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Abstract

Local search is a common method for solving combinatorial optimisation prob-
lems. We focus on general-purpose local search solvers that accept as input a
constraint model — a declarative description of a problem consisting of a set of
decision variables under a set of constraints. Existing approaches typically take
as input models written in solver-independent constraint modelling languages
like MiniZinc. The Athanor solver we describe herein differs in that it begins
from a specification of a problem in the abstract constraint specification lan-
guage Essence, which allows problems to be described without commitment to
low-level modelling decisions through its support for a rich set of abstract types.
The advantage of proceeding from Essence is that the structure apparent in
a concise, abstract specification of a problem can be exploited to generate high
quality neighbourhoods automatically, avoiding the difficult task of identifying
that structure in an equivalent constraint model. Based on the twin benefits
of neighbourhoods derived from high level types and the scalability derived by
searching directly over those types, our empirical results demonstrate strong
performance in practice relative to existing solution methods.

1. Introduction

Local search [1] is a common method for solving combinatorial optimisation
problems. Typically, it operates by generating an initial assignment to the
decision variables in a problem and then iteratively modifies this assignment to
improve an objective through a sequence ofmoves, selected from a neighbourhood
of assignments reachable from the current assignment. This approach trades
completeness for the ability to make rapid improvements to the objective, and
often finds good solutions more quickly than systematic search procedures [2].
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1 $ Parameters to the problem:

2 given nNodes , nRings , capacity : int (1..)

3 letting Nodes be domain int (1.. nNodes)

4 given demand : set of set (size 2) of Nodes

5
6 $ Decision variable for search:

7 find network : set (maxSize nRings) of

8 set (minSize 2, maxSize capacity) of Nodes

9 $ The problem objective:

10 minimising sum ring in network . |ring|

11 $ The problem constraints:

12 such that forAll pair in demand .

13 exists ring in network .

14 pair subsetEq ring

Figure 1: Synchronous Optical Networking in Essence. The main parameter of the problem
is demand, a set of pairs of nodes to be connected to each other. A single highly structured
decision variable network (set of set of int) suffices to model the fibre-optic rings, each
inner set of ints representing a set of connections from a ring to nodes. Rings have a
limited number of connections that they can support, hence the maxSize attribute on the
inner set. This is important as a pair of nodes in the demand are only connected to each
other if they are both on the same ring. Nodes may connect to multiple rings to facilitate
more connections, however the objective is to minimise the total number of connections. The
specification can be summarised in mathematical notation as follows.
given nNodes, nRings, capacity, demand
find network
where |network | ≤ nRings ∧ ∀r ∈ network . 2 ≤ |r| ≤ capacity ∧ r ⊆ {1 . . .nNodes}
minimising

∑
ring∈network |ring|

such that ∀pair ∈ demand . ∃ring ∈ network . pair ⊆ ring

We focus herein on general-purpose local search solvers that accept as input
a constraint model: a declarative problem description consisting of a set of
decision variables under a set of constraints. This is a general, flexible approach
in contrast to local search procedures specialised to individual problems (e.g., [2,
3, 4]).

Existing approaches typically accept models written in solver-independent
constraint modelling languages like MiniZinc [5]. The recently-proposed Struc-
tured Neighbourhood Search (SNS) [6], and the Athanor solver we describe in
this paper (which was first proposed in [7]), differ in that they begin from a prob-
lem specification in the abstract constraint specification language Essence [8, 9,
10]. Essence allows problems to be described without commitment to low-level
modelling decisions through its support for a rich set of abstract types, such as
sets, multi-sets, sequences and relations, each of which can be nested arbitrar-
ily (set of partition, multi-set of sequence of tuple, and so on). Figure 1
presents an example Essence specification of the Synchronous Optical Net-
working Problem (SONET) [11], where a set of nodes must be connected via a
set of fibre-optic rings.

Our approach is to proceed from Essence, where the structure apparent
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in a concise, abstract problem specification can be exploited to generate high
quality neighbourhood structures [12] automatically, avoiding the challenging
task of identifying that structure in an equivalent constraint model. A neigh-
bourhood structure is a procedure that takes a current assignment to a variable
in a specification and applies a random transformation to it, generating a new
assignment to the variable from a neighbourhood. Athanor has a set of neigh-
bourhood templates, which express an abstract concept, such as adding values
to a set, or moving a value from one set to another. Athanor takes an ab-
stract problem specification and uses the neighbourhood templates to create
neighbourhood structures. In the SONET specification the decision variable
is a set of sets. Three illustrative neighbourhood structures produced for this
structure by Athanor are:

• Select a set and remove an element: improves the objective, removes un-
necessary connections to the rings.

• Select a set and add an element: helps with satisfying the constraints, if
a demand is not currently met.

• Select two sets, move an element from one to the other: moves connections
to where they may be better used, i.e. to connect to more nodes.

Given an Essence specification of a problem class and a set of neighbour-
hood structures, there are two options for solving. One option is SNS [6],
which uses Conjure [13] to refine the original specification and neighbourhood
structures into a constraint model and solves with an existing constraint solver.
Alternatively, we can perform a local search directly on the augmented Essence
specification. This is the novel approach taken by Athanor, described in this
paper. Specifically, Athanor supports the direct instantiation of abstract vari-
able types such as set, sequence, partition, function, without decomposing the
variables and constraints posted on them into low-level representations. For
several problem classes, Athanor’s high-level representations allow the solver
to scale far better than other solvers, solving instances that are infeasibly large
for competing solvers. As explained in Section 7.3, this is because Athanor
dynamically manages memory during the search to support high-level variable
types whose cardinality can vary significantly depending on the value assigned.
This is in contrast to low-level constraint solvers, which typically employ a more
rigid, conservative approach that immediately requires a substantial memory
commitment.

To illustrate, reconsider the single decision variable in the SONET example:

1 find network : set (maxSize nRings) of

2 set (minSize 2, maxSize capacity) of Nodes

While maxSize capacity on the inner sets is enforcing a problem constraint
(the capacity of each ring), maxSize nRings on the outer set is only required
because otherwise the deduced maximum cardinality of the outer set network is:
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capacity∑
i=2

(
n

i

)
,

Where n is the size of the domain Nodes. Hence, with a capacity of 32 and
a Nodes domain of size 65, the maximum cardinality of network is 264 − 66.
Existing low-level solvers require this abstract decision variable to be modelled
as a constrained collection of more primitive variables, which must be done
conservatively so as to be able to represent the largest cardinality value of the
set of sets. Clearly, 264 is larger than is practically feasible, hence the artificial
bound on the outer set. Athanor does not require this bound: it supports
the instantiation of the set of sets directly, and is able to assign to it values of
different cardinality efficiently (although the worst case still remains). Moreover,
our experiments show that even when a maximum cardinality is given, Athanor
still scales better to larger instances.

Through the twin benefits of neighbourhood structures derived from high
level types and the scalability derived by searching directly over those types, our
empirical results demonstrate strong performance relative to existing solution
methods.

Our major contributions are as follows:

• The automatic derivation of neighbourhood structures from the types of
the abstract decision variables in Essence.

• Representations that scale with the size of the value rather than the upper
bound of the domain of a variable.

To enable the above to be implemented in a practical solver, we also make the
following contributions:

• Time and space-efficient incremental evaluation of expressions that quan-
tify over values of variable size;

• Efficient generation of random values drawn from extremely large domains;

• Experimental evaluation of the proposed solver in comparison to other
state-of-the-art methods, including local search and systematic solvers.

2. An Overview of Essence and Athanor

This section provides an overview of the architecture and operation of the
Athanor solver, before full details are given in subsequent sections. We also
briefly describe the types and structure of the Essence language on which
Athanor operates.

4



Atomic Types
Boolean A simple Boolean type.
Integer Any subset of the integers, specified as a set of intervals.
Enumerated A type with a finite set of named values.
Unnamed A type with a finite set of unnamed values. The values of an

unnamed type cannot be referenced in the specification.

Compound Types
Set Set of variable size (unless annotated otherwise) of any type τ .
Multiset Similar to set but allows multiple occurrences of values.
Sequence A sequence of variable length (an upper bound must be provided)

of any type τ .
Relation A relation of arbitrary arity over any types τ1, τ2, . . .
Function A function from any type τ1 to any other type τ2. The function is

partial by default but may be made total (or surjective, injective,
etc.) with an annotation.

Partition A partition from any finite type τ . A partition may be annotated
to control the number and sizes of parts.

Matrix A matrix with any number of dimensions, containing any type τ
and indexed by integer or enumerated types in each dimension.

Tuple A container with fields accessed by an integer index, each of which
may be of any type.

Record A container with named fields, each of which may be of any type.

Table 1: The Essence type constructors supported by Athanor, which may be annotated to
impose further structure, such as a total function or maximum cardinality of a set. Essence
supports common operators on these types, such as set intersection and union, and arbitrary
nesting, such as set of sets of integers. Decision variables must have a finite domain.

2.1. Background: Essence

We begin with a brief overview of the Essence abstract constraint specifi-
cation language, from which the neighbourhood templates and neighbourhood
structures employed by Athanor are derived (this derivation is discussed in
Section 4). Essence was originally conceived as a means of capturing a formal
description of a combinatorial problem without committing to a concrete model
suitable for input to a particular solving formalism, such as constraint program-
ming or SAT. Hence, the types supported by Essence (summarised in Table 1)
are designed to allow a specification to be given in terms of the combinatorial
structure of the problem. We distinguish between atomic types and compound
types (as shown in Table 1). There is also a distinction in Essence between
abstract types (set, multiset, sequence, relation, function, and partition) and
concrete types (the atomic types, matrix, tuple, and record) [13].

AnEssence specification (e.g. Figure 1) comprises formal parameters (given),
which may themselves be constrained (where); the combinatorial objects to be
found (find); constraints the objects must satisfy (such that); identifiers de-
clared (letting); and an optional objective function (min/maximising). The
input to Athanor is an Essence specification of a problem class and values
for its formal parameters to derive a particular problem instance to solve.
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And

Comprehension

Or

expr template

pair ← demand

generator unrolled

Comprehension

subsetEq

expr template

ring ← network

generator unrolled

pair ring

Figure 2: SONET Abstract Syntax Tree: Unevaluated.

2.2. Overview of Athanor

Given an Essence specification, Athanor begins by constructing two ab-
stract syntax trees (ASTs). The first tree encodes the constraints in a problem,
the second encodes the objective, if present. Each node in the tree represents
an Essence expression, with each leaf being a reference to a variable in the
problem (or a constant) and their ancestors representing the operators. Subse-
quently, Athanor generates a value at random for each of the decision variables
according to some restrictions (described in Section 5). The operators (ancestor
nodes) are then evaluated all the way up to the roots of the two trees, yielding a
Boolean and an integer value for the constraint and objective trees respectively.

Furthermore, every Boolean expression is associated with an integer termed
the constraint violation. When the expression evaluates to true, the constraint
violation is 0, otherwise it takes a positive value. The constraint violation is a
heuristic for the magnitude of the change necessary to the operand values of an
expression such that the expression evaluates to true. In addition, each variable
in the problem is associated with a variable violation, a heuristic measure of the
likelihood of a variable being the cause of violated constraints in the problem.
In the case of a structured type, such as a set of set of int, variable violations
are associated with the top level structure (here the outermost set), each of its
elements, and their elements and so on. This allows the solver to infer whether
a whole or part of a structure is the cause of constraint violations, as described
in Section 6.
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And

Comprehension

Or

expr template

pair ← {{1,3},{3,4}}

generator

  

unrolled

Comprehension

subsetEq

expr template

ring ← network

generator unrolled

pair ring

Or Or

Comprehension Comprehension

subsetEq

expr template

ring ← network

generator unrolled

{1,3} ring

subsetEq

expr template

ring ← network

generator unrolled

{3,4} ring

Figure 3: SONET Abstract Syntax Tree: Outer comprehension (with variable pair) unrolled.

Figures 2 to 4 illustrate the initialisation of the constraint tree for the
SONET specification (Figure 1). The forAll quantifier is represented with
an and function, applied to a list generated by a comprehension. Similarly, the
exists quantifier becomes an or function containing a comprehension. Figure 2
presents the abstract syntax tree prior to the unrolling of the two comprehen-
sions. Each comprehension has three children: the expression template (labelled
expr template), the generator, and the unrolled list (initially empty). Com-
prehensions may also produce sets, but in this example both comprehensions
produce lists. The generator supplies a sequence of values to substitute one by
one into the expression template to create the elements of the unrolled list. For
this simple example, we consider two demand pairs, {1, 3} and {3, 4}. Figure 3
shows the constraint tree after the top comprehension has been unrolled with
respect to these two pairs, forming a list with two elements. Finally, a random
value for the network variable is generated, {{1, 3, 8}, {2, 3}}, and used to un-
roll the inner comprehension, as presented in Figure 4. At this point, the AST
can be evaluated, and it evaluates to false. The expression template (expr
template) child of a comprehension is always retained in the AST so that the
unrolled child can be updated in the event that the generator is changed.

Unrolling the syntax trees dynamically, as illustrated here, is vital for the
scalability of Athanor: the sizes of the trees scale linearly with the actual sizes
of the values of decision variables, not their largest possible sizes. The values
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And

Comprehension

Or

expr template

pair ← {{1,3},{3,4}}

generator

  

unrolled

Comprehension

subsetEq

expr template

ring ← {{1,3,8},{2,3}}

generator unrolled

pair ring

Or Or

Comprehension Comprehension

subsetEq

expr template

ring ← {{1,3,8},{2,3}}

generator

  

unrolled

{1,3} ring subsetEq subsetEq

{1,3} {1,3,8} {1,3} {2,3}

subsetEq

expr template

ring ← {{1,3,8},{2,3}}

generator

  

unrolled

{3,4} ring subsetEq subsetEq

{3,4} {1,3,8} {3,4} {2,3}

Figure 4: SONET Abstract Syntax Tree: Inner comprehension (with variable ring) unrolled.

themselves are also represented compactly, as described in Section 7.3.
After initialisation, the tree structures are used to track subsequent changes

to the leaf nodes (Section 7). Athanor employs two ASTs for both flexibility
and performance. Its search strategies benefit from being able to make decisions
dependent on access to the root of each tree individually, such as permitting
constraint violations while focusing on improving the objective value.

Before commencing the search, Athanor constructs all of the neighbour-
hood structures that will be used during the search process to generate new
assignments within neighbourhoods. These neighbourhood structures are cre-
ated by combining a set of neighbourhood templates, which represent high-level
neighbourhoods. Examples of neighbourhood templates include adding a value
to a set, or moving a value from one set to another.

Following initialisation, Athanor iteratively modifies the current assign-
ment in an attempt both to reduce the constraint violation count and to im-
prove the objective value. This is achieved by using the previously constructed
neighbourhood structures, which select new values for some variables within a
neighbourhood. The two ASTs are used to evaluate the impact of the changes
made. Neighbourhood structures are derived directly from the Essence speci-
fication (as described in Section 4). Athanor makes use of several search pro-
cedures, as described in Section 8. The experimental evaluation of Athanor is
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presented in Section 9 and Section 10.

3. Related Work

There are a number of existing approaches related to our work, which we
summarise in this section.

Localizer [14] introduced a modelling language for the manual specification
of a local search procedure. One of its key innovations was the concept of
an invariant (also known as one-way constraints in the iOpt toolkit [15]), an
expression that describes how to compute the values of one set of variables from
another. This allows the separation of the problem variables into those over
which search is performed, and those whose values are updated incrementally
and efficiently via the invariants. Comet [16, 17] developed these ideas further,
providing a full object-oriented programming language that supports declarative
modelling followed by local search for solutions. Comet is able to synthesize
local search procedures from a declarative constraint-based local search (CBLS)
model [18] where constraints are annotated as hard (i.e. remains satisfied during
search) or soft (may be violated during search) and a metaheuristic such as Tabu
Search is specified by the user. Neighbourhood structures are synthesized from
the constraint semantics (for example, a hard allDifferent constraint may lead
to a neighbourhood structure that swaps the values of two variables in the
allDifferent).

