operators, and a selection of global
constraints. Essence Prime has some similarities to other constraint modelling languages such
as OPL [25] and MiniZinc [16]. SAVILE ROW reformulates constraint models to apply various
optimisations and simplifications and provides a variety of encodings for SAT, MaxSAT and
SMT backend solvers. We use the MaxSAT backend because it is broadly the most successful
solver type for the problems we are considering. The backend solver is WMaxCDCL, which
scored very highly in the MaxSAT Evaluation 2023 [4]. We use the default MaxSAT encoding
implemented in SAVILE ROW except that all linear constraints (i.e. pseudo-Boolean and
linear integer constraints) are encoded with GGPW [5] with automatic AMO detection [1].

Internally SAVILE ROW represents constraints in an abstract syntax tree (AST). Common
operators such as <, =, 4+, and V are represented as nodes in the AST, as are named
global constraints, constants, and references to decision variables. The objective function
is also represented as an AST. Decision variables are listed separately. The indices of a
variable in a matrix can be recovered from the variable name (e.g. M[2,2] would be named
M_00002_00002 when LTP is applied). Some LTP features are extracted directly from the
AST representation (e.g. coefficient of a variable in the objective function). Other features
are generated by traversing the constraint ASTs, for example to find the positions of variables
within a constraint. A graph is created to represent the constraint network, as an intermediate
step between the AST representation of constraints and the vector of numerical features that
is used by LTP (as described below).

3 Learning-to-Prune in CP

We outline the steps involved in learning-to-prune (LTP) for CP in Figure 1. The problem of
deciding whether or not to fix a variable is treated as a classification problem. The features
for training the classifier are derived in two main ways: some are extracted directly from
SAVILE Row, such as the value contributed to the objective function by a given Boolean
variable; other features are derived from a graph representation of the constraint model —
these features can be embeddings of the structure of the graph around each node, or can
also take into account the attributes of other nodes in the graph using attributed node
embeddings.

A classification model is trained using a dataset of problem instances for which optimal
solutions can be determined. The values of the decision variables in the optimal solutions
become the classification targets. A trained classifier is then employed to fix a portion of the
variables, reducing the number of decision variables for which a value must be determined.
The classifier provides estimated probabilities for each class (i.e. for each value of the Boolean
variable). We use the estimated probabilities to sort the assignments from most to least
confident. The proportion of variables to assign is a tunable parameter of the system.



Generalizing Learning-to-Prune for Constraint Programming

Constraint model,
instance files

extract model info solve to opt|ma||ty

Variable and

. Solutions
constraint data

connect variables assignment
Graph representation Target labels
Per-variable features Training set ML Classifier

1
1
1
1
1
1
1
1
1
1
1
1
1
read variable !
1
1
1
1
1
1
1
1
1
1
1
1

Live Phase !
Constraint model, ’ o
. . Trained Classifier
instance files
Extract model
structure, create graph
Per-variable features LTP assignments

Solve, optionally
checking assignments

Solution

Figure 1 An outline of the steps involved in learning-to-prune for constraint programming.

Suppose for example that we wish to prune (assign) 10% of the variables, we would apply
the classifier to all the relevant variables, sort into decreasing probability order, then take
the first 10% in the list.

An additional step is implemented in SAVILE ROW to check the assignments supplied
by LTP. The assignments are applied one-by-one in the order they are supplied by LTP
(highest probability predictions first) and at each step partial evaluation is applied to the set
of constraints. After making an assignment A, if a constraint evaluates to false then A is
reverted and the process continues with the next assignment in the sorted list. The loop ends
when the required proportion of variables have been assigned (not including the assignments
that were reverted). In the experiments below we report results without the additional check
(named force) and with the extra check (named sr-check).

