
Dominion: An Architecture-driven Approach to
Generating Efficient Constraint Solvers

Dharini Balasubramaniam, Lakshitha de Silva, Chris Jefferson, Lars Kotthoff, Ian Miguel and Peter Nightingale
School of Computer Science, University of St Andrews,

North Haugh, St Andrews, Fife KY16 9SX, UK
Email: {dharini, lrds, caj, larsko, ianm, pn}@cs.st-andrews.ac.uk

Abstract—Constraints are used to solve combinatorial prob-
lems in a variety of industrial and academic disciplines. However
most constraint solvers are designed to be general and monolithic,
leading to problems with efficiency, scalability and extensibil-
ity. We propose a novel, architecture-driven constraint solver
generation framework called Dominion to tackle these issues.
For any given problem, Dominion generates a lean and efficient
solver tailored to that problem. In this paper, we outline the
Dominion approach and its implications for software architecture
specification of the solver.

I. INTRODUCTION

Constraints are a natural and powerful means of representing
and reasoning about combinatorial problems. Constraint solving
provides a means of finding solutions to such problems
automatically. Its simplicity and generality are fundamental to
its successful application in a wide variety of disciplines such as
scheduling, industrial design, aviation, banking, combinatorial
mathematics and the petrochemical and steel industries [1].

Constraint solving of a combinatorial problem proceeds
in two phases. First, the problem is modelled as a set of
decision variables and a set of constraints on those variables
that a solution must satisfy. A decision variable represents
a choice that must be made in order to solve the problem.
The domain of potential values associated with each decision
variable corresponds to the options for that choice. The second
phase consists of using a constraint solver to find solutions to
the model: assignments of values to decision variables satisfying
all constraints. Constraint solvers typically employ a systematic
backtracking search through the space of partial assignments
in order to find solutions.

Most current constraint solvers, such as Minion [2], are
constructed to be as general as possible. They are mono-
lithic in design, accepting a broad range of models. While
this generality is convenient, it leads to a complex internal
architecture, resulting in significant overheads and inhibiting
efficiency, scalability and extensibility. Another drawback is
that current solvers perform little analysis of an input model,
so the features of an individual model cannot be exploited to
produce a more efficient solving process. To mitigate these
drawbacks, constraint solvers often allow manual tuning of the
solving process. However, this requires considerable expertise,
preventing the widespread adoption of constraint solving.

The main aim of the work introduced in this paper is
to improve the scalability of constraint technology, while

simultaneously removing its reliance on manual tuning by
an expert. We propose a novel, elegant means to achieve this
aim: a constraint solver generator framework called Dominion
which, for a given problem, produces a solver tailored to that
problem. There are two key benefits to this approach:

1) it enables fine-grained optimisations not possible for a
general solver, allowing the solution of much larger, more
difficult problems, and

2) it enables the utilisation of many techniques in the
literature that, although effective in a limited number
of cases, are not suitable for general use, leading to more
powerful solvers.

The Minion solver allows some specialisation of components.
There are 7 variable types, and each constraint is compiled for
two inputs which can each be different variable types, therefore
currently each constraint is compiled 49 times. Adding one
extra option to variables (doubling the number of variable types)
increases compilation time fourfold. In contrast, Dominion
compiles exactly the required variables and constraints for
each problem.

The generation process in Dominion is driven by the software
architecture of the target solver. Software architecture provides
a high-level model of the structure and behaviour of a system
in terms of its constituent elements and their interactions as
well as conditions that have to hold among the elements
[3], [4]. Desired properties of a system can be checked at
the architectural level as well as against an implementation.
Thus the architecture forms a useful basis and guide for the
implementation and evolution of systems.

A number of Architecture Description Languages (ADLs)
have been developed to capture these features [5]. We use
a powerful, general-purpose ADL called Grasp [6] in this
work. Grasp provides support for commonly used generic
architectural primitives such as layers, components, connectors,
interfaces, properties and wiring as well as the ability to define
user-defined constructs for particular domains. It allows the
specification of templates which can be instantiated to produce
the required architectural elements. Most importantly, unlike
many existing ADLs, Grasp has been designed to capture
sophisticated dependencies among architectural elements. These
features make Grasp ideally suited to represent the architectures
of customised constraint solvers in Dominion.

In this paper, we present an outline of our approach and
focus on its implications for software architecture specification.



II. RELATED WORK

One of the earliest examples of systems that attempt to
generate constraint solvers tailored to a specific problem is
the MULTI-TAC system [7], which configures and compiles a
constraint solver for a specific set of problems. It is written in
LISP and performs ad-hoc customisation of a base constraint
solver limited to a few characteristics.