Several more CBLS solvers [16, 17] have since been developed. The Kan-
garoo solver [19] employs a lazy approach, increasing efficiency by propagating
invariants only as necessary. OscaR-CBLS [20] is an open-source solver that
adopts a similar partial propagation scheme, making neighbourhood selections
based on the objective value only. Björdal et al. [21, 22] provide an automated
compilation method from the solver-independent constraint modelling language
MiniZinc [5] to OscaR-CBLS in their solver fzn-oscar-cbls, performing an analy-
sis of the MiniZinc model to determine invariant structure and which constraints
can be implicitly satisfied through neighbourhood structure, as well as synthe-
sising a search strategy. This work was further developed to extend MiniZinc
to support the declarative specification of neighbourhoods [23]. Yuck1 also im-
plements a set of constraint-specific neighbourhoods to support the MiniZinc
language and a search strategy based upon simulated annealing. iZplus2 is
something of a hybrid, using systematic search to find the first solution to an
optimisation problem and then local search to find better solutions. It imple-
ments CBLS for decision problems, either alone or in parallel with systematic
search. LocalSolver [24] was the basis for the commercial Hexaly Optimizer.3

Its emphasis is on allowing the user to focus on modelling while treating the
solving process as a black box. Structured Neighbourhood Search [6] (SNS)

1https://github.com/informarte/yuck
2https://www.minizinc.org/challenge2014/description izplus.txt
3https://www.hexaly.com
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generates neighbourhood structures from Essence specifications, as Athanor
does, then applies Conjure [13] and Savile Row [25] to refine them (alongside
the model) into the input language of a backtracking constraint solver. SNS uses
an adapted version of the Minion solver [26] that applies the neighbourhood
structures in a similar way to Large Neighbourhood Search (described below).
SNS contrasts with the work described in this paper as Athanor directly op-
erates on abstract Essence variables. This leads to a more scalable approach,
especially due to the dynamic creation and deletion of values and constraints
(as illustrated in Section 2.2).

Comet was extended to support graph variables with specialised neighbour-
hood structures to search over them [27]. Similarly, Ågren et al. [28] and Björdal
[29] showed how to introduce set and string variables in a local search setting
respectively. However, these cannot be composed with other abstract types such
as those offered by Essence.

Large neighbourhood search (LNS) [30] is a general framework for solving
constrained optimisation problems which is built on a systematic solver. Sys-
tematic search is typically used to find an initial feasible solution. In each sub-
sequent iteration, a subset of the decision variables is selected to be unassigned
(relaxed) and searched once more by the systematic solver for an assignment
with an improved objective value. The ability to exhaustively search parts of
the search space allows these solvers to perform well on highly constrained and
highly structured problems. In the context of LNS, a neighbourhood structure
is responsible for selecting a set of variables to relax. Highly effective spe-
cialised LNS neighbourhood structures have been proposed for many problem
classes (such as vehicle routing [30]); however, developing such neighbourhood
structures requires time and in-depth understanding of the problem, motivating
research into general-purpose LNS neighbourhood structures.

Propagation-guided large neighbourhood search (LNS-PG) [31] is a general-
purpose LNS method that exploits the propagation process of a CP solver to
inform its choice of variables to relax. The rationale behind LNS-PG is that the
selected variables should form a closely linked sub-part of the problem instance,
where the strength of a link between two variables is measured by assigning
one of the variables and recording the effect of propagation on the other vari-
able. Explanation-based large neighbourhood search (LNS-EB) [32] uses the
explanation mechanism of a learning CP solver to find sets of variables that
are linked to improving the objective. Two methods of LNS-EB were proposed
with promising results. LNS-PG and LNS-EB are both able to derive neigh-
bourhoods automatically for any problem class, in common with Athanor and
SNS, however they do not have access to the high-level structure of Essence.

4. Neighbourhoods

A neighbourhood structure [12] is a procedure that takes an assignment to a
decision variable and applies a transformation to it, such as randomly reassign-
ing an integer, adding a value to a set, or moving elements between parts of a
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partition. Athanor has a set of neighbourhood templates, which are the build-
ing blocks from which neighbourhood structures are created. A neighbourhood
is the set of assignments reachable from the current assignment to a decision
variable by applying a neighbourhood structure. At each iteration of the search,
a neighbourhood structure is selected, and the structure is used to generate a
move from within a neighbourhood of the current assignment. The sampling
process is described in Section 4.1.

Neighbourhoods must respect the types of variables, for example given the
value {1, 3, 5} for a variable of type set (size 3) of int(1..6), we can change
1 to 2, 4 or 6, but not to 3 or 5, nor can we add or remove values from the
set, as the set is fixed size. More complex types allow for more interesting
neighbourhoods. For example, given a value {{1, 2}, {2, 3, 4}} for a variable of
type set of set of int(1..5), we could change one of the values inside one of
the inner sets, create or remove an entire set, or move values between sets – as
long as we never create an invalid value for our type.

In the next sub-section, we describe the set of neighbourhood templates and
how they are combined into neighbourhood structures.

4.1. Neighbourhood Templates

Athanor’s neighbourhood templates are inspired by neighbourhood gen-
eration in Structured Neighbourhood Search [6]. Since each neighbourhood is
directly linked to a variable type and domain, Athanor’s neighbourhoods are
not allowed to violate type invariants, such as the uniqueness of elements in a
set. As Athanor’s neighbourhoods cannot violate type invariants, we reduce
the time spent finding assignments to highly structured variables (e.g. set of

partition (regular, numParts 3)) and can instead focus on satisfying problem
constraints or improving the objective.

Where neighbourhood structures can very cheaply check if they would vi-
olate a type invariant, for example adding a value to a set which is already
maximum size, they do so. However, given the large number of type invariants
in Essence we do not require all neighbourhood structures maintain all type
invariants. Instead, neighbourhood structures generate a neighbourhood move,
which is reverted if any type invariant is violated. If a neighbourhood structure
fails to generate a valid neighbourhood move after a fixed number of attempts
(currently set to 50), the neighbourhood structure is abandoned and another
neighbourhood structure is chosen.

Neighbourhood templates are divided into four categories. We will discuss
these categories in turn, using the neighbourhood structures generated for the
SONET problem as examples.

4.1.1. Atomic Neighbourhood Templates

The first type of neighbourhood templates are atomic neighbourhood tem-
plates, presented in Table 2. These apply only to a single value of one of the
primitive types. For example, intAssignRandom reassigns a variable of type int
to another value in its domain. None of these apply to the SONET problem,
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as the SONET problem contains no variables of type bool, enum, or int. How-
ever, these will be used as building blocks for neighbourhood structures used
in the SONET problem later. Integers have a direct neighbourhood template
that restricts the magnitude of the change to be no greater than the viola-
tion attributed to that variable (intAssignRandomFromViolation). No other
type currently has a neighbourhood template that makes use of the violation.
We do not provide a general assignRandom for any higher-level types, instead
considering neighbourhoods that make smaller, structured changes.

4.1.2. Direct Neighbourhood Templates

The second type of neighbourhood templates are direct templates, presented
in Table 3. These are only dependent on the outermost part of a type. For
example, the setAdd4 neighbourhood template (Table 3) can only be applied to
a set, but can be instantiated for sets of any type. The Add templates use the
existing infrastructure for creating random values, discussed in Section 5. The
relation type in Essence is equivalent to a set of tuple, so variables of type
relation use the set neighbourhoods.

The attributes of variable domains are considered during the creation of
neighbourhood structures. For example, neighbourhood templates that alter
a set’s cardinality are not used to create neighbourhood structures on a set
variable whose domain has a fixed size attribute. Similarly, if a sequence variable
has a domain with the injective attribute (meaning all values in the sequence
are distinct), the neighbourhood structures created for that variable are limited
to those that retain injectivity.

In SONET, the set Add and Remove neighbourhood templates are used to
add and remove elements from network. These added and removed values are
of type set (minSize 2, maxSize capacity).

4.1.3. Higher-order Neighbourhood Templates

The third type of neighbourhood template is higher-order, as listed in Ta-
ble 4. These take another neighbourhood template and apply it to one or more
elements of a container, such as a set or sequence. LiftSingle applies a neigh-
bourhood template on a type T to a single element of a collection of T s. For
example, in SONET, we can lift SetAdd to create SetLiftSingle SetAdd, which
adds an element to a set contained in network. We can lift multiple times, so
we can lift intAssignRandom twice, thus creating a neighbourhood structure
that can modify any integer contained in a set that is in network.

Neighbourhoods can be lifted for sets, multisets, sequences, and the defined
set and the range of a function. Neighbourhoods are not currently lifted for
partitions, because none of our currently implemented neighbourhood templates
would lift to useful, valid neighbourhood structures on partitions. Neighbour-
hood structures generated by lifting a set illustrate how difficult it is to ensure

4For clarity, the template name in the text is formed from the name given in Table 2 or 3,
prefixed with the type on which it is instantiated.
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bool
boolReassign Reassign the variable to the other value in

its domain.

enum
enumAssignRandom Randomly reassign the variable to a differ-

ent value in its domain.

int
intAssignRandom Randomly reassign the variable to a differ-

ent value in its domain.
intAssignRandomFrom

Violation

Assign a value uniformly at random in the
range i ± v, i is the current value of the
integer, v is a violation attributed to that
variable.

Table 2: A complete list of atomic neighbourhood templates in Athanor.

neighbourhood structures satisfy all type invariants. For example, changing one
value in a set to be equal to another value in the same set, where the set

has fixed size, would violate the type invariant of the set. Rather than require
every neighbourhood handle this problem, Athanor runs the neighbourhood
structure, then as a final step checks if the set’s type invariants are violated –
if so the move is rejected and an alternative move is generated.

4.1.4. Synchronised Neighbourhood Templates

The fourth and final kind of neighbourhood templates operate on multiple
members of a container at once. These are known as Synchronised neighbour-
hood templates and are presented in Table 5. For example, the setMove neigh-
bourhood template moves an element from one set to another. Because these
neighbourhood templates require two values to operate, they only work when
lifted. liftMultiple takes a synchronised neighbourhood and lifts it to any of
the container types in Athanor.

In SONET, we generate two synchronised lifted neighbourhoods,
SetLiftMultiple SetMove, which takes two sets in network and moves an item
from one set to another, and SetLiftMultiple SetCrossover, which takes two
sets in network and exchanges two elements from the two sets.

4.2. Neighbourhood Structure Creation

Neighbourhood structures are created once at the beginning of search, and
neighbourhood structures are created independently for each variable in the
Essence specification. Parameters do not affect neighbourhood structure gen-
eration.

For each variable, we start at the top of the type and attempt to instantiate
each type of neighbourhood template appropriate for the outer-most type. For
each lifted neighbourhood template that applies to the outer-most type, we

13



set, multiset
Remove Remove a random element.
Add Add a random element.

sequence
Remove Remove a random element from the sequence.
Add Add a random element to the sequence at a

randomly chosen position.
ReverseSub Reverse a contiguous subsequence of a ran-

dom size.
PositionsSwap Swap the position of a random element with

another.
ReassignSub Randomly reassign a contiguous subsequence.

function
Remove Remove a randommapping from the function.
Add Add a random mapping to the function.
UnifyImages Randomly choose two points in the function

with distinct images, assign the image of one
point to the image of the other.

SplitImages Randomly choose two mappings with equal
images, randomly reassign one of the images.

Swap Swap the images of two randomly chosen
mappings in the function.

SwapAlongAxis Special case of Swap: with functions that map
from a tuple to any type, swap the images of
two tuples τ1 and τ2 where τ1 and τ2 differ in
exactly one place.

partition
MoveParts Randomly select two parts p1 and p2 and an

element e1 ∈ p1 and move e1 into p2.
SwapParts Randomly select two parts p1 and p2 and el-

ements e1 ∈ p1 and e2 ∈ p2 and swap the
elements such that e1 ∈ p2 and e2 ∈ p1.

MergeParts Merge two randomly-selected parts into one.
SplitPart Selects one part p1 at random, creates a new

part p2 and distributes the elements of p1 be-
tween the two at random, while respecting
part size attributes.

Table 3: A complete list of direct neighbourhood templates in Athanor.

remove the outer-most type, recursively create all neighbourhood structures for
the inner type, and combine these with the lifted neighbourhood template.

This process of generating all neighbourhood structures is very quick, as it
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LiftSingle Randomly select an item from the structure and apply
t, keeping all other elements the same.

LiftMultiple Randomly select multiple items from the structure and
apply t, keeping all other elements the same.

Table 4: A complete list of higher-order neighbourhood templates, parameterised with
a neighbourhood template t. For LiftMultiple, t must be a synchronised neighbourhood
template. The LiftMultiple neighbourhood template selects as many elements as required
by t. At present, this is always two elements.

set
Move Move a random element from one set to another.
Crossover Swap randomly chosen elements between two sets.

sequence
Move Move a random element from one sequence to a random

position in another sequence.
Crossover Exchange elements between two sequences that are at

the same randomly chosen index.

function
Crossover Given two functions, select a mapping at random from

each one such that they have the same preimage. Ex-
change the images of these two mappings.

Table 5: A complete list of synchronised neighbourhood templates in Athanor. These
are used in conjunction with higher-order templates to operate on multiple parts of an abstract
structure simultaneously.
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only has to operate on the types and domains of each variable in the Essence
specification.

Bringing together the neighbourhood templates discussed in this section, we
present the full generation of neighbourhood structures for SONET. In SONET
there is only a single decision variable, network, which (removing minSize and
maxSize annotations) has type set of set of Nodes.

Athanor begins by applying direct neighbourhood templates, which gen-
erate SetAdd and SetRemove neighbour structures on network. Next, the
lifted neighbourhood templates are considered. These check which templates
can be applied to the inner set of Nodes type. Those applicable are SetAdd,
SetRemove, SetMove, and SetCrossover, which are all lifted to operate on
members of network to create neighbourhood structures.

Finally, Athanor applies the lifted neighbourhood templates to set of

Nodes, which requires the neighbourhood templates on Nodes, intAssignRandom
and intAssignRandomFromViolation. These are both lifted twice, to create
template structures that modify a single element in a single element of network.

5. Generating Random Values

Athanor requires a method to generate a value that belongs to a given
domain, both for generating initial variable assignments at the start of search
and for generating new elements of a container type (for example, in the setAdd
neighbourhood template).

Values are not generated uniformly at random, instead smaller values (i.e.
values of smaller cardinality) are preferred for two reasons. Firstly, Essence
domains can contain values so large that they would not typically fit in mem-
ory. Types can be arbitrarily nested, and several types describe variable-sized
containers (such as set and sequence). In Section 1 we gave an example where
a small instance of SONET led to a domain containing values with cardinality
264 − 66.

Secondly, the unrolling and evaluation of constraints can be computationally
expensive when a value has high cardinality. Athanor consistently aims to
make small incremental changes that are computationally cheap to evaluate,
and may be quickly undone if the new state is not accepted by the search
strategy. Generating high cardinality random values is inconsistent with this
general aim. When a large value is a necessary part of the solution, it may be
reached by adding elements to a container over several iterations of search.

The method for generating random values in Athanor includes a mecha-
nism for limiting the number of steps in the generation process, and therefore
limiting the size of the generated values as well as the resources needed to gener-
ate a value. The resource limit is an essential part of the method. Without the
resource limit, when generating a value of a variable-sized compound type, each
possible cardinality would be generated with equal probability. The resource
limit applies to every part of a nested domain and is described in detail below.
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Algorithm 1 generateRandomMSet procedure with resource limit.

1: Input: a multiset domain d, an integer quantity of resource rin
2: if rin ≤ 0 then
3: return fail, 0 ▷ no value created, no resource consumed

4: Let dinner be the inner domain ▷ domain of the elements of the multiset
5: c← {} ▷ create c, an empty container from the domain d
6: r ← 1
7: Let nmin and nmax be min and max cardinalities of c, as defined by d
8: n← value chosen uniformly at random from {nmin . . . nmax}
9: while |c| < n do

10: ▷ Calculate reserved resource that cannot be used by recursive call
11: rres ← max(0, nmin − |c| − 1)× calcMinResource(dinner)
12: e, re ← generateRandom(dinner, rin − rres − r)
13: ▷ re is the resource consumed by the recursive call
14: r ← r + re
15: if e = fail then
16: if |c| < nmin then
17: return fail, r
18: else
19: return c, r

20: Add e to c
21: return c, r

5.1. Generating Random Values Under Resource Limits

In this section, we describe the algorithm generateRandom. We use
the multiset (mset) domain as an example because it demonstrates the gen-
eral method by which random values are produced for variable-sized container
types. Other types, such as set, are very similar but require that other con-
straints (type invariants) are satisfied when generating a value. The procedure
generateRandomMSet(d, rin) is shown in Algorithm 1. generateRandom
(for any type) has two parameters: d, which is the domain from which a ran-
dom value is to be generated; and rin, an integer representing the amount of
resource (a proxy for computation time) that may be consumed in the attempt
to generate a random value. If the generateRandom procedure determines
that there is insufficient resource, the algorithm has the option of failing. In
this case, no value is produced, only the amount of resource consumed in the
attempt is returned.

generateRandom is a recursive procedure. After initialising an empty
container (for example, a multiset of τ), the procedure may add elements to the
container by invoking generateRandom with the inner domain τ (as in Algo-
rithm 1). However, it is necessary to share the amount of resource given to the
generateRandom procedure between the initial invocation and any recursive
invocations. This is because the elements of a container may also be variable-
sized and each may therefore consume different amounts of resource when gen-
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erated. For example, consider applying this procedure to the domain mset

(maxSize 1000) of mset (maxSize 1000) of int(...). Not only will the
outer multiset have a variable size, but so will each of its elements. In this
case, controlling the size of the outer multiset alone is not an effective control
of computational cost as we may spend time producing few but very large inner
multisets.