3.1 Feature Extraction and Graph Representation

In each of the models we consider for this work, the decision variables are represented by
a single matrix of Booleans. SAVILE Row divides the matrices into individual boolean
variables, but it is possible to retain information about where each variable fitted into the
original matrix. We traverse the internal abstract syntax tree generated by SAVILE Row
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to represent an instance and extract the following information for each (decision variable,
constraint) pair:

Size of Matrix The size of the containing matrix, one integer for each dimension.

Position in Matrix How far along each dimension the variable occurs, as a proportion of the
size of the matrix in each dimension.

Constraint Type An integer representing the type of constraint. Each distinct AST structure
is given a unique integer. See Section 3.2 for more detail.

Position in Constraint Which position a variable occupies in the canonical representation
of a constraint, e.g. if the constraint is @ < b then the position of variables a and b are 0
and 1 respectively.

Contribution to Objective If a variable is in the objective function, we record the coefficient
associated with the decision variable.

Having extracted the above information for each (variable, constraint) pair in the model,
we can construct two graph structures to represent the model.

Primal Graph Each decision variable is represented by a node; edges link any two variables
which co-occur in the scope of a constraint. We annotate nodes with any relevant variable
features as described above.

Bi(tri)-partite Graph We represent both variables and constraints as nodes, adding edges
between them if a variable occurs in a constraint. Instead of a direct edge, we add two
edges via an intermediate node whose attributes describe how a variable takes part in a
constraint, i.e. the Position in Constraint describe above. The variable and constraint
nodes have the relevant features from above as node attributes.

We can use either of these graphs to obtain node embeddings for each variable, capturing
the position of the variable in question within the context of the constraint problem as
represented in the graph (bipartite or primal). We make use of the following sets of features,
which are concatenated in different combinations for different problem types.

SR-AST These are the variable-related attributes extracted directly from SAVILE Row’s
abstract syntax tree, as described above.

GRASSIA Grassia et al. [8] define 10 features (F1-F10) of nodes in a simple graph, considering
a variety of graph-theoretic and statistical aspects of each node. We can apply these to
either the primal or bipartite graph.

GLEE Node embedding in n-dimensional space considering only the structure of the graph [24],
applicable to both primal and bipartite graphs.

MUSAE Node embeddings based on random walks which separately aggregate node features
from different distances [21]. The node attributes are essentially what is extracted by the
SR-AST featureset. Once again, these embeddings can be extracted from our primal or
bipartite graphs.

3.2 Constraint Type

In constraint modelling languages, two constraints can be written (and represented in the
AST) in different ways and yet be essentially the same constraint (on different variables).
Before generating the type number for a constraint, we first apply partial evaluation, then
sort all commutative-associative k-ary operators (such as sum) and all commutative binary
operators (e.g. =). The alphabetical order is used because it will group together references
to the same matrix and place them in a consistent order w.r.t. their indices in the matrix.
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Then the AST is traversed in a defined order to obtain a duplicate-free list of variables. The
variables are renamed to a canonical sequence of names. The AST is then converted to
an Essence Prime string. We use a hash table to store a mapping from strings to distinct
integers, allowing a new number to be assigned when a new constraint type is found.

This approach to labelling constraints with an integer type has some advantages. It
supports the entire Essence Prime language (and will continue to do so as new operators or
global constraints are added, without any changes to the LTP implementation). However it
does not recognise degrees of similarity or difference between constraint types. For example,
two sum equality constraints that differ only in the number of terms in the sum would simply
be given different type numbers — there is no indication that the two constraints are very
similar. Improving the type labelling of constraints could be an interesting future direction.

3.3 Machine Learning Model

In preliminary experiments we evaluated random forest classifiers and gradient boosted
trees, both of which can train quickly on relatively small datasets. An added advantage
of tree-based methods is they can learn from different types of features. Also, numerical
features can take very different ranges of values without the need for normalisation. In our
case we have a mixture of discrete features such as the degree of a node in the primal graph
and continuous features such as the relative position of a variable within its matrix.