KIDS [8] is a more general system that also uses LISP
to synthesise efficient algorithms from an initial specification.
The approach is knowledge-based, i.e. the user supplies the
knowledge required to generate an efficient algorithm for the
specific problem. Refinements are limited to a number of
generic transformation operations. Our approach is more gen-
eral and, crucially, relies on almost no background knowledge.

There are other constraint solver systems that perform code
generation or modification, but to the best of our knowledge
no previous approach to formally specifying the architecture
of specialised constraint solvers exists.

III. AN EXAMPLE

The following listing shows a very short example of a
constraint problem in the Dominion Input Language (DIL) [9]
and will be used in the remainder of the paper to illustrate
architectural support for the Dominion approach.

language Dominion 0.1

given b : int {1..}
given s : int {1..}

find w : int {2}
find x : int {0..1}
find y : int {0..b}
dim z[s] : int
find z[..] : int {-2,0,1}

such that
conA sum([x,y], w)
conB sum(z[..], w)

Listing 1: A Constraint Problem

The basic format of a problem is to give a list of parameters
(given), decision variables (find), their domains and finally
a list of constraints the variables must satisfy. z is a one
dimensional matrix of size s. Given the values b = 2 and
s = 2 for the parameters, one solution to this problem is
w = 2, x = 1, y = 1, z[0] = 1, z[1] = 1. Different stages of
the Dominion solver generator process will be illustrated using
this example, beginning with a description of issues that arise
in modelling constraint solvers.

IV. ISSUES IN MODELLING CONSTRAINT SOLVERS

A constraint solver is typically built from a number of
factories, which create the various parts of the solver and the
connections between them.

Two of the most important parts of a constraint solver are
the components which represent the (decision) variables and
constraints. Variable components maintain a set of values the
variable might take in a solution (the domain). The constraints
query variable domains, and remove values that can take part
in no solution.

To illustrate some of the key problems in architectural
modelling of constraint solvers, we turn to the Minion solver,
introduced earlier. In Minion there are several variable factories,
producing variables with different features and performance
characteristics. For example, there is a factory for variables with
initial domain {0, 1}. Some other variable factories require the
initial domain to be an unbroken range. Some implementations
permit values to be removed from the middle of the domain,
while others only allow changes at the upper and lower bounds.
Constraints place callbacks on variables to indicate when they
should be informed of changes. Some constraints change the
callbacks during search (dynamic callbacks) while others do
not. It would be desirable to specialise variables on whether
they allow dynamic callbacks. Minion does not do so because
each specialisation adds to its compile time.

Minion may query variable domains hundreds of millions
of times per second, therefore tiny changes to variable imple-
mentions can lead to large changes in solver performance.

Constraints also have restrictions upon them. As an example,
consider the constraint

∑
X = y, where X is a vector of

variables. The components below, among others, have all been
implemented in Minion.

1) GACSum: An exponential time algorithm which reduces
domains as much as possible. Requires all variables to
allow arbitrary domain removals.

2) BoundSum: A generic polynomial time algorithm.
3) BoolSum: Requires all variables in X to have domain

{0, 1}.
4) BoolSumConst: Requires all X to have domain {0, 1},

and support dynamic callbacks. Also the domain of y
must be a single value.

Some requirements, such as dynamic callbacks or arbitrary
domain removals, are restrictions on the type of variable used.
Other requirements, for example in BoolSum that variables
have domain {0, 1}, are not restrictions on the type, but on the
variable. While there are variable factories which only produce
variables with domain {0, 1}, any variable with domain {0, 1}
will be accepted by BoolSum.

These options are wired into Minion in different ways.
GACSum can be explicitly chosen by users; others are chosen
using simple heuristics, known to be incorrect in some cases.
As these heuristics may pick an implementation which requires
dynamic callbacks, all variables are required to support them.

Thus, an important requirement of an architecture description
of solvers is the ability to associate properties with components
and specify and check dependencies among them.

V. ARCHITECTURE SUPPORT FOR DOMINION IN GRASP

Software architecture is the main driver of solver generation
in Dominion and contains much of the vital information
required for the process. This has implications for the expressive
power of the chosen ADL. In addition to customary details of
components and connections, the Dominion approach requires
further support from the ADL in order to automate the
process of generating an optimal architecture from the problem
component, and the solver code from the architecture.



Grasp is a general purpose textual ADL designed to capture
architecture rationale as well as structural and behavioural
aspects. Supported architectural primitives include layers,
components, connectors, templates, interfaces, rationale, wiring,
properties and check clauses. Templates are abstractions for
architectural elements and can be used to create instances
with common behaviour. The required and provided interfaces
allow tools to match the functionality of linked components.
Properties are characteristics (or restrictions of functionality)
associated with architectural elements in the form of name-
value pairs, while check clauses allow properties of parameters
and linked elements to be checked for compatibility. Grasp also
provides a generic annotation mechanism to associate meta-
data with architectural elements. In Dominion, this mechanism
is used to specify file names and locations of corresponding
implementations for components. In Dominion, this mechanism
is used to specify file names and locations of corresponding
implementations for components.