Generating an atomic type (such as int or bool) has a cost of 1. Four
variable-sized compound types (set, multiset, sequence, and relation) have a
cost of 1 to initialise the container, while the other compound types (function,
partition, matrix, tuple, record) do not. The cost of generating any compound
type includes the cost of all attempts to generate an element (regardless of
whether the element was successfully added to the container).

In generateRandomMSet (Algorithm 1), r represents the resource used
so far. It is initialised to 1, and each time an element is added to the multiset
r is increased by the amount of resource used to generate the element. Note
that the generation of each element of the multiset (by recursive call to gen-
erateRandom) must also have a resource limit. A simple resource limit for
generating one element would be rin−r, however it may be necessary to generate
several elements to reach the lower cardinality bound nmin. Supposing we have
|c| elements in the multiset, and also that the current iteration of the main loop
of Algorithm 1 will add one element, then nmin − |c| − 1 more elements will be
needed to meet the lower cardinality bound. The procedure reserves an amount
of resource rres that is an estimate of the minimum amount required to generate
nmin − |c| − 1 elements. calcMinResource takes a domain and returns an
estimate of the minimum resource required to make an element of the domain.
The resource limit for the recursive call is then calculated as rin − rres − r. If
the recursive call to generateRandom fails, then generateRandomMSet
either returns the current multiset, or (if an insufficient number of elements have
been generated) it fails and returns r.

Other types are generated similarly. For sets, lines 12-20 of Algorithm 1
are iterated until a value is generated that is not already in c. Sequences are
generated identically to multisets, except that adding an element to the con-
tainer (line 20) appends the element to the end of the sequence (when doing
so would not break an attribute such as injective). Relations are treated as
sets of tuples. The algorithms for generating the fixed-size types (matrix, tuple,
record) are the same as for a multiset of fixed size (i.e. with the size attribute),
except that with tuples and records the inner domains may differ. Values of the
atomic types such as int are chosen uniformly at random.

Functions divide into two cases. The first are total functions where the
preimage is straightforwardly enumerable (i.e. it is of type int, enum, bool, or
tuple of straightforwardly enumerable types). In this case, a fixed number of
output values are required, and they are randomly generated in the same way
that a fixed-length sequence would be. Otherwise, the process is very similar to
generating a set of pairs. For each pair, first the preimage is generated (as in lines
12-14 of Algorithm 1) and this process is iterated until a unique preimage has
been generated. Then, the image is generated, and (if successful) the mapping

18



is added to the function. Resources are handled exactly as if generating a set
of pairs.

Partitions are generated in two passes. One pass generates a random se-
quence of distinct elements using the same method used for injective sequences.
The other pass (which does not consume any resource) assigns each element in
the sequence to a cell in the partition. If the partition is regular, the number
of cells is chosen uniformly at random (satisfying any relevant attributes) and
the elements are divided equally among the cells uniformly at random. Other-
wise, the minimum number of cells are created (according to a minNumParts or
numParts attribute, if present) and the minimum required number of elements
are placed in each. Then, if there are elements remaining, one element e is
chosen and an attempt is made to place e in an existing cell at random, or build
a new cell containing e with the minimum required number of other elements.
This step may fail by exceeding a cell’s maximum cardinality, exceeding the
partition’s maximum number of cells, or having insufficient elements remaining
to create a new cell. This step is iterated until there are no elements left from
the sequence.

5.2. Resource Limits

The generateRandom procedure is used to generate random values for
the initial state and for some neighbourhood structures. In both cases, small
values are preferable (as outlined above) and so generateRandom should be
given a small value of rin initially. However, it may run out of resource and fail
to generate a value, requiring it to be called again with a larger value of rin.
We define two constants: rmul = 1.1 and rmin = 500. For the first call, we set
rin ← rmul × calcMinResource(d) + rmin. If the first call fails, then we set
rin ← rmul × rin and call generateRandom again, repeating until a value is
returned.

In summary, the effect of the resource limit is to introduce a strong bias
towards values with low cardinality (for every part of a nested domain) while still
allowing some freedom to generate values that are not of the minimal cardinality.

6. Violation Counts

In constraint-based local search solvers, each constraint is often associated
with a constraint violation value (or violation degree) [16, 33], which heuristi-
cally measures the number of necessary changes in the current assignment to
satisfy the constraint, where the violation is 0 when the constraint is satisfied.
There can be more than one way of calculating a violation for a constraint, and
the violation value does not have a single definition across all constraints. For
example, the constraint violation v for the constraint x = y can be defined as
v = |x−y|. One method of measuring violation for the allDiff constraint counts
the number of repeated values used by its variables. The violation of an arbi-
trary constraint is calculated inductively based on its structure. For example,
the violation of a disjunction c1 ∨ c2 is the minimum of the violations of c1 and
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c2. We refer to Michel and Van Hentenryck [33] for a full list of violation cal-
culation rules for different types of constraints, on which Athanor’s constraint
violation rules are based.

Another key concept in constraint-based local search solvers is variable vio-
lation, which indicates how much each variable contributes to the violation of
a constraint. Unlike constraint violations, which are only assigned to booleans,
variables of all types can have a variable violation attached to them. In previous
works [16, 33], the violation of a variable x within a constraint c is defined as
the largest possible decrease in the constraint violation of c over all possible
values in the domain of x. However, such calculations can be computationally
expensive, especially in Athanor where arbitrarily nested variable types are
allowed. Furthermore, in a high-level description of a problem, there are cases
where only a single high-level decision variable exists in a constraint model.
Attaching a violation to only such variable is too coarse. A useful additional
feature would be to attach violations to parts of variables, such as the mem-
bers of a set or sequence. Therefore, we propose a modified version of variable
violation calculation, which heuristically decides which variables, and parts of
variables, are most likely the cause of current constraint violation.

The variable violation calculation in Athanor is done in a top-down man-
ner. The violation of each constraint is assigned to the top operator of the
constraint, and then the violation is recursively forwarded to the operands of
each operator. Violations can optionally have an explanation label, which is
also passed down. At present, the only two explanations are too_small and
too_large, which can only be applied to expressions of type int. The default
behaviour is that the violation count and label are passed unchanged to all
operands of an operator, but some operators have a specialised implementation
which better assigns the violations to operands. We demonstrate the process
with the following example:

1 given n, y : int

2 find x: int (1..10)

3 such that x >= y

4 find s : set (size 5) of int (1..n)

5 such that 1 = sum i in s . toInt(i % 2 = 0)

Assume y = 5 and that the current assignment is x = 1, s = {1,2,3,4,6}.
Consider the first constraint: x >= y. Athanor will calculate the constraint
violation v, which can include an explanation. In the case of the >= operator,
v = max(y-x,0) = 4 (see, e.g., [33], for more details). The violation and an ex-
planation are then forwarded to the constraint’s operands. For the >= operator,
the left hand side (x) is assigned the violation of 4 and the explanation label
too_small, while the right hand side (y) is also assigned the violation of 4 and
the explanation label too_large. This leads to x being assigned a violation of
4 and too_small. The violation on y is dropped, as only variables can have
violations, not parameters.

We now consider the second constraint: 1 = sum i in s. toInt(i%2 = 0).
As the right hand side is evaluated to 3, the left hand side receives a violation
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of v = abs(1-3) = 2 and an explanation too_small, although this violation is
ignored as it applies to a constant. The same violation, 2, and the explanation
too_large is assigned to the right hand side, and this violation and explanation
are subsequently passed to each operand of the sum operator, toInt(i%2 = 0).
The violation count is assigned to every member of the quantification, rather
than split, under the expectation that usually a single step of local search will
tend to change one, or a few, members of the quantification, rather than all
members equally.

Rather than pass on the violation count to its operand unchanged, the toInt

operator has a more optimised implementation. The toInt operator can only
take one of two possible values (0 or 1), so we can infer information about the
largest possible decrease in violation that can occur. More concretely, if the
operand is evaluated to false, then the toInt operator is already at its smallest
possible value (0), and so cannot take a smaller value. Therefore, any violation
labelled as too_large is ignored. In our example, the violation is dropped when
i ∈ {1,3}. toInt is the main operator where violation counts are useful, where
they avoid marking expressions as violating when changing their value would
not actually reduce the overall violation count.

On the other hand, when i ∈ {2,4,6}, the toInt operand is true, which
means it can become smaller. Therefore, in this case a violation of 1 (as the value
of the toInt operator can change by at most 1) and an explanation too_large

are passed down to the = operator and subsequently to the operator’s non-
constant operand: i % 2. The operator %, on the other hand, simply passes
down the violation to its non-constant operand, variable i, which is an element
of s. For implementation simplicity, not every operator in Athanor generates
an explanation. In this case, the operator % does not assign any explanation to
its operands.

With the presence of nested types, in Athanor the variable violation on any
containing structure s is the sum of the variable violation directly associated
with s and the variable violation associated with all elements of s. In our
previous example, the violation of s is defined as the sum of variable violations
of elements 2, 4, and 6 (there was no variable violation associated with elements
1 and 3 in this example).

Essence, and therefore Athanor, operate on relational semantics [34].
This means Booleans can be true, false, or undefined. Since undefined val-
ues can have such a large impact, with one operand potentially causing the
entire expression tree to become undefined, Athanor assigns undefined a very
large violation count (232). An investigation into other methods of assigning
violation to undefined values is left for future work.

Information about constraint violation and variable violation is used fre-
quently during the search in Athanor. As described in Section 8, the total
constraint violation is used for measuring the magnitude of infeasibility of an
assignment (the smaller the better). Variable violation, on the other hand, is
used for biasing towards variables with higher contributions to the violation of
the current assignment during the application of a neighbourhood structure,
i.e., elements with higher variable violations will have a higher probability of
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being selected.

7. Incremental Evaluation

During search, whenever a variable is reassigned we must calculate new val-
ues and new violation counts for the constraints. Rather than reevaluating the
entire AST, which can be computationally expensive, Athanor only reevalu-
ates the nodes on the paths from the changed variable (leaf node) to the root.
The reevaluation is done incrementally and is optimised for efficiency via three
mechanisms: caching, triggering, and incremental hashing. Athanor also uses
invariants in some cases, as described below.

7.1. Caching

Every node in the AST can be queried for a value. In the case of a leaf node,
this is the value assigned to the variable represented by the leaf. For a non-
leaf node, this is the value produced by evaluating the operator encoded by the
node. In most cases, operators cache their values after evaluation and simply
return the cached values when queried. In addition, the operators also cache the
values of their operands when needed. For example, a sum operator will cache
the current sum of all its child nodes and the value of each element in the sum.
Some operators do not cache their values, but instead forward the request for a
value to a descendant node. For example, the sequence index operator, which
accepts a sequence s and an integer index i, and evaluates to the member m of
s whose position matches i. Unless i is out of bounds (see below for a discussion
of undefinedness) instead of storing its own value, when queried the sequence
index operator simply forwards the query to m.

The cached values are used for incremental evaluation whenever possible.
This is particularly useful when there are nodes in the AST that have a very
large number of children. Consider, for example, summing a list of length 1000.
As an example, when changing the value of c from c1 to c2 in the expression
s = sum({a,b,c,d,e}), the new value of the sum can be calculated as s’ = s -

c1 + c2. This allows the sum operator to be reevaluated without querying the
values of a, b, d, and e.

7.2. Triggering

During incremental evaluation, operators must check if they have to update
their current values. Each operator makes use of two pieces of information to
update its value during the incremental evaluation: its current cached values and
the changes made by its child nodes. Changes in child nodes are communicated
to their parents through triggers - functions that describe in detail the changes
in the child nodes’ values. All data types share a common set of three basic
trigger functions:

• valueChanged() notifies that the value of the node has changed.
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• hasBecomeUndefined() notifies that the value of the node has become un-
defined (for example, dividing by 0, or indexing a sequence by an out-of-
bounds value, such as −1).

• hasBecomeDefined() notifies that the value of a node has changed from
undefined to defined.

While these three triggers are sufficient to implement incremental evaluation,
many abstract types extend the basic set of trigger functions in order to give a
more detailed description of the change in the value of a node. This allows a more
efficient implementation of incremental evaluation in many cases. Consider,
as an example, the set type. Notifying a set operator that the value of one
of its operands (of type set) has changed gives very limited information to
the operator. Only one member of the set may have changed, or the entire
set might have been replaced with a different one. The basic valueChanged()

trigger function will always need a full reevaluation of the operator. To improve
performance, Athanor defines additional trigger functions for the set type,
including:

• valueAdded(index): a new element is added to the set at index.

• valueRemoved(index): an element is removed from the set at index.

• memberValueChanged(index): an element in the set is changed at index.

In addition, some compound types share two additional trigger functions:
memberHasBecomeDefined(index) and memberHasBecomeUndefined(index), which in-
dicate that some element has become defined or undefined, respectively. These
are useful for operators such as f(y), which evaluates to the image of y w.r.t
the function f , and which only becomes undefined if the image of y becomes
undefined.

Note that while types such as sets are unordered in Essence, we treat
abstract types as ordered internally, so any particular value remains at the
same index where possible.

Each operator makes use of the information provided by the triggers to
update its current cached value and violation count (if it is Boolean). Consider
the constraint a subsetEq b. This expression is true or false. Athanor also
stores the violation count, which is the number of members of a not contained
in b. The expression is true when the violation count is 0. Assume the violation
of the expression, denoted as v, has been evaluated previously. The following
demonstrates how changes to the value of a change the violation count v.

a->valueAdded(index) If a[index] /∈ b then v ← v + 1

a->valueRemoved(index) If a[index] /∈ b then v ← v - 1

a->memberValueChanged(index) Let x be the old value at index index, and y
be the new value. Then run valueRemoved(x) followed by valueAdded(y).
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a->valueChanged() Set has changed in an unknown way, perform a full re-
evaluation of v.

a->hasBecomeUndefined() assign the violation count 232 to v (as discussed in
Section 6).

a->hasBecomeDefined() If b is defined, perform a full re-evaluation of v.

A similar procedure is followed for trigger notifications from b. Another
example of triggers and incremental evaluation for the sum operator and the
sequence type can be found in Appendix A.

7.3. Value Representation and Incremental Hashing

It is important for scalability that values are represented compactly, partic-
ularly for types where the size is variable. Athanor uses representations that
scale approximately linearly with the actual size of the value, not its upper-
bound size. For example, values of type set of int are represented with an
extensible array of references to the elements, combined with a hash set (i.e. a
hash table containing only keys) of the elements, both of which scale approx-
imately linearly with the number of elements. Each type has a hash function
that is incrementally updated to reflect changes made to a value of that type.
The incremental hash functions are important for efficiency because hash values
are extensively used to compare values for equality or disequality. Appendix
B describes the value representations and incremental hash functions for each
type. In very rare cases a hash collision can affect the behaviour of Athanor,
and we also discuss this issue in Appendix B.

7.4. Invariants and Partial One-Way Propagation

Invariants, also known as one-way constraints, are a common feature of
constraint-based local search solvers (as discussed in Section 3). An invariant
defines one set of variables in terms of another set. For example, given x = y+2,
we can allow the search process to change y, and calculate the value of x from
y when required.

Athanor implements invariants for integer variables. When an integer vari-
able a is contained in an equality constraint a = e (with any expression e), all
other occurrences of a are replaced with e throughout the specification and the
variable a is deleted. To ensure that e takes a value within the domain of a,
the constraint a = e is replaced with e ∈ D(a), where D(a) is the domain of a,
unless this constraint is trivially true in which case it is replaced with True.

Integer elements of compound types are a more difficult case. Consider an
equality involving a member of a compound type, for example M [2] = y+2, for
a sequence M and integer y. In this case we cannot remove M [2] because
the sequence M as a whole may appear in other constraints and will have
neighbourhood structures. However, we would still like to use this constraint to
update M [2] when y changes.

To handle such cases, we introduce a weaker technique which we call partial
one-way propagation. Given a constraint b = e where b is an integer element
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of a compound type, partial one-way propagation can assign b the value of e
whenever e changes, without deleting b or deleting the constraint b = e. We
implement partial one-way propagation for constraints b = e when: b is an
integer element of a compound type; the value of e must always be in the
domain of b; and the domain of the decision variable x containing b places no
restrictions on the value of b other than the domain of b itself.