We found that gradient boosted trees perform better with our LTP setup. Tree boosting
creates a sequence of trees where each new tree concentrates on predicting entries which have
been previously misclassified. We use the implementation in scikit-learn [18], which is based
on LightGBM [10]. We run 50 rounds of randomised search with 5-fold cross validation to
tune the hyperparameters, targeting: the learning rate (or shrinkage), the maximum number
of boosting iterations, maximum tree depth, and class weighting policy.

4 Experimental Evaluation

4.1 Models

Our focus in this paper is on optimisation problems where the main decision variables are
Boolean and the optimization function is linear.

4.1.1 Maximum Clique

We include this problem because our work is in part inspired by the success of LTP on the
maximum clique enumeration (MCE) problem in [8]. CP would not necessarily be a good
choice for solving the maximum clique problem (much faster dedicated solvers exist), but it
is a very simple example of a problem that our approach can be applied to. The model is
shown in Listing 1 and consists of one type of constraint, which excludes any pair of nodes
from both being in the maximum clique if there is no edge between them.

A large collection of graphs is available from networkrepository.com [20]. We have
experimented on a number of graph collections from the DIMACS, miscellaneous and social
networking categories. We present results for the brock collection which includes four graphs
each of 200, 400 and 800 nodes and high density (0.5 to 0.75). We found that SAVILE Row
and WMaxCDCL could find optimal solutions within a reasonable time only for the 200-node
graphs.
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Listing 1 Constraint model for the Maximum Clique Problem in Essence Prime

given graph_am : matrix indexed by [int(1l..n),int(1..n)] of int (0,1)
letting NODES be domain int(1l..n)

find inMaxClique : matrix indexed by [NODES] of bool
maximising sum(inMaxClique)

such that

forall nil : int(1..n-1)
forall n2 : int(nil+1..n) . (graph_am[nl1,n2]=0) ->
( !'inMaxClique[n1] \/ !inMaxClique[n2] )

Listing 2 Constraint model for the Combinatorial Auction Problem in Essence Prime

given nBids : int

given profit : matrix indexed by [int(1..nBids)] of int

given clashes : matrix indexed by [int(1..nClashes),int(1..2)]
of int (0..nBids)

find sold : matrix indexed by [int (1..nBids)] of bool
maximising (sum b : int(1..nBids). sold[b] * profit[bl)

such that
forAll ¢ : int(1..nClashes) . (!sold[clashes[c,1]] \/ !sold[clashes[c,2]1])

4.1.2 Combinatorial Auction

In the Combinatorial Auction (also called Winner Determination) problem [19] a set of items
are to be sold, and a set of bids have been received. Each bid has a monetary value and is
for a subset of the items. A bid can be accepted in its entirety or rejected. Therefore any
pair of bids that both bid on the same item cannot both be accepted. It can be written
very simply in Essence Prime. The model is shown in Listing 2. There is only one type of
constraint, and it says that two conflicting bids cannot both be accepted. The objective is to
maximise the total value of accepted bids.

We obtain instances of this problem from the Combinatorial Auction Test Suite [14],
which is able to generate sets of instances according to a variety of algorithms and underlying
distributions of values. We have experimented with a number of these collections, including the
legacy distributions L4 to L6, as well as the scheduling, matching, and arbitrary distributions.
Below we present results for the L6 distribution which was challenging but still allowed us to
obtain optimal objective values within 30 minutes.

4.1.3 Nurse Scheduling Problem

We use a simple version of the Nurse Scheduling problem [26] with preferences. The number
of days in the schedule, the number of nurses, and the number of shift types are all given
as parameters. For each nurse, day, and shift type, a preference value is given (typically
in the range 1 to 4) where small values indicate preferred shifts. We are given a minimum
number of nurses required for each day and shift type. The model is shown in Listing 3. The
assignment of a nurse to a shift on a particular day is represented with a Boolean variable.
The same variable is also included in the objective function, weighted by the corresponding
preference value. Constraints state that a nurse must have at least two days off per week,
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Listing 3 Constraint model for the Nurse Scheduling Problem in Essence Prime