@Dominion(Location = "/lib/src/", Filename = "bool_var.hpp")
template BoolVariableFactory() {
provides IPropVariable;
provides IRemoveFromDomain;
requires IMemoryManager mmanager;
check mmanager->properties() subsetof
[(MemoryChanges, ’Single’)];

property domainSize = 2;
}

Listing 2: A Template in Grasp

Listing 2 shows a template definition in Grasp for a factory
that creates boolean decision variables, which implement the
interfaces IPropVariable and IRemoveFromDomain,
and require to be connected to a component that implements
IMemoryManager. The check statement means that the
memory manager can only have the property (MemoryChanges,
‘Single’). The domain size of boolean variables is 2.

The Grasp toolset currently consists of a parser and a checker.
Further tools for visualising and validating architectures as well
as performing traceability analysis are planned for the language.

VI. THE GENERATIVE PROCESS

The process of generating an efficient and lean solver for
a given problem is driven by its software architecture and
contains the following steps as illustrated in Figure 1:

• Problem component generation,
• Architecture generation and analysis,
• Solver generation, and
• Execution monitoring
The overall process can be considered as a control loop with

the problem specification initiating feedforward control and
data on the execution of the solver leading to feedback control.
C++ is used as the implementation language for performance,
modularity and backwards compatibility reasons. The solver
is developed using component-based software engineering
practices. The component library, which is used throughout
the solver generation process, is introduced first. The first 3
steps shown in Figure 1 is discussed in the later subsections.
Execution monitoring will be added as part of future work.

Problem 
Component 
Generator

Analyser Solver
Generator

Problem 
Spec Solver 

Architecture

Component 
Library

Monitor Solver 
ExecutionRun-time 

Data

SolverExecution
Information

Component
Specifications

Component
Implementations

Problem
Component

Fig. 1: The Generative Process for Creating Solvers

A. Component Library

Components form the building blocks of Dominion constraint
solvers. A large number of reusable components are kept
in a library to aid the different stages of the generation
process. The Dominion component library consists of two
parts: the specification of components as elements at the
architectural level and the corresponding implementation of
these components at the code level. Listing 2 is an example
of the architecture level specification of a component template.
Each component is implemented as a C++ class, appropriately
parameterised to allow customisation as required. Each class
is stored in a separate file, increasing flexibility of use and
modularity. This practice also allows the generation of the final
solver to be automated in a relatively straight-forward manner.

B. Problem Component Generation

The generative process is initiated by a constraint problem
being supplied to the problem component generator tool. This
tool parses the DIL specification and defines a new component
in Grasp capturing the essence of the problem such as interfaces
to be supported by variable and constraint components and any
restrictions, such as domain compatibility, among them. Each
problem component is unique to the problem being solved and
thus such components are not stored in the component library.

For the example from Listing 1, the problem component
generator will produce the specification shown in Listing 3.

The problem component will require appropriate variable and
constraint components. The check clauses of this component
can be divided into two parts. The first places restrictions on
the variables based on the domains they will have. For some
variables, such as w, the exact domain and size of domain is
known. For others such as y, the type of domain is known but
not its size. Thus the choice of component for the variables is
constrained to those which implement the required domain.

The second part restricts the choice of implementation for
the constraints by checking each value we will give for each
parameter. The += operator is used to attach properties to a
component. We know in this particular problem that the domain
of x will be {0, 1}. Regardless of the chosen implementation
pvx for x, which may or may not make use of this restriction,
any variable produced by pvx will have the domain {0, 1}.



@Dominion(Location = "/lib/src/", FileName = "problem1.hpp")
template ThisProblem() {
provides IProblem pr;
requires IPropVariable pvw, pvx, pvy, pvz;
requires ISumCon scA, scB;

check pvw->properties() subsetof
[(domainType, ’range’), (domainSize, 1)];

check pvx->properties() subsetof
[(domainType, ’range’), (domainSize, 2)];

check pvy->properties() subsetof
[(domainType, ’range’)];

check pvz->properties() subsetof
[(domainSize, 3)];

check scA->param(1) accepts (pvx +=
[(domainType, ’range’), (domainSize, 2), (length, 2)]);

check scA->param(1) accepts
(pvy += [(domainType, ’range’), (length, 2)]);

check scA->param(2) accepts (pvw +=
[(domainType, ’range’), (domainSize, 1)]);

check scB->param(1) accepts pvz;
check scB->param(2) accepts (pvw +=

[(domainType, ’range’), (domainSize, 1)]);
}

Listing 3: Specification of the Problem Component

C. Analyser

The work on the analyser tool is ongoing. In essence, this
tool will generate a list of candidate solver architectures and
select the best one using artificial intelligence techniques.