The final requirement is to ensure that updating b will not violate the type of
x. For example, if x is an injective sequence, updating b could break injectiv-
ity. Similarly, sets and partitions disallow duplicate values so their elements also
cannot be updated by partial one-way propagation. Restrictions on an integer
element can arise from any layer of the type of x; for example, while the inte-
gers in a sequence (maxSize 5) of int can be updated by partial one-way
propagation, the integers in a set of sequence (maxSize 5) of int cannot,
because the set cannot contain duplicate sequences.

Athanor keeps track of all constraints of the form b = e that satisfy the
conditions given above. For each such constraint, whenever the value of e is
changed during incremental evaluation the value of b is updated automatically.
To prevent cycles, each element of a compound type may be updated at most
once during each pass of incremental evaluation. The constraint b = e is not
removed, and may be violated when the cycle detection prevents updating b.

An example can be seen in the Minimum Energy Broadcast problem (Fig-
ure 9): for a total function named depths, we have the following constraint:

1 depths(child)=depths(parent)+1

The element depths(child) is updated when the value of the right-hand side
changes.

The CBLS systems described in Section 3 have various sophisticated ways
of identifying invariants and processing them efficiently. There is clear potential
for improvement to Athanor in this area.

8. Search Procedures

In Athanor, as is usual for local search-based metaheuristics, the generated
neighbourhood structures are treated as black boxes – procedures which may
improve or worsen the violation count or the objective. A single iteration of
search consists of the selection of one variable and its reassignment via a neigh-
bourhood structure. Built around these iterations is the traditional metaheuris-
tic design; the metaheuristic decides after each iteration of search whether the
new solution should be accepted or the change should be reversed. The meta-
heuristic used in Athanor follows the well-known Iterated Local Search (ILS)
algorithm [35] where a hill climbing phase (for improving the current solution)
and an exploration phase (for escaping local optima) are interleaved. During
the hill climbing phase, neighbourhood structures are selected dynamically to
ensure the most effective ones are chosen depending on the current stage of the
search.
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Algorithm 2 Overall search procedure of Athanor

1: s← random initial assignment ▷ current solution
2: sbest ← s, s∗ ← s ▷ global and local best solutions so far
3: nr ← 10 ▷ random walk length
4: while time limit not reached do
5: if violation(s) > 0 then
6: s← hillClimberToZeroViolation(s) ▷ repair violations

7: s← hillClimber(s) ▷ improve objective function
8: if strictlyBetter(s, s∗) then
9: s∗ ← s , nr ← 10 ▷ update local best & reset random walk length

10: if strictlyBetter(s, sbest) then
11: sbest ← s ▷ update global best

12: else ▷ exploration phase to avoid local optima
13: nr ← nr × 1.3 ▷ increase random walk length
14: s← randomWalk(s, nr) ▷ random walk for nr steps
15: if nr > 500 then ▷ exploration phase reaches its limit
16: nr ← 10, s∗ ← s ▷ reset random walk length and local best

return sbest

In this section, we first explain the overall search procedure of Athanor
(Section 8.1). The exploration phase is then described in Section 8.2, followed
by details of the hill climbing phase (Section 8.3 and Section 8.4). Finally,
the dynamic neighbourhood structure selection mechanism is explained in Sec-
tion 8.5.

8.1. Search Architecture

The overall search procedure of Athanor is presented in Algorithm 2.5 The
search starts by randomly assigning values to all variables (line 1), initialising
the two best solutions so far (line 2) and the random walk’s length for the
exploration phase (line 3). The two best solutions saved during the search
include: (i) sbest, the current global best during the entire search; and (ii) s∗,
the local best solution obtained before the random walk’s length reaches its
limit.

For constrained problems, it is possible that the current solution does not
satisfy all constraints. Therefore, in the main loop, Athanor first tries to
repair any violations via a hill climbing search (line 6, procedure hillClimber-
ToZeroViolation) before starting to alternate between two phases: (i) a hill
climbing phase (line 7, procedure hillClimber), which focuses on improving
the objective function value; and (ii) an exploration phase (line 14, procedure

5All constant values used in Athanor’s search procedure were chosen based on manual
tuning on some example instances taken from CSPLib [36]. A systematic investigation of the
influence of those parameters on solver performance and how to select the best values is left
for future work.
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Algorithm 3 Exploration phase in Athanor (randomWalk)

1: Input: current solution s, random walk length nr

2: vmax ← violation(s) + nr ▷ cap on violation of current assignment
3: i← 0
4: while i ≤ nr do
5: s′ ← apply a random neighbourhood structure on s
6: if violation(s′) ≤ vmax then
7: s← s′, i← i+ 1

return s

randomWalk), which makes a number of random changes to the current so-
lution s obtained from the hill-climbing if s is not better than the local best s∗.
The comparator strictlyBetter(s, s∗) (line 8) is defined as follows:

procedure strictlyBetter(s, s∗)
return violation(s) < violation(s∗) ∨

( violation(s) = 0 ∧ violation(s∗) = 0 ∧
objective(s) < objective(s∗) )

where violation(s) and objective(s) correspond to the total number of
constraint violations (as described in Section 6) and the objective function value
of a solution s.

The idea of alternating between the two phases (exploration and hill climb-
ing) is that if the hill climbing fails to find a better solution, this is an indication
that Athanor has become stuck in a local optimum. The exploration phase
aims to force Athanor into a different area of the search space by making ran-
dom changes to the current solution. The number of changes is limited by nr. If
hill climbing still fails to improve on the local best solution after the perturba-
tion, random walk is applied again with an increased value of nr (lines 13−14).
Once nr reaches a certain limit, Athanor redefines the local best as the current
solution after exploration and resets nr (line 16). This can be considered as a
random restart when the current exploration is no longer effective.

In this work, when a neighbourhood structure is applied on a current as-
signment, we simply sample a random assignment from the neighbourhood and
replace the current assignment with the new one. There are several alternatives
used in the literature, such as exploring a random subset of the neighbourhood
and choosing the best assignment from the subset, or exploring the neighbour-
hood until the first improved assignment is found. An investigation of those
alternatives is left for future work.

8.2. Exploration

The exploration phase is detailed in Algorithm 3. This phase aims to escape
local optima by making a number of unguided random moves. Each move is
performed by randomly selecting a neighbourhood structure and applying it to
the current assignment. However, we found that simply allowing Athanor to
make unrestricted changes to the assignment was unproductive because some
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Algorithm 4 Procedure hillClimberToZeroViolation

1: Input: current solution s
2: i← 0
3: while violation(s) > 0 do
4: s′ ← applyNeighbourhoodStructure(s)
5: if violation(s′) < violation(s) then
6: s← s′, i← 0
7: else
8: i← i+ 1

9: if i = 5000 then
10: s← random assignment, i← 0

11: return s

neighbourhood structures make much more dramatic changes than others. For
example, given a nested structure such as a set of set of int, one neighbour-
hood structure deletes a single integer from an inner set, while another neigh-
bourhood structure deletes a set of integers. An important area of future work is
to investigate different strategies to control the magnitude of the changes made
by each neighbourhood structure. In this paper, we adopt a simple strategy
where we set a limit on the increase in the violation allowed during the current
exploration phase (set by nr). A tight restriction on violation increase tends to
cause Athanor to make small changes to the assignment, if the specification
includes some constraints. The same parameter nr also determines the number
of random moves made during the exploration phase. Therefore, increasing nr

allows individual moves to make larger changes to the assignment, and also in-
creases the number of random moves. While Algorithm 3 could hypothetically
enter an infinite loop if applying random neighbour structures failed to find any
assignments that satisfy the violation requirements, we have never observed this.
If it did, the algorithm could be modified to terminate after a specified number
of failed attempts to apply a random neighbourhood structure.

8.3. Hill Climbing for Repairing Violations

The hillClimberToZeroViolation procedure (called on line 6, Algo-
rithm 2) is described in Algorithm 4. This procedure solely focuses on repairing
any violations in the current assignment. At each iteration, a neighbourhood
structure is dynamically selected (details on how neighbourhood structures are
selected are described in Section 8.5) and applied to the current solution s (line
4). The new solution is assigned to s if it has a smaller number of violations
(line 6). To avoid getting stuck in local optima, we restart the whole search with
a random assignment if there is no improvement in terms of violations across
5000 consecutive iterations (lines 9− 10).

8.4. Hill Climbing for Improving Objective Function Value

The hillClimber procedure (called on line 7, Algorithm 2) assumes that
the input solution is feasible and focuses on improving the objective value.
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This procedure is comprised of two different versions of hill climbing. The first
one, namely hillClimberStandard, is a simple and standard hill climbing
algorithm where only strictly better solutions are accepted, while the second one,
namely hillClimberWithViolations, is more sophisticated and temporarily
allows assignments with constraint violations. The latter one was introduced to
address the issue where heavily constrained variables exist and the search must
temporarily violate constraints to improve the objective.

Each version of hill climbing is given a fixed budget of 5000 solution evalu-
ations during each iteration of the overall search procedure of Athanor. We
first describe the sophisticated hill climbing version (Section 8.4.1), followed by
the dynamic selection mechanism to choose between hillClimberStandard
and hillClimberWithViolations (Section 8.4.2).

8.4.1. Hill Climbing with Temporary Violations

Algorithm 5 Procedure hillClimberWithViolations

1: Input: current solution s, budget b
2: i← 0 ▷ number of evaluations used by the whole procedure
3: nvio ← 20 ▷ current violation limit
4: s′ ← s ▷ current best solution
5: o← objective(s) ▷ current best objective value (without violation)
6: repeat
7: ▷ We first attempt to improve the objective while allowing violations
8: k1 ← 0 ▷ number of evaluations used by the first loop
9: while objective(s′) ≥ o and k1 ≤ min(b− i, 500) do

10: s′′ ← applyNeighbourhoodStructure(s′)
11: k1 ← k1 + 1
12: if violation(s′′) ≤ nvio and objective(s′′) ≤ o then
13: s′ ← s′′

14: i← i+ k1
15: ▷ Now attempt to repair violations
16: k2 ← 0 ▷ number of evaluations used by the second loop
17: while violation(s′) > 0 and k2 ≤ min(b− i, 500) do
18: s′′ ← applyNeighbourhoodStructure(s′)
19: k2 ← k2 + 1
20: if violation(s′′) ≤ violation(s′) and objective(s′′) < o then
21: s′ ← s′′

22: i← i+ k2
23: if (violation(s′) = 0 and objective(s′) < o) or nvio ≥ 20 × 1.210

then
24: nvio ← 20
25: o← objective(s′)
26: else
27: nvio ← nvio × 1.2

28: until i ≥ b return s′
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The hillClimberWithViolations procedure is shown in Algorithm 5.
Starting from a current solution s and an initial limit nvio for temporary viola-
tions (lines 3− 4), the main loop includes two stages. First, Athanor searches
for an assignment with a better objective value while allowing violations up to
the limit of nvio (lines 8 − 13). The second stage attempts to repair the intro-
duced violations while maintaining the improved objective value (lines 16−21).
Following the second stage, if the search found a feasible solution with improved
objective value then we reset nvio and the target objective, essentially re-starting
the procedure from the improved assignment s′ (lines 23− 25). Also, when the
violation limit reaches a certain value (line 23), the search is reset but with an
assignment s′ that could be worse than the original assignment s. Otherwise,
we increase the violation limit nvio and continue to the next iteration (line 27).

8.4.2. Dynamic Selection of Hill Climbing Procedure

Each time hillClimber is called from Algorithm 2, a choice is made be-
tween hillClimberStandard and hillClimberWithViolations. It is not
known a priori which one is most suitable at a given stage of the search, so the
choice is made dynamically. The choice is treated as a Multi-Armed Bandit
(MAB) problem [37]. The MAB problem considers a bandit with multiple inde-
pendent arms, each of which when pulled returns a random reward. The reward
distribution of each arm is unknown, and the aim is to choose which arms to
pull such that the total reward is maximised. The most important point when
solving a MAB problem is to have a balance between exploitation (pulling the
best-so-far arm) and exploration (trying a new or less frequently selected arm
to gather more information). One of the most common strategies for achieving
a balanced exploitation-exploration trade-off is the Upper Confidence Bound
(UCB) algorithm [38], where the selected arm a∗ for a time step t is defined as:

a∗ = argmax
a∈A

(
Rt(a)

nt(a)
+ c×

√
ln t

nt(a)

)
(1)

where A is the set of arms, nt(a) is the number of times arm a has been
pulled until time t, and Rt(a) is the current total reward received by pulling
arm a. The formula offers a balance between exploitation (the first term) and
exploration (the second term), and c is a parameter of the algorithm 6.

In our context, each version of hill climbing is an arm. The individual reward
received at each time step (i.e., when an arm is pulled) is defined as the number
of times that the objective value is improved during the hill climbing call without
introducing constraint violations.

8.5. Dynamic Neighbourhood Structure Selection

In this section, we describe in detail how neighbourhood structures are
selected during each hill climbing variant (i.e., the applyNeighbourhood-

6c is set as 1 in all experiments in this paper
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Structure procedure in Algorithm 4 and Algorithm 5).
A typical Essence specification with high-level nested types usually leads

to the instantiation of several neighbourhood structures. Some neighbourhood
structures may be better at improving the objective, while others may be better
at reducing violations when looking for a feasible solution. Of course there may
be some that are not favourable for either. The aim of dynamic neighbourhood
structure selection is to quickly classify these neighbourhood structures and bias
the search towards the neighbourhoods appropriate to the current search stage.

Consider, for example, the SONET problem and its objective, the minimisa-
tion of the sum of the inner sets’ cardinalities. One of the matching neighbour-
hood structures, setRemove, as the name suggests, closely fits the objective by
explicitly focusing on reducing the sizes of the inner sets. The inverse, setAdd,
is not useful with regards to the objective as it always leads to a worse solution,
but can aid with satisfying the constraints of the problem.

Similar to the dynamic selection of hill climbing procedures, we make use
of the UCB algorithm to select neighbourhood structures during the search,
i.e., each neighbourhood structure is an arm. There are three UCB controllers
for neighbourhood structure selection, each of which targets a different stage of
the search and therefore has a different definition for the reward function. The
first controller assigns an individual reward of one to a neighbourhood structure
when the total constraint violation is reduced. This controller is used when
the main focus is on repairing the violations (line 4 of Algorithm 4 and line
18 of Algorithm 5). The second controller focuses on improving the objective
value. It gives each neighbourhood structure an individual reward of one when
the objective value is improved, irrespective of changes in constraint violations.
This controller is used in line 10 of Algorithm 5. The third controller gives each
neighbourhood structure an individual reward of one only when the objective
value is improved without introducing constraint violations. This last one is
used in the hillClimberStandard procedure described at the beginning of
Section 8.4.

The cost to execute and evaluate a neighbourhood structures can vary sig-
nificantly, some neighbourhood structures can be much more computationally
expensive than others. The original UCB formula (Equation (1)) simply counts
the number of times each neighbourhood structure is selected by a UCB con-
troller, neglecting the computational cost of applying the neighbourhood struc-
ture. Here, we use an approximation of the total amount of computational
resources consumed by the application of the neighbourhood, cost(a). This in-
cludes the total resources of all the inner loops executed during the neighbour-
hood structure application. If an iteration of an inner loop involves generating
new random values for a variable within the current assignment, the resources
are calculated as detailed in Section 5.1. For all other cases, the resource for each
iteration is simply counted as 1 because the implementation involves simpler op-
erations (e.g., reassigning a pointer). Each time a neighbourhood structure is
selected by a UCB controller, nt(a) is increased by cost(a) + 1.
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9. Experimental Evaluation

In this section we evaluate the performance of Athanor in comparison
with a collection of other solvers. We compare with constraint-based local
search solvers that are able to generate neighbourhoods automatically (since
Athanor generates neighbourhood structures automatically), and with sys-
tematic constraint solvers that have performed well in recent competitions. We
have two hypotheses: first, that the structure available in a high-level problem
specification can be exploited to generate effective local search neighbourhoods;
and second, that Athanor’s use of variable-sized data structures (for both val-
ues and expressions) will allow it to scale gracefully to large problem instances.

In the first experiment we compare Athanor with local search and sys-
tematic solvers on a collection of benchmark problems, ranging from simple to
complex in structure. The results show that Athanor performs well overall
but comparatively better for problem classes with nested structure (such as a
set of partitions). Our results broadly confirm the first hypothesis.

In the second experiment, we use new sets of large instances of four problem
classes (for example, new knapsack instances with 80,000 objects) to explore
how Athanor scales compared with the other solvers. The results demonstrate
Athanor’s ability to scale gracefully to large instances (through its support
for variable-sized data structures) on three of the four problem classes, largely
confirming the second hypothesis.