given n_days : int
given n_nurses : int
given n_shift_types : int

letting DAYS be domain int(1..n_days)

letting NURSES be domain int(1..n_nurses)

letting SH_TYPES be domain int(1l..n_shift_types)

given covers : matrix indexed by [DAYS,SH_TYPES] of int

given prefs : matrix indexed by [NURSES,DAYS,SH_TYPES] of int

where (n_days % 7) = 0 $ assume full weeks
find sched : matrix indexed by [NURSES,DAYS,SH_TYPES] of bool

minimising (
sum n : NURSES
sum d : DAYS
sum s : SH_TYPES
sched[n,d,s] * prefsl[n,d,s]
)

such that

$ the shift coverage requirements are met
forAll d : DAYS .
forAll s : SH_TYPES
sum( sched[..,d,s] ) >= covers[d,s],

$ each nurse only works one shift type in a day
forAll n : NURSES
forAll 4 : DAYS . sum(sched[n,d,..])=1,

$ each nurse should have 2/7 "off" shifts
forAll n : NURSES
sum( sched[n,..,n_shift_types] ) = ((2*n_days)/7)

and must do one shift type per day (where the shift types include the dummy ‘day off” type).
Also, each day and shift type must have enough nurses assigned to it. We use the same
model as in Ansétegui et al. [1].

We draw instances from NSP-LIB [26], which provides 6 groups of problems, each for a
fixed number of nurses — we have experimented with all the distributions and present in this
paper the results for a random sample of instances from the N25 and N50 collections (both
scheduling over 7 days with 25 and 50 nurses respectively).

4.2 Results

Our experiments were carried out on the University of York’s Viking compute cluster, with
AMD EPYC3 7643 CPUs. We allowed 16GB RAM for solving runs and 64GB for training
runs. We set a 30 minute time-out for the solving runs. Table 1 shows which featuresets and
graph representations we used with each set of problems for which we present results in this
section.

4.2.1 Maximum Clique

First we consider the maximum clique problem. As mentioned above, we use the brock
graphs. In this case we were not able to train and test on the same instance size because
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Table 1 Featuresets and graph type used for our experiments

Problem Graph Featureset

SR-AST GRASSIA GLEE MUSAE

Maximum Clique primal v v
Combinatorial Auction primal v v

Combinatorial Auction bipartite v v v
Nurse Scheduling bipartite v v v

there were not enough instances of size 200 available. Instead we trained LTP using the four
instances of size 200 where we were able to find an optimal solution.

The brock graphs of size 400 are not solved within 10 hours with our setup. However,
if we apply LTP with 45% pruning then we can find solutions within 10 minutes for each
of the four graphs. In networkrepository.com [20] the lower bound for maximum cliques
given is 22; the maximum clique size found with LTP is 21 for three of the graphs and 20 for
the other. It is possible that the lower bound of 22 is in fact the optimal value. If this is the
case, then we have an optimality gap of 4.5% for three of the four instances, and a speedup
of more than 60 times for all four.

4.2.2 Combinatorial Auctions

The results for combinatorial auction are presented in Figure 2. Each pane plots the set
of instances as points on a scatterplot with speedup on the z-axis and the optimality gap
percentage (i.e. percentage loss when using LTP) on the y-axis. Each pane is labelled with
the percentage of variables that LTP assigned, which is a parameter of the framework. Rows

of panes are labelled with the graph type (primal or bipartite), and whether sr-check is used.

Unsurprisingly, LTP is somewhat more effective when given the primal graph. All
constraints are of the same type, and all are binary, meaning that the set of constraints can
be perfectly represented in the simpler and smaller primal graph.

Speedups can be in excess of 100 times with an optimality gap of approximately 5% when
16% of variables are pruned. However, at 16% LTP is quite aggressive and we are seeing
optimality gaps of more than 10% for some instances. The less aggressive setting of 10%
pruning can still provide some strong speedups on hard instances, while a large majority of
instances have an optimality gap well within 5%. We also observe that the larger speedups
tend to occur for the harder instances.