Listing 4 shows a possible solver architecture produced by
the analyser for the problem from Listing 1, including compo-
nent instantiations and configurations using link statements.
The relevant template specifications are not shown due to lack
of space.

system Solution {
component vw = ConstantVariableFactory();
component vx = BooleanVariableFactory();
component vy = GeneralVariableFactory();
component vz = GeneralVariableFactory();

component conAf = AssignSumFactory();
component conBf = AssignSumFactory();
component problem = ThisProblem();

link vw.var to problem.pvw;
link vx.var to problem.pvx;
link vy.var to problem.pvy;
link vz.var to problem.pvz;

link conAf.con to problem.scA;
link conBf.con to problem.scB;

}

Listing 4: A Possible Solution Architecture

The reader is referred to existing literature on algorithm
selection [10], [11] and algorithm portfolios [12] for more
details on possible techniques for the analyser.

In practice, the variable and constraint components them-
selves have requires clauses, which leads to further
components being instantiated. Given either a partial or a
complete solver, we can execute the check statements for
each component to ensure the solver is valid.

D. Solver Generation

The architecture chosen by the analyser is given to the solver
generator to create the target solver. This tool uses the location

and file name information attached to each element in the
architecture graph to find the corresponding implementations
in the C++ component library. The main tasks of the solver
generator are to:

• create a file for the main solver program,
• include the component files required by the chosen

architecture,
• instantiate the included components and parameterise them

as appropriate, and
• generate code to set-up and begin execution of the solver.

The solver generator performs a fairly straight-forward transla-
tion based on the decisions made earlier in the process.

VII. CONCLUSIONS AND FUTURE WORK

We have provided an outline of a novel, architecture-driven
approach to generating constraint solvers that are optimised
for a given problem. The generative approach demands an
expressive ADL, such as Grasp, able to capture different types
of compatibility requirements among architectural elements.

In addition to completing work on the remaining tools and
evaluating the generative framework against existing solvers,
numerous interesting avenues remain for further work. These
include extending the role of software architectures in assisting
the tasks of analysis and execution monitoring. In particular,
we aim to explore the use of variation points in the architecture

ACKNOWLEDGMENTS

This work is supported by the EPSRC grant “A Constraint
Solver Synthesiser” (EP/H004092/1) and SICSA studentships.

REFERENCES

[1] M. Wallace, “Practical applications of constraint programming,” Con-
straints, vol. 1, pp. 139–168, 1996.

[2] I. P. Gent, C. A. Jefferson, and I. Miguel, “MINION: A fast scalable
constraint solver,” in Proceedings of the Seventeenth European Conference
on Artificial Intelligence, 2006, pp. 98–102.

[3] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4,
pp. 40–52, 1992.

[4] M. Shaw and D. Garlan, Software Architecture: Perspective of an
Emerging Discipline. Prentice Hall, 1996.

[5] N. Medvidovic and R. Taylor, “A classification and comparison framework
for software architecture description languages,” IEEE Transactions on
Software Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[6] D. Balasubramaniam and L. de Silva, “Grasp language reference manual
version 1.0,” University of St Andrews, Tech. Rep., 2011. [Online]. Avail-
able: http://www.cs.st-andrews.ac.uk/˜dharini/reports/GraspManual.pdf

[7] S. Minton, “Automatically configuring constraint satisfaction programs:
A case study,” Constraints, vol. 1, pp. 7–43, 1996.

[8] D. R. Smith, “KIDS - a Knowledge-Based software development system,”
in Automating Software Design. MIT Press, 1990, pp. 483–514.

[9] I. P. Gent, C. Jefferson, L. Kotthoff, I. Miguel, and P. Nightingale,
“Specification of the dominion input language version 0.1,” University
of St Andrews, Tech. Rep., 2009. [Online]. Available: http://www-
circa.mcs.st-and.ac.uk/Preprints/InLangSpec.pdf

[10] J. R. Rice, “The algorithm selection problem,” Advances in Computers,
vol. 15, pp. 65–118, 1976.

[11] E. Fink, “How to solve it automatically: Selection among Problem-
Solving methods,” in Proceedings of the Fourth International Conference
on Artificial Intelligence Planning Systems. AAAI Press, 1998, pp.
128–136.

[12] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artif. Intell., vol.
126, no. 1-2, pp. 43–62, 2001.