All models and instances used for the experiments and the instance genera-
tors we created, together with experimental results are all available in the reposi-
tory https://github.com/athanor/athanor-experiments/. The source code
of Athanor is available at https://github.com/athanor/athanor. The con-
straint modelling tool Conjure [13]7 is used by Athanor to parse Essence.

9.1. Solvers

We compare Athanor with six other solvers in seven configurations, to-
gether with a simplified version of itself, as follows:

LNS-PG: propagation-guided large neighbourhood search [31] as implemented
in Choco [39] version 4.10.10. Details are provided below.

LNS-EB: explanation-based large neighbourhood search [32] as implemented
in Choco version 4.0.9. At the time of performing the experiments, 4.0.9
was the most recent version of Choco to support explanation-based LNS.

Yuck: a constraint-based local search solver.8

7https://github.com/conjure-cp/conjure
8https://github.com/informarte/yuck (the release dated November 1st, 2022)
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fzn-oscar-cbls: a constraint-based local search solver [21, 22] based on OscaR-
CBLS [20].9

Chuffed: a systematic CP solver with conflict learning [40], version 0.10.4 with
the free search option enabled.

OR-Tools: a systematic CP solver with conflict learning,10 version 9.4.1874
with the free search option enabled.

SNS: structured neighbourhood search [6], a local search solver for Essence.

Athanor-Reduced: a simplified version of Athanor itself where the more
complex neighbourhood templates are removed. This is to validate the
impact of high-level neighbourhoods on the solver’s performance.

The other solvers and configurations were chosen to include: both prominent
approaches to automatically generating neighbourhoods for LNS (propagation-
guided and explanation-based); open-source CBLS solvers that were entered in
the Local Search track of the MiniZinc Challenge Series (Yuck and fzn-oscar-
cbls); two systematic CP solvers, including OR-Tools (the overall winner of
several recent MiniZinc Challenges) and Chuffed (a solver with competitive
performance to OR-Tools); and Structured Neighbourhood Search, the only
solver other than Athanor that uses the structure available in Essence.

LNS-PG and LNS-EB were both implemented using the API of Choco. The
initial search for a feasible solution uses a binary depth-first search with the
dom/wdeg variable ordering heuristic and random value ordering. The search
restarts when a backtrack limit is reached, initially restarting after 50 back-
tracks; the backtrack limit is increased by a multiple of 1.5 at each restart. The
search used within LNS is also a binary depth-first search with dom/wdeg vari-
able ordering. The value ordering is minimum value first, and search is limited
to 50 backtracks.

Yuck, fzn-oscar-cbls, Chuffed, and OR-Tools are called via MiniZinc [5]11

2.6.4. The version of Athanor used in the experiments is release 0.9.9.12

Athanor makes use of high-level structure in two ways: variables are rep-
resented internally in a compact form, rather than flattened to a lower-level
representation; and neighbourhood structures are automatically created from
neighbourhood templates and high-level types of decision variables. To investi-
gate these two ideas separately, Athanor-Reduced is a version of Athanor
with many high-level neighbourhood templates removed. Athanor-Reduced
contains only the atomic neighbourhood templates, neighbourhood templates to
add or remove a value for variable-sized containers, and LiftSingle, so atomic

9Downloaded from http://user.it.uu.se/~gusbj192/fzn-oscar-cbls/latest/

oscar-cbls-flatzinc.zip, version dated August 22nd, 2021, which is the latest release as of
8th June 2023.

10https://github.com/google/or-tools
11https://www.minizinc.org/
12https://github.com/athanor/athanor/releases/tag/release_v0.9.9
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templates can be applied to members of higher-order types. It also contains all
the partition templates, except SwapParts.

9.2. Essence Specifications and Constraint Models

Each problem class used in the experiments has an Essence specification
(used by Athanor and SNS) and two constraint models: a MiniZinc model
(used by Yuck, fzn-oscar-cbls, Chuffed, and OR-Tools); and a Choco model (for
LNS-PG and LNS-EB, written in Java using the Choco API). To ensure (as far
as possible) a fair comparison of all solvers, we have chosen or written constraint
models that correspond closely to the Essence specifications. In each case,
we describe how the abstract decision variables in the Essence specification
are represented in the MiniZinc and Choco models. We also ensure that the
MiniZinc and Choco models are as close as possible given the differences between
the two systems.

In some cases the representation of an abstract decision variable introduces
symmetry (such as representing a set of τ as a matrix of τ , for any Essence
type τ). For each problem where this occurs, we have two versions of the
MiniZinc and Choco models: one with symmetry-breaking constraints and the
other without. All experiments are conducted with both versions of the model,
because we do not know in advance whether symmetry-breaking constraints will
help or hinder a given solver.

The MiniZinc and Choco models use common global constraints such as
allDifferent and element. In this set of experiments, we do not utilise specialised
global constraints that encapsulate an entire problem or a key part of it (such
as knapsack [41] and bin packing [42] constraints). The propagators for global
constraints such as knapsack and bin packing are essentially special-purpose
solvers for a problem class, and our aim is to compare the general-purpose solver
Athanor to other general-purpose solvers. In Section 10, we conduct a separate
set of experiments where those specialised global constraints are employed.

Both MiniZinc and Choco support set variables (representing a set of in-
tegers). We use set variables in MiniZinc for any Essence variable with type
set of int. However, in the Choco models we represent set of int with an
array of Boolean variables (representing the characteristic function of the set).
Decomposing set variables gives the LNS methods the ability to search parts of
the set representation while freezing the rest, and also avoids having a single
variable in the model of the Knapsack problem.

All MiniZinc and Choco models minimise or maximise an integer variable
optVar, the value of which is a function of the values of primary decision vari-
ables. Choco requires a single variable to optimise and we follow the same
convention in MiniZinc for consistency.

9.3. Benchmark Problems

We benchmark Athanor against other solvers on seven problem classes.
As detailed in the subsequent sections, we make use of standard benchmark
instance sets whenever they are available. For problems where there are only
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1 given items new type enum

2 given weights : function (total) items --> int

3 given binSize : int

4 find packing : partition from items

5 minimising |parts(packing)|

6 such that forAll p in parts(packing) .

7 binSize >= sum i in p . weights(i)

Figure 5: Essence specification of the bin packing problem.

a small number of instances available, or the existing instances are trivially
solved by the solvers considered in our experiments, we create new benchmark
instance generators and randomly generate new instances for the evaluation.
All models, generators and instances used in our experiments are provided in
the accompanying repository.

9.3.1. Bin Packing

The specification of the classic bin packing problem is shown in Figure 5.
Each item must be allocated to exactly one bin, so we are able to use the
partition type to capture the entire problem in a single decision variable. The
optimisation function (to be minimised) is the number of parts (cells) in the
partition. The constraints state that the weight limit of each bin is respected.

We use a 0/1 model by H̊akan Kjellerstrand13 for the Choco and MiniZinc
solvers. The model extends the basic model of Régin and Rezgui [43]. For
each item and bin, the model has a 0/1 variable indicating whether the item is
placed in the bin. Also, for each bin, we have a load variable that is the sum of
weights of items in the bin. The upper bound of each load variable is the weight
limit of the bins. Constraints ensure that each item is packed exactly once, and
an implied constraint states that the sum of the load variables is equal to the
total weight of items. Symmetry breaking constraints place the load variables
in non-increasing order. The optimisation function (to minimise) is the number
of load variables that are greater than 0.

We use 80 instances from a set of 160 generated by Falkenauer [44] and avail-
able from the OR-Library [45].14 Falkenauer generated 8 sets of 20 instances;
from each set we took the 10 even-numbered instances. The number of items in
this instance set range from 60 to 1000.

9.3.2. Travelling Salesperson Problem

In the classic Travelling Salesperson Problem (TSP) [46] we are given a set
of n cities, and the cost of travelling between each pair of cities. The objective
is to find the lowest-cost cycle that visits all cities exactly once. The Essence

13https://github.com/hakank/hakank/blob/master/minizinc/bin_packing_me.mzn
14http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html
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1 given nCities : int

2 given distances : function (total)

3 tuple (int (1.. nCities), int (1.. nCities)) --> int

4 letting maxDistance be max([i | ((_,_), i) <- distances ])

5 find tour : sequence (size nCities , injective)

6 of int (1.. nCities)

7 minimising sum i : int (2.. nCities) .

8 distances ((tour(i-1),tour(i)))

9 + distances ((tour(nCities),tour (1)))

Figure 6: Essence specification of the Travelling Salesperson Problem

specification is given in Figure 6. The cycle is represented using a single decision
variable with a sequence domain of fixed length. Notice that no constraints are
needed because the injective attribute on the sequence requires all elements to
be distinct, capturing the main constraint of the TSP. The objective function is
simply the sum of the costs of each journey between two cities within the tour.

For Choco and MiniZinc solvers we use a model that matches the Essence
specification as closely as possible. The model has an array of integer decision
variables to represent the sequence, and an allDifferent constraint to ensure
each city is visited exactly once. In MiniZinc the objective remains the same as
in Figure 6 (except that an optimisation variable is introduced as described in
Section 9.2). In Choco each two-dimensional matrix lookup is translated to a
one-dimensional lookup using an element constraint with additional index and
result variables.

In our experiments we use a subset of the TSPLIB set of symmetric in-
stances [47]. We extract instances with 1000 or fewer cites (68 instances in
total), as instances of larger sizes could not go through MiniZinc within the
time and memory limit (more details in Section 9.4).

9.3.3. Capacitated Vehicle Routing Problem

The Vehicle Routing Problem (VRP) without capacities [48] is a variation
of TSP with multiple tours (performed by a set of vehicles) that all include one
depot location. Each location must be visited exactly once, with the exception of
the depot. Capacitated vehicle routing (CVRP) adds a weight to each location,
and a capacity that applies to each vehicle separately. For each vehicle, the sum
of weights of its visited locations must not exceed the capacity. The Essence
specification of CVRP is shown in Figure 7. The decision variable is a set of
sequences, where each sequence contains locations (and the depot is implicitly
the first and last location). Constraints ensure that vehicles do not exceed their
capacities, and that all locations are visited by one vehicle.

The models used by Choco and MiniZinc solvers are derived from theEssence
specification in Figure 7. The outer type of the plan variable is a set with maxi-
mum size n (the number of locations). The set is represented by a matrix named
planMat with rows indexed 1 . . . n, where some rows may be unused in any given
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1 given n : int (1..) $ number of locations

2 letting L0 be domain int (0..n) $ 0 is the depot

3 letting L1 be domain int (1..n)

4 given weights : function (total) L1 --> int (1..)

5 given costs : function (total) tuple (L0 ,L0) --> int (0..)

6 given cap : int (1..) $ vehicle capacity

7 letting totalW be sum([ weight | (_,weight) <- weights ])

8 letting mV be totalW/cap+toInt(totalW%cap != 0) $ lowerbound

9 find plan : set (minSize mV, maxSize n) of

10 sequence (maxSize n, injective , minSize 1) of L1

11 minimising sum r in plan .

12 (sum([ costs(tuple(r(i-1), r(i))) | i : int (2..n), i<=|r|])

13 + costs((0, r(1))) + costs((r(|r|), 0)))

14 such that forAll route in plan . $ vehicle capacity

15 (sum (_,order) in route . weights(order)) <= cap ,

16 $ all orders delivered once

17 allDiff ([loc | route <- plan , (_,loc) <- route]),

18 (sum p in plan . |p|) = n

Figure 7: Essence specification of the Capacitated Vehicle Routing Problem.

solution. The inner type of plan is a sequence of maximum length n, and each
row of planMat directly represents one sequence. A row is indexed 0 . . . n + 1,
and the first and last variables are fixed to zero (representing the depot). For
each row, an additional variable is declared for the length of the sequence. Vari-
ables in the inactive part of each row in planMat are fixed to zero, and unused
rows are fixed to zero. An alldifferent except 0 global constraint is applied
to planMat, and the sequence lengths are constrained to ensure each location is
visited exactly once. Symmetry-breaking constraints order the first elements of
the sequences.

We use 88 instances of CVRP available from VRP-REP [49] that have size
n ≤ 100.1516

9.3.4. Knapsack Problem

The classic knapsack problem is straightforward to state in Essence (Fig-
ure 8). The single decision variable is the set of items in the knapsack, and the
constraint enforces the weight capacity of the knapsack. The optimisation func-
tion is to maximise the sum of the values of items in the knapsack. The MiniZinc
model has one decision variable of type set of int and closely follows Figure 8
except that a second variable is introduced representing the optimisation value.

15Instances of larger sizes either could not go through MiniZinc within the time and memory
limits, or result in a memory exception for several solvers called via MiniZinc.

16The instances are from Augerat 1995 – Sets A, B, and P, Christofides and Eilon 1969 –
Set E., Fisher-1994-Set-F, Christofides-et-al.-1979, Christofides-et-al.-1979-Set-M
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1 given items new type enum

2 given gain : function (total) items --> int

3 given weight : function (total) items --> int

4 given capacity : int

5 find picked : set of items

6 maximising sum i in picked . gain(i)

7 such that (sum i in picked . weight(i)) <= capacity

Figure 8: Essence specification of the knapsack problem.

1 given n: int (1..)

2 given initNode: int (1..n)

3 letting dNodes be domain int (1..n)

4 given linkCosts:

5 function (total) (dNodes ,dNodes) --> int (0..)

6 find parents: function (total) dNodes --> dNodes

7 find depths: function (total) dNodes --> int (1..n)

8 minimising sum parent : dNodes .

9 max([ linkCosts ((parent ,child)) * toInt(parentI = parent)

10 | (child ,parentI) <- parents ])

11 such that

12 parents(initNode) = initNode ,

13 forAll (child ,parent) in parents .

14 (child != initNode) ->

15 (parent != child /\ linkCosts ((parent ,child)) != 0),

16 forAll (child ,parent) in parents .

17 (child != initNode) -> depths(child) = depths(parent) + 1

Figure 9: Essence specification of the Minimum Energy Broadcast problem.

The Choco model represents the set with an array of Boolean variables, one per
item.

We sampled 54 instances from a benchmark set generated by Pisinger [50].17

The full benchmark set has subsets of 100 instances for each one of 54 generator
configurations. We took instance number 50 from each subset. The number of
items in our selected instances ranges from 20 to 10,000.

9.3.5. Minimum Energy Broadcast

The Minimum Energy Broadcast (MEB) problem [51, 52] is to connect a
set of wireless devices (nodes) to form a broadcast network while minimising
the energy required to broadcast a message. The structure of the network is
a tree where each non-leaf node is responsible for broadcasting messages to its

17Available from www.diku.dk/~pisinger/hardinstances_pisinger.tgz
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set of children, thus a message broadcast by the root will eventually reach all
nodes. The root node is given as a parameter, and each pair of nodes has a
given link cost. The objective is to minimise the total energy to broadcast a
message, where the energy used by a node is the maximum of the set of link
costs between the node and its children.

The Essence specification of MEB is shown in Figure 9. The specification
has a total function representing the parent relationship of the tree, and it
ensures acyclicity using a second total function representing the depth of nodes
in the tree. Constraints connect the depth of each non-root node to the depth
of its parent. The MiniZinc and Choco models closely follow the Essence
specification. The total functions are represented straightforwardly using arrays
(indexed by the function domain) of integer decision variables. Although the
Essence specification is similar to the MiniZinc and Choco models, MEB allows
us to evaluate whether neighbourhoods designed specifically for functions can
outperform generic neighbourhoods applied to arrays of integer variables.

We use a set of 56 instances from previous work [7]. 50 of the instances were
created with a random instance generator that has 4 parameters: the length
of the square area where the devices are placed, the number of devices, the
maximum power each device can broadcast at, and the rate at which the radio
signal attenuates. The generator is parameterised according to the description
provided in [51, 52]. The maximum power determines whether two devices can
communicate with each other, while the link cost between each pair of devices
is determined by the Euclidean distance between them and the attenuation
rate. The parameters of the generator were tuned with the automatic algorithm
configuration tool irace [53] to find instances of appropriate difficulty. The
random instances have between 73 and 297 nodes (within the range 70 to 300
imposed on the generation process). The remaining 6 instances were sampled
at random from an existing set provided in [6], those instances were of smaller
sizes, where the number of devices is in the range 20 to 60. All instances and
the instance generator are provided in the experimental repository.

9.3.6. Progressive Party Problem

The Progressive Party Problem (PPP) [54, 55] is to arrange a social event
involving boat crews. Given a set of boats (each with a capacity and crew
size) and a number of periods, a set of host boats are chosen and a schedule
is designed where the crews of non-host boats visit the host boats over several
periods. In each period, every non-host boat will visit one of the host boats.
The capacity of the host boats must be respected, and no pair of boat crews are
allowed to meet more than once.