4.2.3 Nurse Scheduling

Results for nurse scheduling are presented in Figure 3. In this case we use the bipartite
graph because the primal graph would lose most of the details of the constraint network.
This problem class seems more challenging for LTP, however for the instance set N25 we
found that LTP can learn enough to do some effective pruning with a low percentage pruned.
As shown in the figure, in some cases we have a speedup of approximately 10 times with an
optimality gap of less than 1%, however LTP is slowing down some of the instances. The
sr-check setting is useful here, allowing higher pruning percentages to be used.

The larger N50 instances were more challenging for LTP, with speedups of less than 6
times (and in some cases less than 1, i.e. LTP slowed down solving). However the optimality

11
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Figure 2 The results of applying Learning-to-Prune to the combinatorial auction problem
(distribution L6). The plots show the optimality gap as a percentage on the vertical axis and speedup
achieved for each instance in a test set on the horizontal axis. The colour and size of each point
represents the hardness of the problem as measured by the total runtime for the initial non-pruned
optimisation call.
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Table 2 The runtime overhead of SAVILE ROW’s assignment check. The table shows the median
time spent by SAVILE ROW in processing an instance before calling the backend solver. 1The can
graphs are in the Miscellaneous section of the network repository [20] — in this test set we used 5
graphs of size 229, 256, 268, 292, and 445.

Problem SR median time (s)

forced checked

Combinatorial Auction (L6) 2.24 241
Nurse Scheduling (N25) 1.64 1.85
Nurse Scheduling (N50) 2.44 3.07
Maximum Clique (cant) 104.54 104.91

gaps are very small, suggesting that if LTP can be trained to avoid breaking constraints then
perhaps larger speedups could be obtained with a larger optimality gap.

4.2.4 OQverhead of the Savile Row Check

The basic assignment check carried out in SAVILE ROW incurs a runtime overhead. However,
this overhead is in fact quite small in our experiments. Table 2 shows the difference in the
time SAVILE ROW spends before calling the backend solver. For most sets of problems the
difference in time is negligible. In the third row, the problem is much harder, with a median
solving time of over 2 minutes - the extra half a second spent in SAVILE ROW checking the
assignments is reasonable if a considerable solving speedup can be achieved.

5 Conclusions

We have described early work on generalizing the learning-to-prune method for CP models
written in a CP modelling language. Our overall goal is to learn from the distribution of
instances how to solve future instances from the same distribution more efficiently, and we
believe that LTP is a very promising approach. It can be trained with relatively little data
because each training problem instance contributes many training examples, and also the
models produced are relatively simple compared to other approaches. The advantages of
LTP stem from answering a simpler question than end-to-end ML approaches. We presented
promising results on three problem classes, showing that LTP deserves to be investigated
further in CP.

Future Work

There are many ways in which this work could be extended, for example:

Generating a better embedding of the variable-constraint graph by training a Graph
Neural Network (GNN) to generate the embedding, alongside training the LTP classifier.
Adapt soft pruning from the earlier work on problem-class-specific LTP, where (instead of
directly assigning some of the variables) a constraint is placed on a subset of the variables
stating that at least k are assigned as predicted by the LTP model. Soft pruning has
been observed to reduce the optimality gap.

Applying LTP pruning during search, where the solver allows custom propagators.

A more thorough evaluation using multiple solver types, to investigate how LTP interacts
with the choice of solver.
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Problem: Nurse Sched. (N25); Graph: bipartite; Assignment: force
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Figure 3 The results of applying Learning-to-Prune to the nurse scheduling problem (NSPLIB
distributions N25 and N50). The plots show the optimality gap as a percentage on the vertical axis
and speedup achieved for each instance in a test set on the horizontal axis. The colour and size of
each point represents the hardness of the problem as measured by the total runtime for the initial
non-pruned optimisation call.
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