The Essence specification for Athanor is shown in Figure 10. The key
decision variable is sched, which is a set of partitions of the boats, with one
partition for each time period. Within each partition, each part contains exactly
one host boat. For each period and each host, the total number of crew mem-
bers on-board the host boat is bounded by the capacity of the host. The final
constraint states that every ordered pair (i,j) of crews that meet is distinct
throughout the schedule. Unfortunately we cannot use the same specification
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1 given nBoats , nPeriods : int (1..)

2 letting Boat be domain int (1.. nBoats)

3 given capacity , crew : function (total) Boat --> int (1..)

4 find hosts : set (minSize 1) of Boat

5 find sched : set (size nPeriods) of partition from Boat

6 minimising |hosts|

7 $ Hosts stay on their own boat

8 such that forAll p in sched . |parts(p)| = |hosts| /\

9 forAll part in parts(p) . |part intersect hosts| = 1,

10 $ Host boats have sufficient capacity

11 forAll p in sched . forAll h in hosts .

12 (sum b in party(h,p) . crew(b)) <= capacity(h),

13 $ Pairs of crews that meet in the schedule are all distinct

14 allDiff ([ (i,j) | p <- sched , part <- p, i,j <- part , i<j ])

Figure 10: Essence specification for the Progressive Party Problem.

for SNS because it does not support enough of the current Essence language.
For SNS we use a less compact specification (available in the experimental repos-
itory) where the allDiff constraint is decomposed.

For MiniZinc and Choco we use a standard model from the literature [56,
54]. In MiniZinc the main decision variables are the set of hosts (exactly as in
Figure 10) and an array named visit, indexed by boat b (row) and time period
t (column), representing the host boat visited by the crew of b at time t. Hosts
always visit themselves, and other boats are required to visit hosts. For each pair
of crews, they meet at most once (i.e. are assigned the same host at most once)
so we have a sum ≤ 1 constraint. Symmetry breaking constraints order the
columns of visit. The Choco model is very similar but explicitly adds Boolean
variables for each pair of boats b1, b2 and time period t indicating whether
visit[b1, t] = b2, required for the capacity constraints. In Choco the hosts

variable is represented with an array of Boolean variables indicating whether
each boat is in the set.

There are a small number of existing benchmark instances available for this
problem. Therefore, we created a new instance generator based on the problem
description. We set the number of boats, number of periods, and maximum
boat capacity (maxC ) to be within the ranges [10, 80], [5, 30], and [10, 100], re-
spectively (each chosen at random with uniform distribution). The capacity and
crew size of each boat are generated at random with uniform distribution in the
range [0.3×maxC, 0.8×maxC]. We generated 500 random instances with the
given parameter ranges and used the OR-Tools solver to identify unsatisfiable
instances. The remaining instances (including the ones that were not solved by
OR-Tools within the time and memory limits given in Section 9.4) were taken
and 54 instances were randomly sampled from the set. We also sampled 6 in-
stances at random from an existing benchmark set used elsewhere [6]. The total
number of instances used for this experiment is 60.
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9.3.7. Synchronous Optical Networking

The Synchronous Optical Networking (SONET) problem [11, 57] is to design
a fibre-optic network comprised of multiple rings, where two network nodes are
connected if there exists a ring that both nodes are connected to. Each instance
has a set of demand pairs (i, j) where node i must be connected to node j on
at least one ring. The objective is to minimise the total number of node to
ring connections. We use the simplest variation of the problem, where each ring
has an upper bound on the number of nodes connected to it, but there is no
upper bound on the amount of network traffic carried by a ring. The Essence
specification of SONET is shown in Figure 1. The decision variable network is
a set of sets of nodes, where each inner set represents a ring. The constraint
ensures that each demand pair is a subset of at least one of the rings. The
capacity constraint on the rings is expressed as a domain attribute of network
(namely maxSize capacity).

The MiniZinc model uses an array of decision variables of type set of int

to represent the rings. The demand constraint for each demand pair (i, j)
states that there exists a ring that is a superset of {i, j}. The capacity con-
straints and the objective are straightforwardly stated using the cardinality of
sets. Symmetry-breaking constraints order the sets in the array. The Choco
model is similar to the MIP model of Sherali et al [58]. It represents each
ring with an array of Boolean variables (indicating whether each node is in the
ring), and also introduces variables for the cardinality of each ring. Demand
constraints are represented with Boolean logic, while the capacity constraints
and objective are stated on the cardinality variables.

There are a number of SONET instances available in CSPLib [57]. However,
those instances are of very small sizes (7 to 13 nodes) and are mostly trivially
solvable by the solvers considered in our experiments. Therefore, we generated
50 random instances with number of nodes nNodes ∈ {30, 40, . . . , 120}, between
15 and 90 rings, and with the capacity ranging from 15 to 90. For each unordered
pair of nodes, the pair is chosen to be a demand pair with probability 0.5. We
also include 8 existing instances [6] (the parameters of those instances are within
similar ranges to the newly generated ones). In total, there are 58 instances for
the first experiment.

9.4. Experimental Details

For each solver, model, and problem instance, we ran the solver 10 times
with 10 distinct random seeds, and with a time limit of 10 minutes for each run.
The elapsed time and objective value were recorded whenever a solver found a
new best solution. All experiments were run on the compute nodes of the Cirrus
High Performance Computing cluster.18 Each node has two 2.1 GHz, 18-core
Intel Xeon E5-2695 processors. Each solver is given a memory limit of 7GB,
imposed using the runsolver tool [59].19

18https://www.cirrus.ac.uk/
19https://www.cril.univ-artois.fr/~roussel/runsolver/runsolver-3.4.1.tar.bz2
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The MiniZinc Challenge incomplete scoring method20 was used to compute
a performance score for each problem class and solver (aggregating instances
and runs of each instance). The scoring method is based on the quality of
solutions found and the time taken to find them, but takes no account of proof
of optimality by a systematic solver.

The MiniZinc Challenge incomplete score is computed from the quality
q(x, i, j) of the best solution found (within the time limit) by solver x on in-
stance i and run j, and the time t(x, i, j) taken by solver x on instance i and
run j to find the best solution. Given a problem class, each pair of solvers s
and s′ are scored on every problem instance i and run j. Solver s is awarded
1 if q(s, i, j) is better than q(s′, i, j); 0 if q(s, i, j) is worse than q(s′, i, j); or in

the case that q(s, i, j) = q(s′, i, j), t(s′,i,j)
t(s′,i,j)+t(s,i,j) . If s failed to find a solution

then s is awarded 0 points, regardless of whether s′ found a solution. For each
solver s, its total score is the sum of its scores relative to every other solver s′

for every problem instance and run.
Note that the score depends critically on the time limit. To show how the

relative performance of solvers evolve over time, we calculated the score for
every integer time limit in the range {1 . . . 600}. The score of a solver s can
either increase or decrease over time based on its progress relative to the other
solvers.

9.5. Experiment 1: Evaluation of Athanor Neighbourhoods

The first experiment compares Athanor to the other eight solver config-
urations (described in Section 9.1) using all seven benchmark problems. In
this experiment we are testing the first hypothesis: that Athanor will gener-
ate effective neighbourhoods and neighbourhood structures from the high-level
structure available in the Essence specifications. If the hypothesis is true,
we expect to see Athanor performing well compared to the other solvers in
general, but particularly when the Essence specification contains nested struc-
tures such as a set of set that allow powerful neighbourhood structures to be
constructed.

9.5.1. Symmetry Breaking

First we determined whether to include symmetry-breaking constraints for
the four problem classes where they are available (Bin Packing, CVRP, PPP,
and SONET), and when using a solver other than Athanor or SNS (i.e. any
solver using a MiniZinc or Choco model). The symmetry-breaking constraints
are described in the relevant subsections of Section 9.3. For each solver and
problem class we computed the score with a time limit of 600 seconds, with
and without the symmetry-breaking constraints. Table 6 shows the outcome for
each of the four problem classes and each relevant solver.

20https://www.minizinc.org/challenge/2020/rules/
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Chuffed LNS-EB LNS-PG OR-Tools fzn-oscar-cbls Yuck

Bin Packing Sym — — Sym — —
CVRP Sym Sym — Sym — —
PPP — Sym Sym Sym — —
SONET — — — — — —

Table 6: Whether symmetry-breaking constraints are valuable, for each problem class where
they are available and for each solver that uses a MiniZinc or Choco model. Sym indicates
that the model with symmetry-breaking constraints outperforms the model without them.

For all subsequent experiments, we show results only for the version with the
better score as reported in Table 6. However, both versions (with symmetry-
breaking constraints and without) are included in each competition and there-
fore both versions affect the scores of other solvers. For example, when com-
paring Athanor to systematic solvers (OR-Tools and Chuffed) on the PPP,
the scores are calculated from all five solver and model combinations and the
results are reported for three: Athanor, Chuffed without symmetry-breaking,
and OR-Tools with symmetry-breaking.

9.5.2. Local Search Solvers

In Figure 11 we compare the performance of Athanor to the local search
solvers SNS, Yuck, fzn-oscar-cbls, LNS-EB, LNS-PG, and Athanor-Reduced
(as described in Section 9.1). Also, Figure 12 plots the time taken to find the first
feasible solution (regardless of quality) for each solver and each problem class
as a cumulative curve. Figure 13 plots the status of solver runs (i.e. whether a
feasible solution was found, and if not how the solver failed) for each problem
class and each solver. We will discuss the problems with simpler (non-nested)
Essence types first.

The Knapsack model uses one of the simplest types in Essence: a set of
integers. Even so, Athanor is able to perform well compared to other solvers.
Both Athanor and LNS-EB achieve the best overall performance on this prob-
lem, which indicates the effectiveness of the local search algorithm adopted by
Athanor (independent of the neighbourhood derivation contribution). The
LNS-EB version of Choco LNS also performed very well, and slightly outper-
formed Athanor at the end of the 10 minutes. Surprisingly, the CBLS solvers
Yuck and fzn-oscar-cbls are less strong, despite supporting sets of integers na-
tively. All solvers except SNS find a first feasible solution rapidly (Figure 12).
SNS is hindered by the overhead of representing neighbourhood structures as
part of the constraint model, and for some runs the translation process (instan-
tiating the model and neighbourhood structures) timed out at 600s (Figure 13).
Due to the simplicity of this problem, Athanor and Athanor-Reduced have
an identical set of neighbourhoods and therefore their performance is the same
(with very marginal difference due to fluctuation in time measurement).

The MEB specification consists of two total functions that are tightly con-
strained together. As with Knapsack, Athanor finds good solutions quickly
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Figure 11: Performance of Athanor compared to other local search solvers using the scoring
system described in Section 9.4. Symmetry is broken for some combinations of problem class
and solver (as described in Section 9.5.1). Higher scores indicate better relative performance.
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and performs comparatively well over the 10 minute timespan. Compared with
Knapsack, MEB has a more complex type (i.e., function) and Athanor is
able to outperform Athanor-Reduced on this problem, showcasing the ef-
fectiveness of the derived high-level neighbourhoods. Athanor’s performance
is closely followed by the LNS solvers, which are able to edit both functions
together. The CBLS solvers are relatively weak, possibly because they cannot
use neighbourhoods designed specifically for functions. Both fzn-oscar-cbls and
Yuck fail to find a feasible solution for the vast majority of runs (Figure 12) due
to either timeout or exceeding the memory limit (Figure 13). SNS was more
successful but in some cases the translation process timed out.

The TSP is represented as a fixed-length sequence of integers, and Athanor
is able to use neighbourhood structures generated from the direct neighbourhood
templates for sequences. For example, the well-known 2-opt move [60] (where a
contiguous subsequence is reversed) is used by Athanor and SNS, but (to our
knowledge) is not available in the other solvers. In particular, OscaR-CBLS (the
CBLS library used by fzn-oscar-cbls) has specialised sequence neighbourhoods
including 2-opt [61], but (to the best of our knowledge) these are not available
in fzn-oscar-cbls because the sequence is represented as an array of integers in
MiniZinc. The effective neighbourhood derivation results inAthanor’s winning
performance compared with all other local search solvers, including Athanor-
Reduced. Yuck and fzn-oscar-cbls have a large number of cases where the
memory limit is exceeded. In addition, Yuck has a number of cases where the
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Figure 12: Cumulative plots of the number of runs for which a feasible solution (of any quality)
has been found, for each solver and each problem class.
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solver times out, while many SNS runs time out in the translation stage.
The Essence model of Bin Packing is not nested, however it makes use of

the partition type which could otherwise be expressed as a set of sets. Athanor
will maintain the partition structure at all times, and is able to use neighbour-
hood structures generated from the direct neighbourhood templates for parti-
tion. As a result, Athanor performs well on Bin Packing, followed by the
LNS solvers then fzn-oscar-cbls (which finds a feasible solution for over 60% of
runs). Yuck times out or exceeds the memory limit for almost all runs, while
SNS fails by translation timeout for the majority. Compared with Athanor,
Athanor-Reduced is lacking only the SwapParts neighbourhood template,
which results in its reduced performance. Nevertheless, Athanor-Reduced
still performs relatively well compared with other local search solvers, demon-
strating the effectiveness of the derived neighbourhood structures for partition.

The SONET problem is represented in Essence using a set of sets of inte-
gers. Athanor’s higher-order and synchronised neighbourhood templates allow
moves such as moving an element from one inner set to another, or swapping
elements between two of the inner sets (in addition to moves involving only
one of the inner sets). The effectiveness of these high-level neighbourhoods
is validated via the significant performance difference between Athanor and
Athanor-Reduced. Athanor also significantly outperforms the other local
search solvers. There are a number of cases where each of the other local search

45



solvers do not find a feasible solution within the time limit. Yuck is also out of
memory for a large number of runs, while a small proportion of SNS runs timed
out during translation.

CVRP is represented in Essence as a set of sequences of integers (represent-
ing locations), allowing Athanor to make higher-order moves (by combining
higher-order and synchronised neighbourhood templates) such as moving a lo-
cation from one sequence to another, in addition to moves involving only one
sequence (such as reversing a contiguous subsequence). Similar to SONET, The
performance of Athanor is well ahead of all other solvers, including Athanor-
Reduced, with LNS being the only competitive alternative. Figure 12 shows
that Athanor and Athanor-Reduced are able to find a feasible solution
quickly, followed by the two LNS solvers. SNS and fzn-oscar-cbls are not able
to find feasible solutions due to exceeding solver time or memory limits, or
timeout during the translation (SNS).

PPP also has nested structure in the form of a set of partitions. However,
there are no synchronised neighbourhood templates for partition so only the di-
rect neighbourhood templates (operating on one partition) are available for this
type in Athanor. Nevertheless, Athanor has access to six direct neighbour-
hood templates for partition, and it convincingly outperforms the other local
search solvers. Interestingly, Athanor-Reduced performs slightly (but con-
sistently after 180 seconds) better than Athanor on this problem. Athanor-
Reduced lacks only the SwapParts neighbourhood template. The reason could
be that this neighbourhood template is not useful for PPP, and it takes time for
the UCB neighbourhood selectors to eliminate it from the search of Athanor.
For the other local search approaches, a majority of runs fail due to either time-
out (LNS-EB, LNS-PG and fzn-oscar-cbls), exceeding the memory limit (Yuck),
or timeout during the translation (SNS).

In summary, Athanor is the clear winner for all three classes with a nested
type (CVRP, PPP and SONET) and also for TSP and Bin Packing where power-
ful direct neighbourhood templates are available. Athanor also performed well
on MEB and Knapsack despite a relative lack of structure. The results firmly
confirm our hypothesis that Athanor is able to exploit the structure available
in high-level problem specifications to generate effective neighbourhoods.

9.5.3. Systematic Solvers

In Figure 14 we compare Athanor and Athanor-Reduced with Chuffed
and OR-Tools (as described in Section 9.1), both of which are systematic solvers
with conflict learning and activity-based heuristics. The two systematic solvers
have quite different behaviour on the 7 problem classes, with Chuffed performing
better on CVRP, PPP and TSP, while OR-Tools dominates on Knapsack, MEB
and SONET. The two solvers are competitive on Bin Packing, where OR-Tools
performs slightly better towards the end of the time limit.

Knapsack has a very simple type without any nested structure. Therefore, it
is not surprising that Athanor is not competitive on this problem. All solvers
are able to find a feasible solution very quickly for all runs (Figure 12). They
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Figure 13: Status of solver runs for each problem class and each solver. Note that
solution-found indicates that a solver finds a feasible solution within the time limit and
that it does not exceed the memory limit during the run.
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Figure 14: Performance of Athanor compared to systematic solvers using the scoring system
described in Section 9.4. Symmetry is broken for some combinations of problem class and
solver (as described in Section 9.5.1). Higher scores indicate better relative performance.
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are then competing on solution quality, and OR-Tools quickly takes the lead
and retains it.

For MEB and TSP, we found that Athanor performed strongly in compar-
ison to the systematic solvers. Athanor is able to quickly find a first feasible
solution for all runs on all instances of MEB and TSP, while Chuffed and OR-
Tools do not scale as well. For the MEB problem, Chuffed and OR-Tools timed
out for a large proportion of runs, while Chuffed ran out of memory for some
runs. For TSP, we found that both Chuffed and OR-Tools ran out of memory
for a significant proportion of the runs, and also Chuffed timed out for some
runs (see Figure 13). Finding a feasible solution for TSP would ordinarily be
trivial but the size of the instances (up to 1000 cities) poses a challenge for both
systematic solvers.

For Bin Packing, Athanor and Athanor-Reduced were the only solvers
that were able to find feasible solutions for all runs of all instances. However,
Chuffed and OR-Tools are able to compete in terms of solution quality (when
they find a solution), reducing the scores of Athanor and Athanor-Reduced
over time. OR-Tools is able to find a feasible solution for 50% of the runs and
Chuffed for somewhat less than 50% (as shown in Figure 13).

On the SONET problem Athanor and Athanor-Reduced quickly find
a feasible solution for all runs on all instances, while the other two solvers
are slower to do so. OR-Tools is able to compete with Athanor on solution
quality, and Athanor’s score declines slightly over time, however after 600
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seconds Athanor still has a clear lead in terms of solution quality. As noted
above, there is a clear difference between Athanor and Athanor-Reduced
caused by the use of higher-order and synchronised neighbourhood templates in
Athanor. For both OR-Tools and Chuffed, the sets of integers in the MiniZinc
model are represented with Boolean variables, producing a model where most
variables and constraints are Boolean and which should be well-suited to conflict
learning solvers.

Athanor is the clear winner for CVRP, it is able to find feasible solutions
quickly for all runs and produce the highest quality solutions at every time step.
OR-Tools and Chuffed do not scale as well. Both solvers run out of memory for
many runs and Chuffed also times out for some runs, as shown in Figure 13.

Finally, PPP challenges all four solvers in different ways. Chuffed is able to
quickly find feasible solutions for all runs, but its score declines over time as the
other solvers produce better quality solutions. Athanor finds feasible solutions
for just over 70% of runs, and Athanor-Reduced for just over 80%. OR-Tools
finds feasible solutions on approximately 60% of runs, timing out for the rest.
Athanor tends to find higher quality solutions than Chuffed and Athanor-
Reduced, and as a consequence has a slightly higher score at 600 seconds.
This is in contrast to Figure 11, where Athanor-Reduced has a better score
than Athanor because Athanor-Reduced is able to find feasible solutions
for more runs, and thus gain points from other local search solvers that struggle
to find feasible solutions. For all instances, a solution exists where all boats are
in the hosts set (and every boat crew stays on their own boat throughout the
schedule), however this solution is difficult for Athanor to find. The reasons
for this are explored below where we report experiments with larger instances
of PPP.

9.6. Experiment 2: Scalability

The second experiment focuses on scalability of solvers when given very
large instances. The hypothesis here is that Athanor’s use of variable-sized
data structures for both values and expressions (described in Sections 7.3 and
2.2 respectively) will allow it to scale gracefully and therefore outperform the
other solvers for sufficiently large instances of a given problem class.

We focus on four problem classes in this experiment: Bin Packing, Knap-
sack, PPP, and SONET. For the Knapsack problem, other solvers outperformed
Athanor in the first experiment. For PPP the results were inconclusive. For
the Bin Packing problem we found that other solvers are able to compete with
Athanor in terms of solution quality, despite the Essence specification using
a partition domain for the decision variable. The SONET problem is the only
other one with a nested type where another solver (OR-Tools) is able to compete
with Athanor on solution quality.

9.6.1. Benchmark Instances

We generated new large instances for each of the four problem classes as
follows.
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Figure 15: Comparing all solvers on large instances of the Bin Packing problem (with 1000,
1500, or 2000 objects), using the scoring system described in Section 9.4. Symmetry is broken
for some combinations of problem class and solver (as described in Section 9.5.1). Higher
scores indicate better relative performance.

Bin Packing: we made use of the Bin Packing generator proposed in [62]. The
generator (BPPGen) was written in Fortran and can be downloaded from the
Bin Packing library BPPLib [63]. The problem size parameter is the number of
objects. For each problem size in {1000, 1500, 2000} we generated 50 instances
using the default parameters provided in the original generator, i.e., the lower
bound and upper bound for the relative weight of items (as a fraction of the bin
capacity) are set to 0.2 and 0.7, respectively. The bin capacity is set to 10000.
Knapsack: we use Pisinger’s hard instance generator [50] to generate 20 in-
stances for each problem size (i.e., the number of items) in the set {10000, 20000,
30000, 40000, 50000, 60000, 70000, 80000} (160 instances in total). The parame-
ters of the generator are set to their default values (range of coefficients: 1000,
instance type: uncorrelated spanner instances of type 11, number of tests in
series: 1000).
Progressive Party Problem (PPP): we make use of the new generator de-
scribed in Section 9.3.6 and generate 20 random instances for each problem
size (expressed as ⟨number of boats,number of periods⟩) of ⟨80, 20⟩, ⟨120, 30⟩,
⟨160, 40⟩, and ⟨200, 50⟩ (80 instances in total). The capacity is kept in the range
{10 . . . 100}.
SONET: we make use of the new generator described in Section 9.3.7 and
generate 20 random instances for each of the following problem sizes (written
as ⟨number of nodes,number of rings⟩): ⟨160, 80⟩, ⟨180, 90⟩, and ⟨200, 100⟩.
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Figure 16: Status of solver runs for Bin Packing (size 2000), Knapsack (size 80,000), PPP
(size 160), and SONET (size 200), for each solver in the scalability experiment. Note that
solution-found indicates that a solver finds a feasible solution within the time limit and that
it does not exceed the memory limit during the run.

9.6.2. Results

Results for the Bin Packing problem are plotted in Figure 15, showing a clear
progression as the instance size increases from 1000 to 2000 objects. Athanor
quickly finds feasible solutions for all instances of all three sizes, whereas other
solvers either cannot find a feasible solution within the time limit or take signifi-
cantly longer to do so. LNS-PG and LNS-EB are able to find feasible solutions in
some cases, and all other solvers are unable to solve any instance. In summary,
Athanor clearly scales better than any of the other solvers on this problem
class.

Figure 16 summarises the reasons for failure of each solver on the largest
Bin Packing instances. All the MiniZinc solvers and SNS ran out of memory or
time during translation, while the LNS solvers were able to start searching but
in most cases they timed out before finding a feasible solution. Only LNS-PG
finds any feasible solutions for the size 2000 instances.

For the Knapsack problem, we found that Athanor is able to find feasible
solutions quickly and outperform the other solvers for all 8 sizes, as shown in
Figure 17. OR-Tools performs well up to size 60,000, but does not scale to
the larger sizes. For the size 80,000 instances, Athanor, LNS-EB, and LNS-
PG are able to find an initial feasible solution for all runs of all instances.
Athanor has a higher score based on solution quality. The Knapsack problem
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Figure 17: Comparing all solvers on large instances of the Knapsack problem (with 10,000
to 80,000 objects), using the scoring system described in Section 9.4. Higher scores indicate
better relative performance.

contains a single decision variable with type set of enum, and so can benefit
from Athanor’s compact representation of sets, as well as dynamic unrolling
of expressions for the objective and constraint (all of which scale with the actual
size of the set, rather than its maximum possible size). Figure 16 shows that
Chuffed and Yuck are limited by their memory use, while OR-Tools and fzn-
oscar-cbls time out before finding a feasible solution. SNS times out during
translation for the majority of the instances of size 80,000.

The results for large PPP instances are shown in Figure 18. Only Chuffed,
Athanor, and Athanor-Reduced were able to find feasible solutions for any
of the four sizes. On the size 160 instances, the solvers other than Chuffed failed
in several different ways (as shown in Figure 16). All solvers fail on instance
size 200, indicating the scalability challenge of this problem. As discussed in
Section 9.5, Athanor is hindered by the partition SwapParts neighbourhood
structure and Athanor-Reduced is more effective. Most constraints of the
PPP are easy to solve if we have a large set of hosts (for example, adding a host
increases the total host boat capacity so capacity constraints become easier to
solve). However, the solutions with large host sets are not easily reachable
for Athanor. The second constraint in particular (Figure 10 lines 11-12) is
quantified with forAll h in hosts, therefore its violation may be reduced
by taking an element out of hosts. As a consequence, the second constraint
will discourage Athanor from exploring areas with large sets of hosts. By
examining the UCB neighbourhood selector’s statistics across PPP instances
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Figure 18: Comparing all solvers on large instances of PPP (with 80 to 200 boats), using
the scoring system described in Section 9.4. Symmetry is broken for some combinations of
problem class and solver (as described in Section 9.5.1). Higher scores indicate better relative
performance.
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Figure 19: Comparing all solvers on large instances of the SONET problem (with 160 to
200 nodes), using the scoring system described in Section 9.4. Symmetry is broken for some
combinations of problem class and solver (as described in Section 9.5.1). Higher scores indicate
better relative performance.
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we found that in general the most frequently used neighbourhood templates all
make changes to partitions within the schedule (using the LiftSingle higher-
order neighbourhood template to lift a partition from sched), while changes to
the set of hosts are less frequent. Removing an element from hosts is more
frequent than adding an element to it, and other neighbourhood structures do
not change the size of hosts. Also, if the final constraint (Figure 10 line 14,
pairs of crews meet at most once) is removed, we found that Athanor finds a
feasible solution for 53 of 200 runs on the 20 instances of size 200. Removing a
very significant constraint on the schedule does make the problem easier but not
to the extent that Athanor can straightforwardly solve the largest instances.
Taken together, these observations suggest that Athanor is changing the set of
hosts relatively infrequently and spending most of its time attempting to satisfy
constraints on the schedule for a fixed set of hosts.

Diversifying the search to include large sets of hosts could potentially help a
future version of Athanor to find feasible solutions to PPP. It is worth noting
that each neighbourhood structure is treated as an independent action by UCB,
and there is no mechanism for UCB to learn useful sequences of actions. To
reduce the violation of the capacity constraints, Athanor would need to first
add a new host and then redistribute the guest crews among the hosts. However,
Athanor does not have any incentive to apply the first action alone. Adding a
host does not improve the violation of the capacity constraints, might break the
first constraint (that |parts(p)| = |hosts| for all partitions in the schedule),
and increases the objective value.

For the SONET problem (Figure 19) we found that Athanor can quickly
produce high-quality solutions for all three sizes of instances (including all runs
of all instances of size 200). LNS-PG is also able to find feasible solutions up
to size 180 but it is not competitive with Athanor with respect to solution
quality. Other solvers are failing for a variety of reasons, as shown in Figure 16.

In summary, our hypothesis that Athanor will scale better than the other
solvers is largely supported by the results. The exception is the Progressive
Party Problem whereAthanor was unable to find feasible solutions for large in-
stances. For sufficiently large instances of Bin Packing, Knapsack, and SONET,
Athanor performs substantially better than the other solvers.

10. Experiments with Specialised Global Constraints

Some of our benchmark problems can be modelled using global constraints
that represent the entire problem or a substantial part of it (such as the knap-
sack constraint). We refer to these global constraints as specialised to dis-
tinguish them from others (such as allDifferent and element) that are widely
used across otherwise entirely distinct problem classes. Implementations of spe-
cialised global constraints can include sophisticated reasoning that is specific
to a problem class (for example, Shaw’s propagator for the bin packing con-
straint [42]), therefore we consider them to be similar to problem-class-specific
solvers and excluded them from the experiments reported in Section 9. In this
section we compare Athanor to seven other solvers (as in Section 9) on four
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Problem Chuffed OR-Tools fzn-oscar-cbls Yuck Choco LNS

Knapsack ✓
Bin Packing ✓ ✓
TSP, CVRP ✓ ✓ ✓ ✓

Table 7: Implementation of specialised global constraints by each solver. A tick indicates
that the solver implements the constraint natively (and, for MiniZinc solvers, that the native
implementation is used by MiniZinc). Otherwise the global constraint is decomposed before
reaching the solver.

problem classes with specialised global constraints. The MiniZinc and Choco
models for the four problems are briefly described here, and are available in the
experimental repository.

• The Knapsack problem is entirely captured with a knapsack global con-
straint [64] stated on 0/1 variables.

• Bin Packing is modelled with a bin packing global constraint that includes
load variables for each bin [42]. The load variables are used in the objective
(to minimise the number of non-empty bins).

• TSP is modelled with a global circuit constraint [65] stated on a successor
representation of the sequence. The objective is modelled using element
constraints to look up the distances between adjacent locations.

• CVRP is converted to a single sequence of locations using multiple dummy
locations to mark the start and end of the delivery routes.21 The successor
representation is used with a circuit constraint, combined with a redun-
dant predecessor representation with a second circuit constraint. Other
decision variables represent load and arrival time for each location (ac-
cumulated as a vehicle traverses a delivery route), enabling the capacity
constraint and the objective (minimise total travel time) to be stated
straightforwardly. The MiniZinc model includes a custom search order
that branches on the successor variables first.

We use the same benchmark instances as in Section 9. For Bin Packing,
some larger instances have been generated for the scalability experiment. Ta-
ble 7 shows which of the solvers implement the specialised global constraints.
Athanor and SNS use the same Essence specification as in Section 9.

Among the four problems, Bin Packing is the only one where symmetry
breaking is available (with both MiniZinc and Choco models). We evaluated the
two Choco LNS solvers, Yuck, OR-Tools, Chuffed, and fzn-oscar-cbls both with
and without symmetry breaking. Experimental results indicate that the version

21The model used here is very closely based on the MiniZinc benchmark: https://github.
com/MiniZinc/minizinc-benchmarks/
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without symmetry breaking outperforms the one with symmetry breaking for
all solvers on this problem except Chuffed. In all plots shown in this section,
we present results for Chuffed with symmetry-breaking constraints and the rest
without those constraints.

10.1. Experiment 1: Evaluation of Athanor Neighbourhoods

As in Section 9.5, the first experiment compares Athanor with the other
seven solver configurations using all four problem classes for which we have a
specialised global constraint model. We are testing the first hypothesis: that
Athanor will generate effective neighbourhood structures from the high-level
structure available in the Essence specifications. If the hypothesis is true,
we expect Athanor to be competitive with the specialised global constraint
models.

Athanor is compared with other local search solvers in Figure 20. For the
Bin Packing problem, Athanor remains the leading solver but by a smaller
margin than in Section 9, and the relative performance of Yuck in particular is
much improved by using the specialised global constraint. For CVRP, once again
it is the LNS solvers that are the closest challengers. Athanor remains the best-
performing solver but by a smaller margin. On the Knapsack problem, the two
LNS solvers and Yuck perform better than Athanor, with all three showing a
big improvement when using the specialised global constraint model.22 Finally,
for TSP the LNS solvers and Yuck are substantially improved by using the
specialised global constraint model, and Athanor is not the best-performing
solver for this problem class.

Figure 20: Performance of Athanor compared to other local search solvers with specialised
global constraints using the scoring system described in Section 9.4. Higher scores indicate
better relative performance.
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22The knapsack global constraint is decomposed for Yuck. The MiniZinc model of Knapsack
used in Section 9 has a set variable, while in this section we use an array of 0/1 variables as
required for the global constraint. Yuck exhibits better performance on the 0/1 model.
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Athanor is compared to the systematic solvers in Figure 21. For Bin Pack-
ing and CVRP, the results are qualitatively similar to those in Section 9 but
Athanor is leading by a smaller margin. On the Knapsack problem, the re-
sults are very similar to those without the specialised global constraint. Finally,
for TSP the performance of OR-Tools is far better with the specialised global
constraint, and in this experiment it outperforms Athanor.

Figure 21: Performance of Athanor compared to systematic solvers with specialised global
constraints using the scoring system described in Section 9.4. Higher scores indicate better
relative performance.
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10.2. Experiment 2: Scalability

As in Section 9.6, the second experiment focuses on scalability of solvers
when given very large instances. The hypothesis is that Athanor’s use of
variable-sized data structures for both values and expressions will allow it to
scale gracefully and therefore outperform the other solvers for sufficiently large
instances of a given problem class. For Bin Packing we found that other solvers
were able to compete with Athanor and reduce its score over time in the first
experiment (although Athanor still has the highest score at 600 seconds). For
the Knapsack problem, several other solvers were able to outperform Athanor
on instances with 20 to 10,000 objects (Figures 20 and 21). We perform scal-
ability experiments for Bin Packing and Knapsack, and we also discuss TSP
below.

Figure 22 shows the relative performance of the solvers on the Bin Packing
problem as instance size is scaled up to 20,000 objects. We use the same in-
stances as in Section 9.6 up to size 2000, and the larger ones were generated
with the same generator and parameters. The LNS solvers and Yuck scale bet-
ter when using the specialised global constraint, but ultimately the outcome is
the same as in Section 9: Athanor scales to larger instances than any of the
other solvers.

The results on the smallest instances in this experiment are quite different
from those presented in Figure 20 and Figure 21. This is caused by differences
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in the instance distribution (other than their size). Here the instances of size
1000 are drawn from one distribution (i.e. generated with one generator using
one set of parameters). The normal size instances of Bin Packing are drawn
from multiple distributions and have 60 to 1000 objects.

0 200 400 600
0

2000

4000

6000

BINPACKING

athanor
chuffed-gc
lnseb-gc
lnspg-gc
ortools-gc
oscar-cbls-gc
sns
yuck-gc

(a) Size 1000

0 200 400 600
0

2000

4000

6000

BINPACKING

athanor
chuffed-gc
lnseb-gc
lnspg-gc
ortools-gc
oscar-cbls-gc
sns
yuck-gc

(b) Size 1500

0 200 400 600
0

2000

4000

6000

BINPACKING

athanor
chuffed-gc
lnseb-gc
lnspg-gc
ortools-gc
oscar-cbls-gc
sns
yuck-gc

(c) Size 2000
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Figure 22: Comparing all solvers with the bin packing global constraint model (except
Athanor and SNS) on large instances of the Bin Packing problem (with 1000, 1500, 2000,
5000, 10,000, or 20,000 objects), using the scoring system described in Section 9.4. Higher
scores indicate better relative performance.

Knapsack is represented as a set of integers in Essence, so Athanor can
take advantage of the variable-sized compound type and corresponding variable-
sized expressions in the constraint and the objective function. As we scale up
the number of objects to 80,000, Athanor scales better than all other solvers
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from size 60,000 upwards, as shown in Figure 23.
The knapsack global constraint enables the LNS solvers to perform very well

at size 10,000, much better (relative to other solvers) than in Section 9. However
as the size is increased the LNS solvers struggle to find a feasible solution. For
instances of size 80,000, all solvers other than Athanor and SNS have a score
of 0 after 600 seconds have elapsed. In contrast, in Section 9 we reported that
the LNS solvers perform well, even up to size 80,000. It seems the overhead of
propagating the knapsack constraint is not worthwhile for the largest instances.
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Figure 23: Comparing all solvers with the knapsack global constraint model (except
Athanor and SNS) on large instances of the Knapsack problem (with 10,000 to 80,000 ob-
jects), using the scoring system described in Section 9.4. Higher scores indicate better relative
performance.

Finally, several other solvers outperformed Athanor on the TSP when us-
ing the circuit constraint. There is no fundamental reason to expect Athanor
to scale better than the other solvers. The Essence specification for TSP (Fig-
ure 6) does not contain any decision variables with variable-sized compound
types: the only decision variable is a fixed-length sequence. Also, it does not
contain any expressions that unroll dynamically (either in a constraint or the
objective function). Therefore we have not performed a scalability experiment
for TSP. The success of Yuck on the TSP suggests there may be neighbour-
hood structures or local search techniques that could be added to Athanor to
improve its performance on the TSP and related problems.
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10.3. Summary

Athanor compares well to both systematic and local search solvers, even
when the other solvers are using specialised global constraints (which we define
as global constraints that encapsulate all or a very substantial part of the prob-
lem). This is a remarkable result, given that the implementation of a specialised
global constraint can include arbitrary problem-class-specific reasoning.

The most acute examples are the Knapsack and Bin Packing problems. The
knapsack global constraint encapsulates the entire Knapsack problem, while
the bin packing constraint includes almost the entire problem. They both have
sophisticated propagators for systematic CP solvers [64, 42]. Even so, Athanor
scales well and outperforms all other solvers on the largest instances of Knapsack
and Bin Packing. On the TSP, Athanor is competitive but is not the leading
solver, however for CVRP (another tour problem that uses the circuit global
constraint) Athanor outperforms all other solvers.

11. Conclusions

In this work, we have proposed Athanor, a general-purpose constraint-
based local search solver. Compared to existing constraint solvers, Athanor’s
novelty lies in its ability to search directly on the high-level description of a
problem written in the Essence constraint modelling language. This key idea
offers two unique advantages. Firstly, it allows the solver to effectively exploit
the (high-level) structure of a given problem and automatically derive a rich
set of neighbourhood structures for the search. Secondly, by working directly
with variable-sized data structures and the use of dynamic memory allocation,
Athanor is able to scale gracefully with the size of the given problem. The
twin benefits of the proposed approach result in an effective and highly scalable
solver, as demonstrated in our experiments across seven combinatorial opti-
misation problems. We compared Athanor with general purpose local search
solvers (Choco LNS, fzn-oscar-cbls, Yuck, and SNS) and with systematic solvers
that have conflict learning (Chuffed and OR-Tools). The experimental results
are complex, but in summary Athanor shows a clear advantage for five of
the seven problem classes. The two exceptions are the Travelling Salesperson
Problem (TSP) and the Progressive Party Problem (PPP). The Essence spec-
ification of TSP does not have favourable characteristics for Athanor (such as
a nested domain, or a domain with a variable-sized compound type). In this
case, Athanor is outperformed by solvers using a specialised global constraint.
The limitation in performance on PPP can be attributed to the simplicity of the
neighbourhood structure selection mechanism inside the solver, which does not
allow the search to recognise effective combinations of neighbourhood structures
that need to be applied in sequence.

There are several directions to expand on this work. The design of Athanor
provides the opportunity to investigate other ways of designing neighbourhoods
and neighbourhood structures, taking advantage of both the high-level structure
and recursive nature of variables. Our experiments show that our current do-
mains can already compete with other state of the art solvers, but we believe this
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area of research could lead to significant improvements over our current system.
Firstly, as described above, the employment of more sophisticated neighbour-
hood structure selection mechanisms can potentially help the solver to overcome
the limitation in performance found in our experiments on PPP or similar prob-
lems, where the effectiveness of a neighbourhood structure can only be observed
if it is used in combination with others. This topic has been intensively studied
by the hyper-heuristic community (see, e.g. [66, 67]). In addition to learning to
select the best neighbourhood combinations on-the-fly, a recently emerging fam-
ily of techniques is to learn selection strategies in a data-driven fashion via the
use of deep reinforcement learning [68]. Similar approaches have shown promis-
ing results in different areas, such as heuristic selection in planning solvers [69].
A second direction for future research is on expanding on the neighbourhood
templates. By investigating the effectiveness of various problem-specific neigh-
bourhood templates commonly used in the metaheuristics community (e.g., [12])
and integrating them into the neighbourhood template library of Athanor, we
can potentially enhance the solver’s ability in exploiting the inherent structure
present in combinatorial optimisation problems. This may lead to significant
improvement in the solver’s performance. However, it is important to note that
such expansion will also make the neighbourhood structure selection problem
much more challenging, which will likely require developing more effective learn-
ing techniques. Finally, there are several design choices in Athanor that are
currently set in an ad-hoc manner. A thorough investigation of those choices
and their impact on the solver’s performance, together with the development of
effective algorithm configuration techniques [70, 71, 72] to automate such design
choices are other important avenues for future work.
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Appendix A. Example of triggers and incremental evaluation with
the sum operator

The sum operator in Athanor has one operand, which must be a sequence
of the integer nodes which are to be added together. Like the set type, the
sequence type makes use of an extended set of trigger notifications:

• valueAdded(index, x): x has been added to the sequence at position index,
moving all later elements up one index.

• valueRemoved(index,x): x, which was at position index, has been removed,
moving all later elements down one index.

• subsequenceChanged(startIndex,endIndex): One or more of the elements
in the sequence between positions startIndex (inclusive) and endIndex

(exclusive) have a new value.

• positionsSwapped(index1,index2): elements at positions index1 and index2

have swapped positions.

• memberHasBecomeUndefined(index): The value of the element at position
index has become undefined.

• memberHasBecomeDefined(index): The value of the element at position
index has become defined.

The following example shows how the sum operator is incrementally updated
using the sequence notifications. We assume that the sum operator has already
been fully evaluated. The sum operator is represented by the following state:

• value: The result of summing the integers in the sequence.

• cmv (cached member values): a copy of the values in the sequence. Values
currently undefined are stored as 0.

• undefined : The number of undefined values in the sequence.

The sum is then incrementally updated as changes arrive. The sum im-
plementation accepts the valueAdded, valueRemoved, subsequenceChanged and
positionsSwapped triggers, and incrementally updates both the value and cmv .
When memberHasBecomeUndefined is received, the value is still kept up to date
(except for the undefined value, which is treated as 0), and undefined is in-
cremented. While undefined > 0, the sum node returns undefined as its value.
memberHasBecomeDefined decrements undefined , and when it reaches 0 the sum

node returns value.
The only time a full re-evaluation of value, cmv, and undefined are performed

is when valueChanged, hasBecomeUndefined or hasBecomeDefined are triggered, as
these do not provide any incremental information.
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Appendix B. Value Representation and Incremental Hashing

In this section we describe the internal representation and the hash function
of each type supported by Athanor. A hash function is a function that takes
a string of arbitrary length and maps it to a hash – a fixed length string.
In Athanor, hash functions are used to quickly compare data structures by
comparing their hashes rather than by recursively comparing the entire data
structure. Comparing by hash can improve performance by orders of magnitude.
However, hash functions have the limitation that multiple input values can have
the same hash value – this is termed a hash collision. In general the utility of a
hash function depends on the extent to which it satisfies multiple properties [73],
but here we are only concerned with collision resistance. Collision resistance is
the difficulty of finding two strings X and Y such that X ̸= Y and hash (X) =
hash (Y ). We need strong collision resistance in Athanor because hash values
are used to compare values for equality: to maintain type correctness (with
sets, injective functions, and partitions among others); and in several constraint
types (allDifferent and subset among others). In this section we define a
hash function for the types supported by Athanor, describe how it can be
computed incrementally (i.e. updated efficiently when a change is made to a
data structure), and discuss the consequences of a hash collision.

In the following subsections we define a hash function hash (v), where v is
an expression of any supported Essence type, and show how the hash function
is updated incrementally following a change δ. The hash function produces a
64-bit value. We make use of an existing hash function named mix, which has
the property that two similar input strings have (with high probability) widely
different hashes. MurmurHash3 [74] (128-bit) is used for the mix function, and
its output is reduced to 64 bits with XOR. The concrete types are dealt with
simply. When v is an integer, hash (v) = v and when v is Boolean, hash (v) =
toInt(v) (i.e. 0 or 1). Enumerated types are represented internally with integers
and the integer hash function is used.

Appendix B.1. Sets and Multisets

Sets are represented internally using an extensible array of references to the
elements (in no particular order), and a hash set (i.e. a hash table containing
only keys rather than key-value pairs) of the elements to enable fast membership
tests. Insertion and deletion occur at the end of the array; an element to be
deleted must be swapped with the last element prior to deletion. For a multiset,
the hash set is replaced with a hash table mapping each element to the number
of occurrences of that element.

We take the approach of hashing each element of the set or multiset, then
combining the hashes of the elements into a hash for the container. The hashes
are combined with a commutative function because sets and multisets are un-
ordered containers and may be stored in any order. We use an associative and
commutative binary operator µ to combine the hashes of the elements. This
also allows for incremental updates to a hash. When adding an element i to
the set s that has a cached hash value h, the new hash h′ can be calculated as
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h′ ← µ (h,hash (i)). If an element i1 is removed, the new hash h′ is calculated
as h′ ← µ

(
h, (hash(i1))

−1
)
, where x−1 is defined such that it will “cancel out”

x in the hash. The choice of the combining operator µ is important. Consider
a simple choice of addition:

hash (s) = hash (s1) + hash (s2) + . . .+ hash (sn)

Addition produces a hash function with a high probability of hash collisions.
As Athanor hashes the integer i to i, the sets {2, 8}, {4, 6} and {1, 2, 3, 4}
would all hash to 10. Our solution to this problem is based on Clarke et al. [75]:
the hash of each element is hashed again with a function called mix, so that
similar elements no longer have similar hashes. Therefore, hash (s) where s is a
set of elements s1, s2, . . . , sn is defined as:

hash (s) = mix (hash (s1)) + mix (hash (s2)) + . . .+mix (hash (sn))

The hash function for multisets is identical to the one for sets. Note that
compared to a set, a multi-set allows multiple occurrences of the same element.
As the hashes are added (after mixing), this can reduce the strength of the hash
– as we use 64-bit hashes, then all multi-sets which contain 264 identical values
will hash to 0. However, memory constraints make this practically infeasible –
even if a multiset had 232 occurrences of the same value, the hash value would
still be able to encode 264−32 = 232 distinct values.

Appendix B.2. Sequences and Tuples

Sequences are represented with an extensible array of references to elements.
In this case the order is preserved when adding or deleting elements at any index
of the array. Sequence hashing reuses the method for incrementally hashing sets
by treating the sequence as a set of tuples (i, j), where j is a member in the
sequence and i is its index (position) in the sequence. Assuming we have a
method for hashing tuples (see below), we can calculate a new hash h′ from an
existing hash h for the following operations:

• Element e added to end of sequence with index i: h′ ← h+mix (hash ((i, e)))

• Element e removed from end of sequence, its index was i: h′ ← h −
mix (hash ((i, e)))

• Element e with index i changed for element e′: h′ ← h−mix (hash ((i, e)))+
mix (hash ((i, e′)))

The hashing method for tuples is very simple and does not allow for incre-
mental updates. The hashes of the members of the tuple are concatenated into
a sequence, and the sequence is then hashed with MurmurHash3 (used as in
the mix function). We have found that tuples in Essence are usually short,
and the lack of incremental updates does not cause a performance problem in
practice. If necessary, the method of incrementally hashing sequences can also
be applied to tuples.
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Appendix B.3. Functions

A function consists of a defined set, a range set, and a mapping from elements
of the first to elements of the second. The range is stored as an extensible
array of references to elements. If the function is total and the defined set is a
contiguous set of integers (or tuples of integers, each drawn from a contiguous
set), then the defined set is not stored; instead indexes into the range array
are calculated directly from the defined values. Otherwise, the defined set is
stored in an extensible array and a hash table stores the mapping from defined
values to the index of their image in the range array. Functions are treated as
a set of tuples (preimage, image) for the purpose of hashing. As a consequence,
functions use the method for incrementally hashing sets.

Appendix B.4. Partitions

Given a partition with n elements, the partition representation maintains
an array of partition elements e and an array of integers p used to map each
element e[i] to a label p[i]. Those with the same integer label are in the same
part (cell) of the partition. For incremental hashing, a partition is treated as a
set of sets. In order to maintain the hash of each of the parts (each of the inner
sets in our set of sets), we use a third array hp of hashes:

∀i ∈ I. hp[i] =
∑

j∈I,p[j]=i

mix (hash (e[j]))

Since we are treating each part of a partition as an individual set, we hash
the part in the same way as a set. We then define the hash of the entire partition
similarly, treating the partition as a set of sets. Since in the previous step we
have defined the hash of each part (or each inner set of our set of sets) we can
apply the same mix/sum operations to combine the hashes, as follows.

hash (partition) =
∑
i∈I

mix (hp[i])

When an element is moved from one part to another, the hash of the partition
is updated incrementally by removing the hashes of both parts (p1 and p2) from
the hash of the partition, incrementally updating the hashes of both p1 and p2,
then restoring the updated hashes back into the partition hash. The update
is performed in constant time assuming that the hash and mix functions are
constant time.

Appendix B.5. Hash Collisions

The path taken through the search space by Athanor can, in extremely
rare cases, be affected by a hash collision. This can cause incorrect solutions,
so all solutions must be verified before they are returned to the user. Athanor
includes a function to verify that solutions are correct. This function has only
ever found incorrect solutions when we purposefully reduce the size of the hash
to 8 bits, to check it behaves correctly. The problem arises when a constraint
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requires that two elements of a compound type are equal, or (in a negated
context) that two elements of a compound type are different. The elements
are checked for equality or disequality by comparing their hashes – this greatly
improves performance, but can lead to incorrect solutions if a hash collision
occurs.
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